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 ABSTRACT  

 

 

 

 

 In recent decades, the occurrence of pharmaceutically active compounds in 

wastewater has emerged as one of the major environmental issues due to its toxicity 

and adverse impact towards human beings and aquatic life. Photocatalytic 

degradation is one of the promising techniques for degrading organic compounds. 

Among the photocatalysts, titania (TiO2) is the most attractive since it is a non-

hazardous compound and eco-friendly. However, it has a low photocatalytic 

performance. This present study was focused on the photodegradation of ibuprofen 

(IBP) using modified TiO2 namely fibrous silica titania (FST) as photocatalyst. FST 

was prepared using the hydrothermal method under different molar ratios of toluene 

and water. The catalysts were characterised using X-ray diffraction, ultraviolet-

visible spectrophotometer diffuse reflectance spectroscopy, nitrogen adsorption-

desorption, field emission scanning electron microscope, transmission electron 

microscopy, Fourier transform infrared, and electron spin resonance. The increase in 

molar ratio of toluene and water has resulted in increase in particle size and surface 

area with reduction of crystalline anatase TiO2. The highest distribution of active site 

(Si-O-Ti bond), terminal silanol and defeated site hydroxyl were observed in the 

catalyst FST(6:1), thereby showing the highest performance in degrading IBP. The 

photocatalytic performance of the catalysts towards degradation of 10 mg L-1 IBP 

under visible light at pH 7 and 0.375 g L-1 catalyst after 4 hours was in the following 

order: FST(6:1) (90%)> FST(5:1) (80%)> FST(7:1) (71%)> commercial TiO2 (67%). 

Kinetic study shows that the degradation of IBP followed the pseudo first order 

Langmuir-Hinshelwood model. The response surface methodology study for 

FST(6:1) catalyst demonstrated good significance of model with a high coefficient of 

determination (R2=0.937) while reusability study displayed that the catalyst was still 

stable after 5 cycles. The employment of catalyst on degradation of other pollutants 

revealed that the performance was above 20% degradation, suggesting the potential 

use of the catalysts for various wastewater treatments.  
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ABSTRAK 

 

 

 

 

 Pada dekad kebelakangan ini, kewujudan sebatian aktif farmaseutikal 

dalam air sisa merupakan salah satu isu alam sekitar yang utama akibat 

ketoksikannya dan kesan buruk terhadap manusia dan kehidupan akuatik. Degradasi 

fotopemangkinan adalah salah satu teknik yang meyakinkan untuk mengurai sebatian 

organik. Antara fotomangkin, titania (TiO2) adalah yang paling menarik kerana ia 

adalah sebatian yang tidak berbahaya dan mesra alam. Walau bagaimanapun, TiO2 

mempunyai prestasi fotopemangkinan yang lebih rendah. Kajian ini lebih fokus 

kepada fotopenyahbuangan ibuprofen (IBP) menggunakan TiO2 terubahsuai iaitu 

silika titania berserat (FST) sebagai fotomangkin. FST disediakan dengan mengguna 

kaedah hidroterma dengan nisbah molar toluena dan air yang berbeza. Sifat-sifat 

mangkin telah dicirikan dengan menggunakan pembelauan sinar-X, spektroskopi 

pantulan serakan spektrofotometer cahaya nampak-ultraungu, penjerapan-

penyahjerapan nitrogen, mikroskop elektron imbasan pancaran medan, mikroskop 

elektron transmisi, spektroskopi inframerah transformasi Fourier, dan resonans 

putaran elektron. Peningkatan nisbah molar toluena dan air telah menyebabkan saiz 

zarah dan luas permukaan meningkat dengan pengurangan kristal anatase TiO2. 

