
iv 

 IN SILICO MOLECULAR INTERACTIONS STUDY OF PATTERN-

RECOGNITION RECEPTOR XA26 AND PLANT PATHOGEN-ASSOCIATED 

MOLECULAR PATTERNS 

AMIRAH FATHIN BT AHMAD DANIAN 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Master of Philosophy 

Faculty of Science 

Universiti Teknologi Malaysia 

OCTOBER 2018 
 
 



vi 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my beloved husband Ridhwan, 

To my children Sumayyah and Ammar, 

And to my dearest parents Danian and Umi,  

Whose love yet support me, 

With prayers and patience  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

ACKNOWLEDGMENT 

First and foremost, thanks to the Almighty Allah for conferring with ample 

ideas and encouragement in the progression of completing this research project for 

making everything possible in every single thing as nothing will happen without His 

permission. It is from our wise conscience and profoundly modest heart to devote 

immense gratitude to Him. 

 

I want to express my great appreciation to my supervisor, Dr Salehhuddin 

Hamdan for his guidance throughout the advancement of this research. I am also very 

grateful to my ex-supervisor, Dr Md Abu Naser for his priceless support along my 

research journey. I would like to thank Prof. Madya Dr Tengku Haziyamin bin Tengku 

Abdul Hamid and Prof. Dr Mohd Shahir Shamsir bin Omar for their helpful suggestions 

and comments as viva-voce examiners. Special thanks go to my colleague, MHM 

Mubassir and Sayang binti Baba for their sincerely help and continuous support along 

my research’s journey. 

 

I would like to exclaim appreciation to those who deliberately or inadvertently 

assist me especially to my dear husband, Mohd Ridhwan bin Md Rashid for his 

continuous moral support and unconditional love throughout the research journey. I 

am greatly indebted to my family member who encouraged me and prayed for me 

throughout the time of my research. This thesis is heartily dedicated to my parents, 

Ahmad Danian bin Mohd Ali, Umi binti Mohd Noor, my parents in law, Md Rashid 

bin Hussin, Fauziah binti Md Shariff and all my family members for their infinite love 

and prayers in achieving the goal of my project. Also, a special thanks to my dearest 

children, Ain Sumayyah and Ammar Hasballah. May Allah bless them in their whole 

life. Jazakumullah khayran kathira. 

 



viii 

 

ABSTRACT 

Plants are sessile organisms that rely entirely on innate immune system for 
defense against pathogenic microbes or pest. First line defense of plant is known as 
pattern-triggered immunity (PTI). PTI is activated by pathogen-associated molecular 
patterns (PAMPs) of the host plant by pattern-recognition receptor (PRR) with the 
recruitment of co-receptor protein. Xa26 which is also known as PRR is one of the 
resistance gene in rice plant that protect against bacterial leaf blight disease, one of the 
most threatening disease that affect the yield of rice production. Although a few studies 
have been conducted on PRR Xa26, the detailed component involved in the interaction 
mechanism has not been elucidated. The purpose of this study was to explore protein 
interactions between PRR Xa26 with several PAMPs namely flg22 and RaxX21-sY. 
In this study, these two PAMPs were docked with PRR Xa26 in the presence of 
different co-receptor which are BAK1, OsSerk2 (PDB:4Q3G) and its mutant 
(PDB:4Q3I). PRR Xa26 protein model was constructed by homology modelling using 
Modeller HHpred followed by docking and molecular dynamics (MD) simulation of 
PRR Xa26 with the PAMPs using Zdock and GROMACS respectively. The modelling 
of PRR Xa26 by Modeller HHpred produced the best result with Verify 3D of 99.68%, 
ERRAT of 65.854% and 90.2% amino acid in allowed region of Ramachandran plot. 
Docking result showed that complex interaction of PRR Xa26, PAMP RaxX21-sY 
with co-receptor OsSerk2 (normal) bind at the concave portion of Xa26 leucine-rich 
repeat (LRR) which match with the flagellin sensitive 2 (FLS2) mediated PTI, the only 
crystallized structure in PTI till date. This is the best docking complex as it maintains 
protein conformational structure and provides stable binding interaction without any 
loss of bond after the simulation. MD simulation results showed significant reduction 
of hydrogen bonds for all the docked complex structures. For the Xa26_RaxX21-
sY_OsSerk2 (normal) protein complex, the hydrogen bonds were reduced from 768 to 
760. Whilst in mutated protein complex the numbers of hydrogen bond were reduced 
from 767 to 0. This significant reduction resulted in conformational changes of protein 
complex thus triggered the formation of salt bridge between Arg152 with the nearby 
residue Glu174 that caused binding disruption among the protein. This study provides 
significant information on the interaction between PRR Xa26 and multiple PAMPs to 
find the right PAMP for PTI mechanism of PRR Xa26. 

