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ABSTRACT 

Trivalent rare earth (Dy3+ and Sm3+) doped calcium sulfophosphate, 20CaSO4-

(80-x)P2O5-xDy2O3, 20CaSO4-(80-x)P2O5-xSm2O3 and magnesium sulfophosphate 

20MgSO4-(80- x)P2O5-xDy2O3, 20MgSO4-(80-x)P2O5-xSm2O3 with 0.2 ≤ x ≤ 1.5 

mol% of ultra-phosphate glass system were prepared using conventional melt-

quenching method followed by annealing process at 300 ºC for 4 hours. The 

amorphous phase of glass samples were characterized by X-ray diffraction (XRD) 

method, while the structural features of the samples were measured using Fourier 

transform infrared (FTIR) spectroscopy, Raman spectroscopy and nuclear magnetic 

resonance (NMR) spectroscopy. The optical properties of glass samples were 

characterized by ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy and 

photoluminescence (PL) spectroscopy. The infrared spectra revealed the bonding link 

of the host affected by modifier oxides (MgO, CaO) and intermediate oxides (SO4). 

Their linkages consist of P-O-P network, PO2 units, PO-, P=O, O-S-O and SO4 groups 

with no evidence of rare earth ions network as a result of the low concentrations of 

dopant. In addition, the similar tetrahedral arrangement was also shown by Raman 

spectra. The NMR spectra were used to identify the phosphate compositional change 

through conversion of Q3 (in P2O5) to Q2, Q1 and Q0 which follow the predictions of 

the Van Wazer’s model. The NMR spectra affirmed the presence of Q3, Q2, and Q1 

groups, referring to existence of ultra-, meta- and pyrophosphate units, although the 

Q2 and Q1 are more predominant. Changes in Qn distributions in host phosphate 

networks are due to the breaking of P-O-P linkages to form P-O-M networks (where 

M is metal ions). The physical and nuclear properties such as density, molar volume, 

field strength, oxygen packing density, ionic packing density, inter nuclear distance, 

ion concentration and polaron radius were evaluated. The absorption characteristic 

presented by the UV-Vis-NIR spectra showed eight peaks from transition of Sm3+, and 

six peaks for transition of Dy3+ ions. All transitions correspond to the transition from 

ground state to excited state of Sm3+ and Dy3+ ions, respectively. The energy gap 

ranges from 4.090 – 4.185 eV, 4.517 – 4.612 eV and Urbach energy from 0.105 – 

0.119, 0.155 – 0.135 eV with respect to the rare earth ions content. The 

photoluminescence spectra of Dy3+ ions illustrate three prominent bands around 481 

nm (4F9/2 →
6H15/2), 577 nm (4F9/2 →

6H13/2), and 660 nm (4F9/2 →
6H11/2), and for Sm3+ 

ions five peaks were observed around 560 nm (4G5/2 →
6H5/2), 597 nm (4G5/2 →

6H7/2), 

642 nm (4G5/2 →
6H9/2), 703 nm (4G5/2 →6H11/2) and 735 nm (4G5/2 →6H13/2). The 

absorption and emission spectra were used to evaluate the Judd-Ofelt parameters and 

radiative properties such as transition probabilities, radiative lifetimes and branching 

ratios of rare earth ions. Based on this study, calcium sulfophosphate glass and 

magnesium sulfophosphate glass doped with rare earth ions could be suggested as 

promising luminescent host material for solid-state lighting device application. 
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ABSTRAK 

