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ABSTRACT

The International Atomic Energy Agency (IAEA) requires all nuclear power 
plant operators to identify, assess and evaluate potential hazards either internal or 
external, including the potential of human-induced events that can directly or indirectly 
affect the safety, security, and safeguard of the nuclear power plant (NPP). One of the 
external hazard that the operator of a licensed nuclear reactors has to consider is that 
of external explosion with potential for consequential damage to the site. In this study, 
effects of jet fuel (dedocane and butane) and hydrogen gas induced external explosion 
from aircraft impact on nuclear plants were investigated and analyzed A turbulence 
model based on Reynolds-averaged Navier-Stokes in the computational fluid dynamic 
(CFD) solver called Flame Acceleration Simulator (FLACS) and empirical 
correlations were used to determine the explosion parameters within the plant vicinity. 
The influence of obstacle separation distance on explosion severity was investigated 
with the aim of obtaining the minimum safety distance between buildings. The results 
of the FLACS simulation and empirical data were analysed and evaluated in order to 
demonstrate the safety assessment based on two generic plants (Fukushima and 
Horizon nuclear plants). The simulation results of key explosion parameters for 
hydrogen show a deflagrative overpressure, Pmax of 0.37 bar, and impulse load of 0.022 
bar • s at the exterior walls of building structures. The findings showed that the local 
temperature of about 1523 K and flame speed of 266 m • s"1 from the hydrogen-air 
explosion. Butane/air explosion causes an overpressure, Pmax of 0.27 bar, with a 
maximum positive pressure impulse of 0.015 bar • s. An elevated local temperature of 
2030 K and a flame speed of 44 m • s"1 are recorded for this fuel. It was found that for 
a safety consideration regarding the explosion of these fuel gases, a physical distance 
of 150 m between the explosion source and the target structure should be sufficient to 
provide protection against their potential hazards. The computed overpressure and 
impulsive loadings observed are capable of causing substantial structural damages and 
vulnerabilities. A significantly elevated flame temperature recorded would have a 
harmful effect on the safety function of structures, systems and components that are 
needed to execute reactor shutdown. The analysis also showed that consequential 
damage of explosion overpressure is strongly dependant on the global load of 
flammable gas volume and plant layout. In this case, 5000 m3 of hydrogen/butane 
explosion is sufficient to produce a blast load wave for total plant destruction. The 
findings of this study may be used to evaluate the safety improvement needed at NPP 
site with regards to risks and consequences associated with external explosion due to 
aircraft impact. It is also useful in designing the layout of the NPP and placement of 
relevant items important to safety.
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ABSTRAK