 

 



ix 

 

ABSTRAK 

Tumbuhan adalah organisma sesil yang bergantung sepenuhnya pada sistem 
keimunan inat untuk mempertahankan diri dari sebarang serangan mikroorganisma 
atau makhluk perosak. Lapisan pertahanan pertama bagi sistem keimunan inat ini 
adalah dikenali sebagai sebagai imuniti cetusan corak (PTI). PTI diaktifkan melalui 
mikroorganisma tanggapan relatif patogen (PAMPs) oleh reseptor pengesanan corak 
(PRRs) tumbuhan perumah dan merekrut protin ko-reseptor. Xa26 atau dikenali 
sebagai PRR adalah antara gen rintangan dalam pokok padi yang melindungi daripada 
penyakit hawar daun bakteria, yang mana salah satu antara ancaman mati yang 
menganggu produksi penghasilan pokok padi. Walaupun beberapa kajian yang telah 
dijalankan khusus ke atas PRR Xa26, komponen terperinci yang terlibat dalam 
interaksi mekanisme ini masih belum diketahui. Tujuan kajian ini adalah untuk 
mengkaji hubungan interaksi di antara PRR Xa26 dengan beberapa PAMPs iaitu flg22 
dan RaxX21-sY. Dalam kajian ini, kedua-dua PAMPs tersebut akan bertindak balas 
dengan ko-reseptor yang berbeza iaitu BAK1, OsSerk2 (PDB:4Q3G) dan mutasinya 
(PDB:4Q3I). PRR Xa26 telah dibina melalui pemodelan homologi menggunakan 
Modeller HHpred diikuti proses mengedok dan simulasi dinamik menggunakan Z-
dock dan GROMACS masing-masing. Pemodelan homologi menghasilkan nilai dan 
struktur yang terbaik menggunakan Modeller HHpred iaitu 99.68% Verify 3D, 65.84% 
ERRAT dan 90.2% nilai asid amino dalam kawasan yang dibenarkan oleh lakaran 
Ramachandran. Hasil keputusan dok menunjukkan bahawa interaksi kompleks antara 
PRR Xa26, PAMP RaxX21-sY dengan ko-reseptor normal OsSerk2 mengikat di 
kawasan palung pada struktur XA26 LRR menepati struktur PTI yang telah 
dikristalkan setakat ini. Struktur kompleks dok ini merupakan yang terbaik kerana ia 
mengekalkan struktur konformasi protin dan memberikan pengikat interaksi protin 
yang stabil tanpa kehilangan sebarang ikatan setelah selesai proses simulasi. Hasil 
simulasi MD menunjukkan semua struktur kompleks protin melalui pengurangan 
ikatan hidrogen. Bagi struktur kompleks protin Xa26_RaxX21-sY_OsSerk2 (normal), 
ikatan hidrogen berkurang daripada 768 ke 760. Manakala, struktur kompleks protin 
mutasi melalui pengurangan daripada 767 ke 0. Signifikan pengurangan ini terhasil 
daripada perubahan struktur kompleks protin yang mencetuskan pembentukan titian 
garam di antara Arg152 dengan sisa yang berdekatan Glu174 yang menyebabkan 
gangguan pengikatan protin. Kajian ini menyumbang maklumat penting mengenai 
kewujudan interaksi antara PRR Xa26 dan pelbagai jenis PAMPs dalam mencari 
PAMPs yang paling sesuai untuk mekanisme PRR Xa26.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

  

1.1  Background research 

 

Rice has been a staple food source for thousands of years among half of the human 

population. According to Jena and Khush (2009), almost 23% more rice need to be 

produced by 2035 to meet the expected demand of the growing world population. 