Mangkin FST(6:1) telah menunjukkan taburan yang tinggi terhadap tapak aktif 

(ikatan Si-O-Ti), silanol terminal dan kekurangan tapak hidroksil, justeru itu, ia telah 

menunjukkan prestasi tertinggi dalam degradasi IBP. Prestasi fotomangkin terhadap 

degradasi 10 mg L-1 IBP menggunakan cahaya boleh lihat pada pH 7 dan 0.375 g L-1 

mangkin selepas 4 jam adalah dalam urutan berikut: FST(6:1) (90%)> FST(5:1) 

(80%)> FST(7:1) (71%)> komersil TiO2 (67%). Kajian kinetik menunjukkan bahawa 

degradasi IBP mengikut model Langmuir-Hinshelwood tertib pertama pseudo. 

Kajian kaedah gerak balas permukaan untuk mangkin FST(6:1) menunjukkan model 

penemuan baik dengan pekali penentu yang tinggi (R2 = 0.937) dan kajian kebolehan 

guna semula telah menunjukkan bahawa mangkin masih stabil selepas 5 kitaran. 

Penggunaan mangkin terhadap degradasi bahan pencemar yang lain membuktikan 

bahawa prestasi degradasi melebihi 20%, mencadangkan potensi penggunaan 

mangkin untuk pelbagai rawatan air sisa. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Pharmaceuticals belong to a chemical group which are extensively used 

nowadays and have been a concern to the environment (Nina et al., 2017). These 

compounds, which comprised a huge group of human and veterinary medicinal 

compounds have long been used around the world. The extended and worldwide usage 

of hazardous pharmaceuticals has potentially increase the pollution of surface, ground 

and drinking water. Basically, pharmaceuticals contaminate soil, surface waters, 

ultimately ground and drinking water after excretion process from humans or animals 

through urine or faeces, as well as through the sewage system and from the influent of 

wastewater treatment plants (Klavarioti et al., 2009). 

 

 

Pharmaceutically active compounds (PhACs) produced in surface and ground 

waters have been classified by many countries as an environmental problem. The 

pharmaceutical industry uses the designation active pharmaceutical ingredients to 

describe products that are pharmacologically active, resistant to degradation, highly 

persistent in aqueous medium and capable of producing adverse effect in water 

organisms as well as able to negatively impact the human health (Rivera-Utrilla et al., 

2013). Ibuprofen (IBP) is one of the antipyretic pharmaceuticals that is frequently 

detected in the municipal wastewater systems which is biological active and has 

adverse impacts on the environment even in small concentrations (Choina et al., 2013). 

To overcome these problems, several treatment processes such as coagulation, 

chemical precipitation, chlorination and ozonation have been developed. 
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However, these methods have several drawbacks including their inability to destroy 

the pollutants that tend to be transferred from one phase to another (Nina et al., 2017). 

Besides, Tran et al. (2017) reported that the use of conventional processes could not 

completely remove recalcitrant pollutants. 

 

 

Advanced oxidation processes (AOPs) are a promising alternative and have 

been extensively studied among researchers, which include homogenous and 

heterogeneous photocatalytic oxidation (Nina et al., 2017). AOPs are processes that 

generate hydroxyl radicals (•OH), which are highly oxidised agents that are very useful 

in reacting with a wide variety of compounds (Silva et al., 2015). Among AOPs, 

heterogenous photocatalysis using semiconductors like TiO2 as catalyst is a well-

developed method that provides promising results the removal and total mineralisation 

of various pharmaceuticals and other micro pollutants from aquatic phase 

(Antonopoulou et al., 2016). In addition, these methods are excellent in terms of 

performance and environmental friendly due to its ambient operating conditions, and 

the fact that the catalyst is cost effective, non-toxic and photochemically stable 

(Surenjan et al., 2017). 

 

 

The application of TiO2 catalyst is fascinating for an effective photocatalytic 

degradation of drugs and other harmful organic pollutants under UV-light irradiation. 

Countless treatments have been done using TiO2 catalysts since it is less hazardous, 

eco-friendly with no additional chemicals required, as well as the possibility of 

completing abatement of drugs (Choina et al., 2012). Notwithstanding, TiO2 suffers 

from several drawbacks such as wide band gap, low surface area, poor accessibility of 

active site, high electron-hole recombination, weak light harvesting and difficulty in 

isolation and reusability (Singh et al., 2016).  