Agensi Tenaga Atom Antarabangsa (IAEA) mensyaratkan semua operator loji 
kuasa nuklear untuk mengenal pasti, memeriksa dan menilai potensi hazad sama ada dari 
punca dalaman atau luaran, termasuk potensi peristiwa yang disebabkan oleh kecuaian 
manusia yang boleh menyebabkan kesan secara langsung atau tidak langsung terhadap 
keselamatan, kesejahteraan dan perlindungan loji kuasa nuklear (NPP). Salah satu faktor 
bahaya luaran yang perlu diberi perhatian oleh operator reaktor nuklear berlesen ialah 
letupan dari sumber luaran yang boleh menyebabkan kerosakan teruk kepada tapak loji. 
Dalam kajian ini, kesan bahan api jet (dedokana dan butana) dan gas hidrogen dalam 
letupan luar akibat daripada impak pesawat terhadap loji nuklear telah diselidik dan 
dianalisis. Satu model pergolakan berasaskan kepada purata-Reynold Navier-Stokes 
dalam penyelesaian pengiraan dinamik bendalir yang dikenali sebagai “Flame 
Acceleration Simulator” (FLACS) dan korelasi empirik telah digunakan bagi menentukan 
parameter letupan di persekitaran loji. Pengaruh jarak pemisahan antara objek penghalang 
terhadap kesan letupan telah diselidiki dengan tujuan untuk mendapatkan jarak selamat 
minimum di antara bangunan. Hasil simulasi FLACS dan data empirik telah dikaji dan 
dinilai untuk mempamerkan pentaksiran keselamatan berdasarkan dua loji generik (loji 
nuklear Fukushima dan Horizon). Keputusan simulasi untuk parameter utama letupan gas 
hidrogen menunjukkan tekanan deflagrasi, Pmaks bernilai 0.37 bar, dan beban impuls adalah 
0.022 bar • s telah dikenakan pada dinding luar struktur bangunan. Hasil dapatan 
mendapati bahawa suhu setempat adalah setinggi 1523 K dan kelajuan ambatan api adalah 
selaju 266 m • s-1 akibat daripada letupan hidrogen-udara. Letupan dari gas butana/udara 
menunjukkan tekanan lampau, Pmaks adalah 0.27 bar, dengan tekanan impuls positif 
maksimum selaju 0.015 bar • s. Suhu setempat telah direkod setinggi 2030 K dan kelajuan 
perambatan api adalah 44 m • s-1 telah dicatat bagi bahan api ini. Simulasi juga 
menunjukkan bahawa untuk tujuan pertimbangan keselamatan berkaitan dengan letupan 
bahan api gas ini, jarak fizikal 150 m di antara punca letupan dan struktur sasaran adalah 
memadai bagi memberikan perlindungan daripada potensi hazad. Tekanan letupan yang 
dikira dan beban impuls yang dicerap mampu menyebabkan kerosakan sebahagian 
struktur dan kawasan sekitar. Suhu api yang dicatat adalah lebih tinggi dan melampaui 
suhu yang digunakan untuk mereka bentuk kebanyakan komponen loji nuklear, sekaligus 
menyebabkan kegagalan struktur dan komponen keselamatan yang diperlukan untuk 
melaksanakan penutupan operasi reaktor. Analisis menunjukkan kemusnahan akibat dari 
letupan amat bergantung kepada beban keseluruhan isipadu gas mudah terbakar dan susun 
atur loji. Bagi kes ini, letupan hidrogen/butana sebanyak 5000 m3 adalah mencukupi untuk 
menghasilkan gelombang beban letupan untuk kemusnahan loji secara keseluruhan. Hasil 
kajian ini boleh digunakan untuk menilai penambahbaikan sistem keselamatan yang 
diperlukan oleh tapak NPP bagi menghadapi akibat dan risiko yang berkaitan dengan 
letupan dari sumber luaran akibat impak pasawat. Ia juga berguna dalan merancang susun 
atur sesebuah NPP dan penempatan peralatan yang penting untuk keselamatan.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

External hazards (e.g. aircraft impact, hurricane, flooding and earthquake) can 

be a significant risk contributors on Nuclear Power Plant (NPP) operation and pose 

serious hazards to public and environment due to release of hazardous radiation, 

resulting from fire-induced failures of important plant safety systems (Berg and 

Hauschild, 2012; Siu and Apostolakis, 1986). It may challenge the available 

emergency services and affect the mechanism for a safe reactor shutdown and this 

could lead to unsafe condition with the potential to cause reactor core damage. 

Therefore, hazard evaluations of external initiating events could help in minimising 

incidents and accidents that may involve loss of life and tremendous monetary costs.

Safety philosophy guiding the design, construction, and operation of NPP 

relies heavily on a concept such as defense-in-depth and redundancy (Matala and 

Hostikka, 2011; Sofu, 2013). This concept requires the use of multiple active and 

passive fire safety measures to curtail any single failure that may lead to the release of 

radioactive materials. It also incorporates large design safety margins to overcome any 

lack of precise knowledge about the capacity of barriers in normal or accident 

conditions and operation within predetermine safe design limits (Keller and Modarres,
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2005). Probabilistic risk assessments have been the conventional method for assessing 

the risk and consequences of a fire or any form of an explosion in the NPP. Safety 

standards issued by the regulatory agencies are dependent on the outcomes of these 

form of analysis. It is interesting to note that the consequences from the occurrence of 

‘beyond-design-basis accidents’ were not fully addressed in the probabilistic risk 

analysis which amongst other external threats should be a priority for the analysis. For 

instances, the Fukushima Daiichi NPP incident of March 11, 2011, and World Trade 

Centre (WTC) aircraft attack on September 11, 2001 (Dundulis et al., 2007; Jeon et 

al., 2012; Luther and Muller, 2009; Siddiqui et al., 2003). These incidents attract 

interest on the reliability and safety of reactor containment and auxiliaries against any 

similar event. Based on Health and Safety Executive (HSE) report (HSE, 2008), 

industries including NPPs still encounters frequent fire and explosion hazards. The 

accidents may occur for different reasons ranging from malfunctioning of safety 

systems and equipment to human operational error. Depending on the source of 

release, flammability limit and availability of ignition source, ignition of the 

flammable gas cloud may lead to a severe explosion which has been referred to as 

Vapour Cloud Explosion (VCE) (Drysdale, 2010; Taveau, 2012).