However, there is decrease in rice production (1.0% yr-1) compared to the rate of 

population growth rate (1.5% yr-1) (Prahalada et al., 2017). The rice distribution often 

limited due to biotic and abiotic stress. In biotic stress, more than 70 diseases have 

been recorded caused by fungi, bacteria, viruses or nematodes (Zhang, M. et al., 2004). 

Bacterial leaf blight (BLB) disease is one of the most threatening diseases causes by 

bacteria that affect the yield of rice production. The infection occurred in xylem tissues 

of rice causes wilting of seedlings, yellowing and drying of leaves (Figure 1.1). This 

will consequently reduce the photosynthetic area and thus reduced the photosynthesis 

system of plant leaves. The causal agent of BLB disease is Xanthomonas oryzae pv. 

oryzae (Xoo), that affect almost 80% grain quality of rice annually (Kumar et al., 

2012). ̀ Due to the high damage on rice field, there is lot of studies and researches were 

conducted to control this disease. According to (Sun, X. et al., 2004), the most effective 

and environmental friendly strategy to control bacterial blight is through the breeding 

and deployment of major resistance (R) genes in rice plant. R genes are important for 
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plants to defend themselves from pathogen attacks. It was supported by laboratory 

result that heterologous Until now, 40 BLB R genes have been identified in cultivated 

rice and the wild relatives (Khan, M. A. et al., 2014; Kim, S. M. et al., 2015).  

Among all the 40 genes isolated, PRR Xa26 has the highest sequence homology 

with rice BLB and is the only R gene that was confirmed to encode leucine-rich repeat 

(LRR) receptor kinase-like protein (Song et al., 1995; Hulbert et al., 2001). This LRR 

receptor kinase-like protein consist of transmembrane motif which recognize special 

extracellular ligands via LRR domain and initiate the downstream signaling through 

the intracellular kinase domain (Zhang et al., 2011). Besides, it was recorded that LRR 

domain of resistance proteins of plants directly interact with any avirulence gene 

involved in host-pathogen interaction (Sun et al., 2003). PRR Xa26 is also cell surface 

localized pattern-recognition receptor (PRR). PRRs will recognize pathogen-

associated molecular patterns (PAMPs) and activates pattern-triggered immunity (PTI) 

which is the first line defense in plant. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1:  Rice plants showing symptom of BLB (right) with the resistance (left) 

(Khan, M. A., Naeem, and Iqbal, 2014) 
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Other than rice, different plant and animal species also carry this type of receptors 

which has the similar mechanism as PRR Xa26 (Ronald and Beutler, 2010). However, 

in plants, there are multiple molecular strategies employed by plants to detect any 

potential invaders for their survival. Various molecular immune signaling mechanisms 

triggered after PAMP perception were found in different type of plants (Figure 1.2). 

The first plant PAMP/PRR to be characterized was the perception of bacterial flagellin 

by the LRR-RK FLS2 recognized by higher plants (Gomez et al., 2000). This is 

followed by elongation factor Tu (EF-Tu). In the bacterial flagellin, binding of PAMP 

flg22 to FLS2 leads to instantaneous recruitment of co-receptor BAK1, which required 

for the full activation of immune signaling. Whereas, binding of elf18 on EFR lead to 

spontaneous recruitment of co-receptor BAK1. Although most of plant PRRs are 

identified and illustrated clearly, PAMPs for specific PRR interaction of PRR Xa26 are 

still unknown. Besides, most of their mechanism is yet to be discovered. In the current 

study, an attempt to interact PRR Xa26 with other existed complexes from different 

plant species to study the difference or any similarity in term of interaction at atomic 

level was discovered.   

 

 

Figure 1.2: Different plant PRR with their recognized PAMPs (Zipfel, 2014) 

 

 

RaxX21-sY 
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1.2  Statement of problem 

 

 In rice plant, PRR Xa26 is a membrane bound PRR that synthesized in the 

endoplasmic reticulum (ER) where later transferred to the plasma membrane (Park et 

al., 2014). When the pathogen attacked the plasma membrane, PRR Xa26 will 

recognize the conserved microbial signature and eventually triggers a series of 

downstream events resulting in a robust resistance response. From this molecular 

signaling mechanism, the early events governing PRR Xa26 activation have not yet 

been fully elucidated except association of OsSerk2 with PRR Xa26 as co-receptor 

which positively regulated the PTI in rice plant. PTI is the first mode of innate immune 

system in plant which is triggered upon the perception of microbe or pathogen 

associated molecular pattern (M/PAMPs) through PRR. 