 

 

The synthesis of TiO2 with mesoporous structure has been reported in 

improving the photocatalytic performance towards the desired reaction, owing to its 

high surface area and total pore volume for enhanced adsorption capacity (Li et al., 

2015; Jaafar et al., 2015a). However, Dong et al. (2016) claimed that inorganic 

material with high surface area and pore volume usually have low strength and 

unsuitable for practical use. To overcome those shortcomings, researchers have sought 



3 

 

to improve the performance of mesoporous TiO2 by coupling it with other materials 

and designing different morphologies. Recently, mesoporous TiO2/SiO2 spheres have 

attracted a great deal of attention due to their benefits, which are large surface area, 

high surface acidity, abundant surface hydroxyl, ability to improve light harvesting 

and could prevent electron-hole recombination that is favourable for increasing 

photodegradation performance (Kapridaki et al., 2014; Wang et al., 2014). Besides, 

mesoporous silica (MS) has become the focus of study due to its high surface area, 

highly uniform pore distribution, tuneable pore size and unique hosting (Karim et al., 

2012). However, morphological properties of the catalyst also play a role and require 

modifications to improve its effectiveness. 

 

 

With regards to all the factors, herein, this study has reported the synthesis and 

characterisation of fibrous silica titania (FST) with different molar ratios of toluene 

and water. The performance of FST towards photodegradation of IBP and other 

pollutants were evaluated using the best reaction condition. 

 

 

 

 

1.2 Problem Statement and Hypothesis 

 

 

A well-known semiconductor, which is TiO2 nanoparticle has several 

drawbacks as mentioned in previous section. Many researchers have focused on 

modifying TiO2 by incorporating it with porous supports including silica, which is 

effective to increase surface area and can prevent the aggregation of titania particles 

(Dong et al., 2015). In previous studies, the nanostructured TiO2 or TiO2 supported on 

high surface area supports has been synthesised to enhance surface area and particle 

size (Singh et al., 2016). Besides, it has been reported that the incorporation of SiO2 

with TiO2 can be effective in preventing charge recombination in dye-sensitised solar 

cell (Dong et al., 2015). The synthesis of Ti-containing materials with enhanced 

accessibility to the reactive sites with large pores including mesoporous silica (MS) 

has been also developed (Ke et al., 2007). Even though, the modification had improved 

the properties of TiO2 supported on porous material, the interaction between pollutant 

and catalyst seemed to be decreased. Thus, the synthesised TiO2 incorporated with 
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porous SiO2 has poor accessible to active sites due to the high possibility of pores 

clogging which partially collapse after thermal treatment. 

 

 

 Recently, fibrous structure has attracted much attention in improving the 

performance due to its unique structure, which has high surface area and accessibility 

of active sites (Polshettiwar et al., 2010). Moreover, this structure has open pore 

channels and adjustable pore sizes that can be altered by synthesis parameters such as 

amount of surfactant, stirring and heating time. In the previous study, fibrous structure 

doped with TiO2 which has been synthesised by Atomic layer deposited (ALD) method 

was used in the degradation of methylene blue. However, this catalyst has several 

limitations, which are its poor accessibility of light due to pore clogging and limited 

Ti loading (Singh et al., 2016). Thus, this study aimed at reporting the synthesis of 

fibrous silica titania (FST) by hydrothermal method with tuneable molar ratio of 

toluene and water and their applications in photodegradation of ibuprofen and other 

pollutants. It is expected that FST catalyst would have high surface area, more 

accessible active sites, better light harvesting and reusability that can enhance the 

photocatalytic performance. 

 

 

 

 

1.3 Objective of Study 

 

 

The objectives of this study are: 

 

I. To synthesis the fibrous silica titania (FST) photocatalysts using hydrothermal 

method and characterise the physicochemical properties. 

II. To evaluate the photoactivity of the catalysts on degradation of ibuprofen (IBP) 

and various pollutants. 

III. To examine the stability of the FST, kinetics and proposed mechanism of the 

photodegradation of IBP. 