Although, there are few documented records of significant hydrocarbon fuels 

induced external fires or explosion at the nuclear plant site, however, these could be 

initiated in many ways, including storage, reloading, transport accidents and vicious 

attack using higher-profile explosives. In addition, fabrication and handling of 

explosive materials at a close distance to NPP could be a potential initiating event. The 

aircraft crash may occur at the site as result of takeoff or landing operation at a nearby 

civilian airport or owing to the air traffic in the federal airways and military flight 

zones. Example of transportation accident was the train derailment in June 2009 at 

Viareggio, Italy which led to a flash-fire, destroying several houses and 31 causalities 

(Pontiggia et al., 2010). This kind of accident might give devastating consequences if 

occurs near the NPP site. One significant accidental aircraft crash is reported to have 

occurred near the vicinity of nuclear islands, sometimes with the detached engine skids 

up to 300 m, with the damage to industrial and residential facilities (IAEA, 2003b) and 

this motivates a different landscape from the safety point of view when accessing the 

risk assessment and evaluation on NPP and its vicinity. The relevant studies on the
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topic aircraft impact upon nuclear containment have been described elsewhere (Abbas 

et al., 1995, 1996; Frano and Forasassi, 2011; Iqbal, 2009; Joseph et al., 2009; Lee et 

al., 2013).

The consequences of VCE on the nuclear island pose domino effect condition; 

high explosion overpressure, thermal radiation from the fireball, toxic gas dispersion 

and effect of explosion-generated fragments. For consequence analysis, the effect of 

overpressure is of greater interest rather than that of thermal radiation and the 

fragments. The explosion overpressure and blast waves could propagate several 

kilometres and pollutants could disperse over greater distances. In addition, fuel may 

enter through the vents openings, air exhausts vents of reactor and diesel buildings, 

sewage system, and tunnel. This may result into subsequent fires or explosions which 

will affect personnel or cause the plant to be malfunctioned such as electrical faults or 

failures in emergency diesel generators. Fireball could propagate rapidly and engulf 

reactor platform, leading to affect multiple redundant engineered safety systems if it 

penetrated between redundant parts of the NPP (Safaei et al., 2010). All these could 

constitute a significant safety threat to the operation of the plant as it would distress 

the emergency services, safe reactor shutdown mechanisms, and critical safety

equipment. A comprehensive safety assessment is essential to be carried out to

determine the appropriate countermeasures in order to maintain an inherently safer 

operation of the NPP. It should be conducted under various services and extreme 

conditions, both natural and produced by vicious man activities (Frano and Forasassi,

2011). Thus, this work aims to investigate the hazard evaluation for an external 

explosion caused by jet fuel from commercial aircraft to NPP. This includes structural 

damage and safety distance analyses. Of particular interest to this research is the 

congestion level and location of obstacles relative to ignition location. These are

directly related to the spatial arrangement of structures and may have a strong

influence on the evolution of fireball, pressure build-up, and flame propagation.



4

1.2 Problem Statement

Although previous studies have developed and adopted different verified 

methodologies on reactor safety and fire hazards, studies that considered the impact of 

external events like aircraft crash on the NPP structures are very limited and gave little 

or no considerations to the effect of fuel that initiated fires and/or explosions. In most 

cases, the assessment of aircraft-induced events pay emphasis to local and global 

structural damage which follows one of the three reference analytical methods such as 

energy balance, load-time history and missile-target interaction (Abbas, et al., 1996; 

Dundulis, et al., 2007; Iqbal et al., 2012; Kukreja, 2005; Petrangeli, 2007; Petrangeli, 

2010; Siddiqui, et al., 2003). Despite the regulatory requirement for evaluation of 

hazards related to chemical explosion from the jet fuel fires and other sources in the 

vicinity of NPP, most attention has been focused on internal explosion to plant, only a 

few specific evaluation data on explosion outside the plant have been reported. The 

assumption that external fire or explosion last for a very short duration or low 

occurrence frequency may be the reasons of why it has lesser attention. Security issues 

may also be additional reasons for not reporting such research findings to the public. 

