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ABSTRACT 

The main purpose of this study was to synthesize a series of nanoporous silicon 

(n-PSi) samples on n-type Si (111) wafer using the photo-electrochemical etching 

(PECE) method, which was effective for the fabrication of a metal-semiconductor-

metal (MSM) ultraviolet photodetector. Samples were prepared at fixed etching time 

(30 min) under varying PECE operating parameters, which included differential 

current densities (15, 30 and 45 mA/cm2) and variable chemical ratios to achieve 

optimum growth. The structural, morphological and optical properties of the as-

prepared PSi samples were characterized by different analytical techniques. The 

optimum etching parameters for the growth of n-PSi samples comprise of etching time 

of 30 min, current density of 45 mA/cm2 and chemical ratio of 2:1:1. The objectives 

of this study were achieved in three phases. First, a layer of zinc oxide (ZnO) 

nanoclusters was deposited on the optimally grown n-PSi sample by means of radio 

frequency (RF) sputtering. The thicknesses of the deposited ZnO nanoclusters layers 

on n-PSi were varied between 300 nm and 500 nm for annealing temperatures ranging 

from 600 oC to 900 oC. The optimum thickness and temperature were determined to be 

300 nm and 700 oC, respectively. Secondly, platinum (Pt) electrodes were deposited 

on the n-PSi/ZnO NCs structure via radio frequency sputtering to obtain the MSM 

(Pt/n-PSi/ZnO NCs/Pt) ultraviolet photodetectors. Finally, the performances of 

fabricated ultraviolet MSM photodetectors were evaluated using current-voltage (I-V) 

measurement. The optimum n-PSi and n-PSi/ZnO NCs samples were annealed using 

a Nd-YAG laser under several shots (pulses) to determine their influence on the 

structural, morphological, optical and electrical features of the n-PSi/ZnO NCs 

samples. The photoluminescence spectra of the optimally synthesized n-PSi/ZnO NCs 

exhibited an intense near band edge emission (violet band centred at 380 nm for 

bandgap energy of 3.26 V). The  I-V characteristics of the fabricated MSM ultraviolet 

photodetectors were examined in the dark and under ultraviolet light (380 nm) 

illumination. The results revealed that laser annealing can significantly improved of 

the performance of the fabricated Pt/n-PSi/ZnO NCs/Pt ultraviolet photodetector in 

terms of high responsivity (6.35 A/W), photosensitivity (3772.92) as well as faster 

response time (0.30 s) and recovery time (0.26 s). It was concluded that the proposed 

MSM ultraviolet photodetectors could be advantageous for various optoelectronic 

applications. 
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ABSTRAK 

Tujuan utama kajian ini adalah untuk mensintesis satu siri sampel silikon nano 

berliang (n-PSi) pada wafer Si (111) jenis-n dengan menggunakan kaedah punaran 

foto-elektrokimia (PECE), yang berkesan untuk mengfabrikasikan pengesanfoto 

logam-semikonduktor-logam (MSM) ultraungu. Sampel disediakan pada masa 

punaran tetap (30 minit) di bawah parameter operasi PECE yang berbeza-beza, yang 

termasuk ketumpatan arus berlainan (15, 30 dan 45 mA/cm2) dan nisbah kimia yang 

berubah untuk mencapai pertumbuhan yang optimum. Ciri-ciri struktur, morfologi dan 

optik dari sampel n-PSi yang disediakan telah dicirikan oleh teknik analitikal yang 

berbeza. Parameter punaran optimum untuk pertumbuhan sampel n-PSi terdiri 

daripada masa punaran selama 30 minit, ketumpatan arus sebanyak 45 mA/cm2  dan 

nisbah kimia 2: 1: 1. Objektif kajian ini telah dicapai dalam tiga fasa. Pertama, satu 

lapisan zink oksida (ZnO) nano kelompok (NCs) telah dimendapkan pada sampel n-

PSi yang ditumbuhkan secara optimum dengan menggunakan kaedah percikan 

frekuensi radio. Ketebalan lapisan ZnO NCs pada n-PSi berubah antara 300 nm dan 

500 nm untuk suhu penyepuhlindapan antara 600 oC hingga 900 oC. Ketebalan dan 

suhu optimum didapati masing-masing adalah 300 nm dan 700 oC. Kedua, elektrod 

platinum (Pt) dimendapkan diatas struktur n-PSi/ZnO NCs melalui percikan frekuensi 

radio untuk mendapatkan pengesanfoto ultraungu MSM (Pt/n-PSi/ZnO NCs/Pt). 