IV. To optimise the photodegradation of IBP using Response Surface Methodology 

(RSM). 
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1.4 Scope of Study 

 

 

The scopes of this study are: 

 

I. Synthesis and characterisation of physicochemical properties on fibrous silica 

titania (FST). 

The catalysts were prepared using hydrothermal method by varying toluene 

and water molar ratio (7:1, 6:1 and 5:1). The catalysts were characterised by 

X-ray diffraction (XRD), UV-visible spectrophotometer/Diffuse Reflectance 

Spectroscopy (UV-vis/DRS), N2 adsorption-desorption, Field Emission 

Spectroscopy (FESEM), Transmission Emission Spectroscopy (TEM), Fourier 

Transform Infrared (FTIR) and Electron Spinning Resonance (ESR). 

II. Evaluation of photodegradation. 

Photocatalytic activity of the catalysts on degradation of IBP was conducted 

under different molar ratio of toluene and water, light condition and various 

parameters such as pH (3-9), catalyst dosage (0-0.625 g L-1) and initial 

concentrations (10-100 mg L-1). FST was also tested for different types of 

pollutant including aspirin (ASP), paracetamol (PAR) and BPA (bisphenol A) 

with 10 mg L-1 of initial concentration. 

III. Study on the stability of the FST, kinetics and proposed mechanism of the 

photodegradation of IBP. 

The stability test was conducted by repeating the reaction for five times. The 

kinetics expression modelling was described based on Langmuir-Hinshelwood 

models and the proposed mechanism of the photodegradation of IBP was 

confirmed using gas chromatography-mass spectrometry (GCMS).  

IV. Optimisation using response surface methodology (RSM). 

Response surface methodology (RSM) using central composite design (CCD) 

was employed to optimise the conditions of photodegradation using the high 

potential catalyst under three parameters included in this part, which were pH 

(5-9), catalyst dosage (0.25-0.5 g L-1) and initial concentration (5-15 mg L-1) 

of IBP. 
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1.5 Significance of Study 

 

 

In the recent approach, the modification of TiO2 photocatalyst was seen to 

improve its own drawbacks mentioned in the previous section and photocatalytic 

performance. This study was conducted to synthesis FST by varying toluene and 

water molar ratio to improve the efficiency in photodegradation. The preparation 

method plays a crucial part in the modification of catalyst to obtain the desired 

morphology either in a simple or complex ways. Currently, TiO2 supported with 

dendrimeric morphology has not been widely practiced in photodegradation of 

pharmaceutical compound. FST is one of the new modifications in photocatalysis to 

obtain superior properties such as increased surface area, high accessibility of active 

site and better light harvesting. These properties can be obtained by FST due to its 

unique structure, which is spherical with cockscomb-like structure and having an 

alternate silica and titania framework. Thus, the FST is expected to have higher 

photocatalytic performance compared to commercial TiO2. 

 

 

 

 

1.6 Study Outline 

 

 

This study is divided into five chapters. Chapter 1 addresses the general 

introduction on the pharmaceuticals wastewater in various areas of industries, types of 

PhACs that are commonly used and the threat of the PhACs effluent towards the 

environmental and human health. Several wastewater treatments to remove PhACs are 

also mentioned. Besides, the potential of FST with different molar ratio of toluene and 

water as a photocatalysts for degradation of IBP are highlighted. The problem 

statement and objectives of the present study were stated. The scopes of study are 

explained covering the research work to achieve the objectives. The significance of 

study is also clearly elucidated.  

 

 

Chapter 2 or literature review covers the details on previous studies to improve 

understanding in synthesis, characterisation and photoactivity efficiency of modified 

catalyst supported with dendrimeric morphology. 
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Meanwhile, chapter 3 or methodology describes the materials and chemicals 

used, catalyst preparation, characterisation and photocatalytic reaction including the 

experimental setup and analysis calculation. 

 

 

Chapter 4 focuses on results and discussion which involved the details about 

characterisation and photocatalytic activity of IBP as well as others targeted pollutants 

in simulated wastewater. Finally, the conclusion about this study is simplified in the 

chapter 5. 
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