Yet, ignition of gas cloud in the vicinity of NPP could result in fire and/or explosions 

that could affect the safety functions of SSCs needed to resume and maintain the 

nuclear installation to a safe condition (IAEA, 2002, 2003a). The blast could travel 

over several kilometres, which might extend beyond the immediate vicinity and 

pollutant could be dispersed over greater distances. Therefore, the consequence of the 

external fire and explosion should not be overlooked and should be determined against 

the nuclear plant.

Literature scrutiny revealed limited experimental and real accidents data that 

can be directly referred to in assessing external explosion hazards on the operation of 

the nuclear plant. Studies by Luther and Muller (2009) and Jeon, et al. (2012) did not 

address the minimum stand-off distance as part of protection measures against the 

effects of the explosion. The influence of obstacle separation distance on gas explosion 

severity has been extensively explored for the process plant (Kindracki et al., 2007; 

Lee and Moen, 1980; N a’inna et al., 2014; Park and Lee, 2012). However, there is



5

hardly found in the literature on experimental or modeling research on the influence 

of obstacle separation distance for the aircraft impact induced explosion in the vicinity 

of NPP. It is the aim of this study to extend the investigation into the influence of 

obstacle spacing on gas explosion severity with a view to determine the minimum 

stand-off distance between containment structure and other building structures for the 

postulated jet fuel release.

1.3 Research Questions

(i) What is the magnitude of explosion severity (in terms of overpressure, 

impulse, temperature, flame speed) on the operation of NPP?

(ii) How the building structures does influences the explosion severity in the 

NPP?

(iii) How much damage done to the exterior walls of the surrounding buildings 

and the hazards posed by the fireball/flame front propagation of 

fire/explosion at Active openings (air intake vents & exhaust)?

(iv) How to verify the design strength of the reactor containment and other 

critical components of NPP are strong enough to withstand the blast 

loading from an aircraft crash (intentional or accidental) or close proximity 

blast using high profile explosives?
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1.4 Research Hypothesis

(i) The magnitude of explosion pressure and impulse loadings will cause the 

collapse of structures housing the important safety components thereby 

leading to unsafe condition in the plant.

(ii) The distance between reactor building and the nearest structures is small. 

This minimum distance may significantly enhance overpressure and cause 

the blast waves to propagate beyond the immediate vicinity.

1.5 Objectives of the Research

The primary objective of this research is to undertake, in a structured manner, 

a hazard assessment of key explosion parameters that may affect the operation of the 

NPP with a view of determining the appropriate countermeasures for a hypothetical 

aircraft accident scenario. The specific objectives include the following:

(i) To compute the VCE parameters such as pressure, P, flame speed, Sf, the

temperature of the gas, Tg, the rate of pressure rise, dP/dt, pressure impulse, 

(PIMP), and blast effect distance at pre-selected monitor points within the 

bounds of the NPP complex.

(ii) To estimate the severity of explosion in terms of overpressure and impulse

loadings, flame speed as well as the fireball temperature in the NPP taking into 

account the specific site layout and distance between operational units.
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(iii) To assess the influence of building obstacle separation distance on the 

explosion severity with a view to determine the minimum safety gap between 

units of operation.

(iv) To estimate the vulnerability of building structures using empirical models and 

compare the results with numerical data obtained using validated commercial 

software, FLACS (Flame Acceleration Simulator), version 10.6r3.

1.6 Scopes of the Research

The research work was conducted within the following scopes:

(i) A hypothetical aircraft impact scenario for the NPP is simulated with FLACS 

Computational Fluid Dynamics (CFD) model.

(ii) A homogeneous mixture of 100% (v/v) butane-air, dodecane-air and hydrogen- 

air at a near stoichiometric concentration were used as fuels to compare the 

explosion characteristics.

(iii) Key explosion parameters such as blast pressure, P, pressure impulse, PIMP, 

flame speed, Sf, and temperature Tg, blast effect distance at the exterior walls 

of building structures were estimated using FLACS.