Akhirnya, prestasi pengesanfoto ultraungu dinilai menggunakan pengukuran arus-

voltan (I-V). Sampel n-PSi dan n-PSi/ZnO NCs yang optimum telah disepuhlindapkan 

menggunakan laser Nd-YAG di bawah beberapa tembakan (denyutan) untuk 

menentukan kesan terhadap ciri-ciri struktur, morfologi, optik dan elektrik sampel n-

PSi/ZnO NCs. Spektra fotoluminesen n-PSi/ZnO NCs yang disintesis secara optimum 

menunjukkan pancaran pinggir jalur dekat yang kuat (jalur ungu yang berpusat pada 

380 nm bagi tenaga jurang jalur sebanyak 3.26 V). Ciri-ciri I-V pengesanfoto 

ultraungu MSM yang difabrikasikan diperiksa dalam gelap dan di bawah penyinaran 

cahaya ultraungu (380 nm). Hasil kajian menunjukkan bahawa penyepuhlindapan 

laser dapat meningkatkan prestasi pengesanfoto ultraungu Pt/n-PSi/ZnO NCs/Pt yang 

difabrikasikan dengan nilai yang tinggi untuk tindak balas (6.35 A/W), fotosensitiviti 

(3772.92) serta masa tindak balas (0.30 s) dan masa pemulihan (0.26 s) yang lebih 

cepat. Kesimpulannya, pengesanfoto ultraungu MSM yang dicadangkan dapat 

memberi kelebihan untuk pelbagai aplikasi optoelektronik. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Study 

The distinctive features of porous silicon (PSi) are based on its unique 

morphology, which has unravelled new opportunities in the manufacture of Si-based 

optoelectronics. Nevertheless, the efficiency of such devices is dependent on the 

quality of fabricated PSi nanostructures, where controlled growth methods are 

constantly demanded to synthesize materials with desirable characteristics. In this 

regard, the electrochemical etching method appears as a suitable technique to 

synthesize high quality n-PSi materials with varied structures and morphologies. The 

dependence of the optoelectronic properties of the as-prepared n-PSi on the porosity 

(size, shape, homogeneity and density distribution), morphology and fabrication 

conditions can be influenced by fine-tuning the photo-electrochemical etching (PECE) 

processing parameters (e.g. etching duration, current density, coating process, etc.) [1]. 

Moreover, it has been shown that the crystallinity and optoelectronic properties of the 

synthesized PSi material can be remarkably improved by coating its front surface with 

n-type semiconductor materials [2]. Thus, several efforts have been made to produce 

PSi-based devices with optimum photodetection performance, where the key emphasis 

was to enhance the electrical and charge carrier transport characteristics of PSi [3]. 

Despite the varied attempts, the optimum conditions for synthesizing n-PSi with the 

desirable optoelectronic properties remain to be achieved.  

Taking into consideration the prospect of n-PSi with strong visible and 

ultraviolet photoluminescence at room temperature, it is being widely researched for 

use as ultraviolet photodetectors (UVPDs) in fields of medicine, manufacturing, and 

technology [4]. Motivated by this emerging demand, this study intends to optimize the 

electrical and optical properties of n-PSi for fabrication as metal-semiconductor-metal 

(MSM) ultraviolet photodetectors (UVPDs). To adjust the morphological properties 
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of n-PSi, various parameters involved in photo-electrochemical etching (PECE) 

method were varied. The dependence of the electrical and optical properties of n-PSi 

on its morphology was then analyzed.  Furthermore, the n-PSi layer was coated with a 

layer of ZnO (a direct wide band gap semiconductor material) NCs to enhance its UV 

photodetection property [5, 6]. This modification is imperative since the conventional 

UV detectors based on polycrystalline ZnO thin film have low photoresponsivity and 

long response time (of the order of few minutes) [7]. Previous studies on ZnO UV 

detector focused on improving the efficiency of micro mask electrodes rather than 

photoresponsivity [8]. Attempts have been made to improve the photoresponsivity of 

ZnO UV detectors by modifying the surfaces of as-prepared ZnO thin films [9]. 

Studies have shown that covering the ZnO film surface with nanosheets of diverse 

kinds of polymers could significantly improve the responsivities of photodetectors [7]. 

The surface coating of ZnO films with polyamide nylon enhanced their photoresponse 

to four orders of magnitude, although the response time was short (range of few 

seconds) [10]. In addition, the coating of P-Si with ZnO nanofilms could significantly 

improve its resistivity, resulting in fast response in the UV region. 

The so called PD (or photosensor) device directly converts optical signal into 

electrical signal through the photovoltaic (PV) effect. Photodetector is a transducer 

that modifies one of the characteristics when light energy is incident on it. The Ohmic 

resistance of a photoresistor can be modified in the same way as rods and cones cells 

in retina neurons of human eye alter their electrochemical response. Likewise, 

chlorophyll in plant leaves adjusts the rate of CO2 conversion to O2. Other PDs alter 

the flow of electrical current or the potential difference across their terminals. Easily 

reproducible and cost-effective PDs that exhibit sufficiently fast response to produce 

a measurable output from a small amount of light energy must be developed for 

potential applications in the field of high-speed optical communications. Examples of 

this kind of photodetectors include avalanche photodiodes (APDs) and positive 

intrinsic negative photodiodes (PINs). 
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1.2 Problem Statement 