The presence of few confirmed PAMP/PRR pairs has already clearly helped to 

demonstrate the importance of these early sentinel mechanisms for plant immunity. 

Indeed, the transferred of corresponding PRR across plant families can provide new 

recognition specificities that ultimately increase the disease resistance (Zipfel, 2014). 

For example, the transfer of the rice Xa21 into sweet orange (Citrus x sinesis), tomato 

and banana conferred enhanced resistance to X.axonopodis pv. citri, Ralstonia 

solanacearum and Xanthomonas campestris pv. musacearum respectively (Zipfel, 

2014). 

On the other hand, following same PTI mechanism as PRR Xa26, PRR FLS2 

interacts with the PAMP flg22 and make FLS2-flg22 complex. PRR FLS2 is the only 

plant PAMPs that has been characterized and crystallized. Due to that, FLS2-flg22 

complex is used as template and reference. In this study, PRR Xa26 is interacting with 

another PAMPs and co-receptor existed in different plant species such as flg22, PAMP 

RaxX21-sY, co-receptor BAK1 and OsSerk2. This study will be the first ever 

computational study on the molecular interaction between the plant PRRs and PAMPs 

of different family. 
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1.3  Significance of study 

 

 The findings of this study will contribute to the benefit of understanding the 

plant defense mechanism. It was found that there is presence of interaction between 

PRR and PAMPs from different plant species (Zipfel, 2014). PRR Xa26 protein is one 

of the R gene that involve in controlling BLB disease in rice plant. Therefore, in silico 

study of PRR Xa26 interaction with PAMPs by proper modelling and molecular 

dynamics simulation will contribute significantly in understanding the plant defense 

mechanism. Besides, this study also helps to uncover the type of relationship presence 

among PRR Xa26 with different PAMPs such as flg22, PAMP RaxX21-sY, and co-

receptor BAK1 and OsSerk2 through docking method.    

   

 

1.4  Objectives of study 

 

The overall aim of this study is to understand the mode of interaction of the PRR 

Xa26 with different PAMPs. As such, the objectives are outlined as follows; 

 

1. To model the plant PRR Xa26 immune receptor and validate the model. 

2. To construct the docking complex of plant PRR Xa26 immune receptor 

and bacterial PAMPs including flg22, RaxX21-sY together with co-

receptor, OsSerk2 and co-receptor BAK1, thus stabilized the model 

through the molecular dynamic simulation. 

3. To analyze the role of co-receptor OsSerk2 and its interaction with plant 

PRR Xa26 and effect of mutation on co-receptor OsSerk2 towards binding 

of PRR Xa26 and PAMPs. 

4. To compare the interaction of complex PRR Xa26_flg22_ co-receptor 

BAK1 with the crystallized structure of FLS2_flg22_ co-receptor BAK1 

obtained from protein data bank, PDB id, 4MN8 

 

 

 

 

 



 6 

 

1.5  Scope and limitation of study 

 

This current study is exclusively conducted by computational in nature. First, the 

PRR Xa26 was modeled using different tools (AIDA, FFAS-3D, Geno 3D, I-Tasser, 

Muster, Phyre2 (Intensive), Phyre2 (Normal), PSIPRED, Raptor-X, Modeller 

(HHpred), SPARKS-X, Swissmodel). After that, the docking of PRR Xa26, PAMPs 

and co-receptor, OsSerk2 was performed using online tool, Zdock. Then, the molecular 

dynamics simulation was conducted to analyze the types of interaction occur between 

PRR Xa26 and it PAMPs through GROMACS. Root means square deviation (RMSD), 

root means square fluctuation (RMSF), radius of gyration (Rg) were measured using 

this open source software. According to these measurement and others measurement 

provided in methodology part, the results were discussed and assessed.  

 

The major limitation in this study was expensive software was needed to model 

the full multi domain PRR Xa26. Thus, free open source software was used for protein 

modelling. Since there is unknown mechanism of PRR Xa26 plant immune system, 

FLS2-flg22 complex was used as template in protein modeling of PRR Xa26. 
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