(iv) Empirical modeling methods such as Trinitrotoluene (TNT), multi-energy 

(TNO) and Baker-Strehow-Tang (BST) were used to compute overpressure 

and positive phase duration within the distances of 50 m to 600 m from the first 

impact location.
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(v) The effects of building obstacle separation distance on the evolution of fireball 

and overpressure development are investigated with a view of establishing the 

minimum safety gap between units of operation.

(vi) Damage to structures was estimated using Probit methodology.

1.7 Limitations of the Study

The main limitations of the study are as follows:

(i) The work presented in this research is based on the hypothetical scenario of 

aircraft impacting a nuclear containment. The NPP site scenarios are retrieved 

from the references (Hitachi, 2014b; INPO, 2011). It should be noted that the 

layout of the NPP were followed the original layout however, the building 

dimensions were made by assuming the normal building dimensions and some 

complied with IAEA regulation and standard i.e. reactor building.

(ii) The analysis relied only on FLACS simulation and empirical data calculated 

using explosion prediction methods. No data for the actual scale (in terms of 

width, length and height of building) of the NPP geometries used. These 

geometries are hypothetically assumed and used in the simulations.

(iii) The research work uses information that are freely available in the IAEA safety 

standards and relevant safety documents for vulnerability/damage analysis.
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(iv) Physical effect due to the ejection of fragments, cratering, ground shock wave 

and resulting effects from the pool fire and smoke are not included in the 

analysis.

1.8 Significance of the Research

This study explores the deterministic approach on the consequences of VCE 

involving aircraft crash on the nuclear island. The knowledge of the explosion 

characteristics and its impact on of Structures, Systems, and Components (SSCs) is 

important in determining the appropriate countermeasures in order to maintain safer 

operation of the nuclear station. Furthermore, conducting details and comprehensive 

research on the effects of explosion parameters on the operation of NPP will contribute 

in perspective and diagnostic studies regarding NPP fire and explosion safety, 

particularly on the human-made threat. Some significances of the study are given 

below:

(i) With the information on explosion modeling, the managers can take preventive 

steps to ensure plant’s safety.

(ii) Provides decision makers with additional information regarding the placement 

of animate and inanimate objects. Therefore, personnel can be located or 

relocate to areas with least risk for sustaining explosion damage.

(iii) The determination of minimum safety distance from the target unit to other 

equipment and occupied building could be applied to offshore and onshore 

facilities as well as large industrial vessels.
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1.9 Thesis Organization

This thesis is classified into five different chapters. Chapter 1 describes the 

background of the research, problem statement, research question, and research 

hypothesis, objectives of the research, scope of the research, limitation of the study 

and significance of the research aimed to highlight the introduction aspect of the 

research work. In Chapter 2, the regulatory guides on external explosion assessment 

were discussed. It also discusses on structural safety and design against external 

missiles. Further, the typical layout of nuclear plant followed by a brief explanation on 

functions and features of common civil structures in the NPP were briefly highlighted. 

Descriptions of external hazards affecting the NPP operation as well as major effects 

of the gas explosion were highlighted in this chapter. It also discusses the mechanisms 

of VCE, factors affecting the severity of VCE as well as detailed description of three 

widely empirical methods for VCE modeling. The chapter further describes the 

FLACS CFD tool that was used in the simulation. A highlight on vulnerability analysis 

was made. The chapter ends with a comprehensive literature review covers the general 

overviews on explosion safety assessment in the process plant and NPP and highlights 

on safety distance as defined by some selected regulatory guides. Chapter 3 explained 

the methodology and assumptions made on modelling simulation works. It particularly 

discusses the research approach and how the work is performed to achieve all research 

objectives. The tasks include setting the scenario, running the simulation using FLACS 

model and analysing time-history or distance-history graphs for various scenarios and 

plant arrangements. The simulation results from FLACs and probit/empirical analysis 

were discussed in details under Chapter 4, and probit/empirical results are discussed 

in Chapter 5. The comparison analysis made on empirical model calculation was also 

examined under this chapter. Finally, conclusions were made based on the results 

obtained from the CFD simulation and empirical data. Recommendations of further 

investigation based on the research vacuums acknowledge during this study were 

mentioned and highlighted in Chapter 6.
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