Studies on the fabrication of efficient PDs are constantly expanding given the 

urgent need for more advanced and better devices with high stability, speed, 

sensitivity, selectivity, and large signal to noise ratio. [11-13]. PSi based PDs have 

been fabricated using different methods [14, 15]. particularly the PECE method, which 

has produced excellent and high quality PDs [15]. However, the optimum method for 

the growth of PSi with controlled pore size distribution has not been realized despite 

the many efforts to do so. This is imperative as controlling the structure, morphology, 

optical and electrical properties (I-V curves, rise time, recovery time, sensitivity and 

responsivity) of ZnO based PDs will enhance their overall gain and reduce their loss 

rate. Moreover, the influence of laser annealing (varied fluences, laser energy, pulses, 

repetition time, etc.) on the structure, morphology, optical and electrical properties of 

grown n-PSi/ZnO NCs based MSM PDs has not been examined systematically.  Thus, 

it is expected that coupling the established PECE method with pulse laser annealing 

process will lead to the synthesis of better quality n-PSi and n-PSi/ZnO NCs under 

optimum conditions. In this view, this thesis attempts to combine the PECE technique 

with Nd:YAG laser annealing to improve the optical, electrical and morphological 

properties of grown n-PSi and n-PSi/ZnO NCs samples (at optimum growth 

condition), resulting in the fabrication of high performing and efficient MSM UV PDs. 

Such modifications in the overall behavior of n-PSi samples are anticipated to produce 

an optimized MSM UVPD characterized by large surfaces and high-quality structures 

needed for diverse applications. The optimally synthesized n-PSi and n-PSi/ZnO NCs 

samples can further be used to fabricate MSM PDs of high efficiency and fast response. 

1.3 Objective of the Thesis 

Based on the abovementioned problem statement and the identified research 

gaps, the following objectives are set: 
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(a) To synthesize n-PSi on Si substrates using the photo-electrochemical etching 

(PECE) method under different processing parameters for the growth 

optimization and subsequent characterizations. 

(b) To determine the influence of growth parameters (temperature and thickness) 

on the structure, morphology and optical properties of n-PSi/ZnO NCs 

produced using RF sputtering technique. 

(c) To evaluate the influence of Nd-YAG laser annealing parameters on the 

structure, morphology, optical properties and electrical properties of the 

fabricated MSM UV photodetectors based on optimum n-PSi and n-PSi/ZnO 

NCs samples. 

(d) To compare the performances of the proposed MSM UV PDs fabricated with 

and without laser annealing.  

1.4 Scope of the Work 

The research scope of this thesis includes:  

(a) The optimization of the growth parameters of photo-electrochemical etching 

(PECE) and radio frequency (RF) sputtering methods for the synthesis of n-

PSi on Si-substrate and deposition of ZnO NCs on n-PSi layer, respectively. 

(b) The structural, morphological and optical characterizations of the n-PSi and n-

PSi/ZnO NCs samples at room temperature using X-ray diffraction (XRD), 

energy dispersive X-ray (EDX) spectroscopy, atomic force microscopy 

(AFM), field emission scanning electron microscopy (FESEM) and 

photoluminescence (PL) spectroscopy.  

(c) The fabrication of MSM UV PDs using the optimally synthesized n-PSi and n-

PSi/ZnO NCs samples. 
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(d)  The performance evaluation of the proposed photodetectors (MSM UV PDs) 

in the dark and under UV light illumination. 

(e) The measurement of I-V characteristics of the designed MSM UV PDs. 

(f) The annealing of the optimally synthesized samples using Nd-YAG laser under 

varied laser parameters (anodization current and voltage) to improve the 

performance of the PDs. 

(g) Comparative analysis of the photodetection performances of PDs fabricated 

from laser annealed and un-annealed samples.  

1.5 Thesis Outline 

Chapter one presents a brief background on the subject matter and an overview 

of the syntheses of PSi and ZnO films as well as the significance of photodetectors. 

Chapter two provides a comprehensive literature review and theoretical background 

of the formation and deposition of n-PSi layers in addition to their photodetector 

application. The basic principle and mechanism of photodetector operation is also 

presented in this chapter. Chapter three presents in detail the research methodology, 

which comprises experimental set up of the various synthesis methods of n-PSi and 

ZnO NCs, description of the characterization tools, fabrication of the MSM UV 

photodetector and the process of laser annealing. The preparation of the Si samples 

used to synthesize PSi layers was also described in this chapter. Furthermore, this 

chapter explains the process of fabricating the Pt/n-PSi/ZnO NCs/Pt UV 

photodetector. Chapter 4 presents the results on the effect of varying the current 

density of PECE method on the structural and optical properties of n-PSi layers 

deposited on n-type c-Si wafer of (111) orientations. Afterwards, the n-PSi layer with 

optimal current density (from each orientation) was selected as the best substrate to 

grow ZnO NCs using the RF sputtering technique. The properties of the samples 

required for the fabrication of the photodetector device and the effects of temperature 

annealing on the morphology, structural, and optical characteristics of ZnO NCs arrays 

synthesized on PSi substrate are discussed. The n-PSi layer with optimal thickness and 



6 

temperature annealing (from each orientation) was selected as the most suitable 

substrate for fabrication of the photodetector device. In addition, the results on the 

influence of Nd-YAG laser annealing on the structural and optical properties of n-PSi 

and n-PSi/ZnO NCs are presented in this chapter. The results are comparatively 

analysed in this chapter. Chapter 5 concludes the thesis with deductions inferred from 

the results. 
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