Nadir bumi tiga valensi (Dy3+ dan Sm3+) dop kalsium sulfofosfat 20CaSO4-

(80-x)P2O5-xDy2O3, 20CaSO4-(80-x)P2O5-xSm2O3 dan magnesium sulfofosfat 

20MgSO4-(80-x)P2O5-xDy2O3, 20MgSO4-(80-x)P2O5-xSm2O3 dengan 0.2 ≤ x ≤ 1.5 

mol% dalam sistem kaca ultra-fosfat telah disediakan dengan menggunakan kaedah 

pelindapan lebur lazim yang diikuti dengan proses penyepuhlindapan pada 300 ºC 

selama 4 jam. Fasa amorfus sampel kaca telah dicirikan oleh kaedah pembelauan 

sinar‒X (XRD), sementara ciri-ciri struktur sampel telah diukur menggunakan 

spektroskopi inframerah transformasi Fourier (FTIR), spektroskopi Raman dan 

spektroskopi resonans magnet nuklear (NMR). Sifat optik sampel kaca dicirikan 

melalui spektroskopi ultraungu-cahaya nampak inframerah dekat (UV-Vis-NIR) dan 

spektroskopi fotoluminesens. Spektrum inframerah menunjukkan hubungan ikatan 

hos terjejas oleh oksida pengubahsuai (MgO, CaO) dan oksida pertengahan (SO4). 

Hubungan rangkaian terdiri daripada P-O-P, unit PO2, PO-, P=O, O-S-O dan 

kumpulan SO4, tanpa menunjukkan rangkaian ion-ion nadir bumi disebabkan oleh 

komposisi dopan yang rendah. Tambahan pula, susunan tetrahedral yang sama juga 

ditunjukkan oleh spektrum Raman. Spektrum NMR telah digunakan untuk mengenal 

pasti perubahan komposisi fosfat melalui penukaran Q3 (dalam P2O5) kepada Q2, Q1 

dan Q0 yang mengikuti ramalan model Van Wazer. Spektrum NMR menegaskan 

kehadiran kumpulan Q3, Q2, dan Q1 yang merujuk kepada kehadiran unit ultra-, meta- 

dan pirofosfat walaupun Q2 dan Q1 lebih dominan. Perubahan dalam taburan Qn dalam 

rangkaian hos fosfat adalah disebabkan oleh pecahnya rangkaian P-O-P untuk 

membentuk rangkaian P-O-M (M merupakan ion logam). Ciri-ciri fizikal dan nuklear 

seperti ketumpatan, isipadu molar, kekuatan medan, ketumpatan kepadatan oksigen, 

ketumpatan padatan ionik, jarak antara nukleus, kepekatan ion dan jejari polaron telah 

ditentukan. Ciri penyerapan yang ditunjukkan oleh spektra UV-Vis-NIR menunjukkan 

lapan puncak dari peralihan ion Sm3+ dan enam puncak untuk peralihan ion Dy3+. 

Semua peralihan adalah masing-masing sepadan dengan peralihan dari keadaan asas 

ke keadaan teruja ion Sm3+ dan Dy3+. Jurang tenaga berjulat dari 4.090 – 4.185 eV, 

4.517 – 4.612 eV dan tenaga Urbach dari 0.105 – 0.119 eV, 0.155 – 0.135 eV menurut 

kandungan ion nadir bumi. Spektrum fotoluminesens bagi ion Dy3+ menunjukkan tiga 

jalur yang menonjol sekitar 481 nm (4F9/2 →
6H15/2), 577 nm (4F9/2 →

6H13/2), and 660 

nm (4F9/2 →
6H11/2), dan bagi ion Sm3+ lima puncak telah dicerap sekitar 560 nm (4G5/2 

→6H5/2), 597 nm (4G5/2 →
6H7/2), 642 nm (4G5/2 →

6H9/2), 703 nm (4G5/2 →
6H11/2) and 

735 nm (4G5/2 →6H13/2). Spektrum serapan dan pancaran telah digunakan untuk 

menentukan parameter Judd-Ofelt dan sifat pancaran seperti kebarangkalian peralihan, 

masa hayat pancaran dan nisbah cabangan ion nadir bumi. Berdasarkan kajian ini, kaca 

kalsium sulfofosfat dan kaca magnesium sulfofosfat yang didop dengan ion nadir bumi 

boleh dicadangkan sebagai bahan hos luminesens berpotensi bagi aplikasi peranti 

pencahayaan keadaan pepejal.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Research 

Glass is an amorphous solid material which displays the structural 

characteristics of liquid having a glass transition (Tg). It is typically brittle, some are 

transparent and plays a vital role in the progress of society, and used for decoration as 

window panes, packaging (Jars for food, bottles, for drinks), housing and building, 

fibre optic cables etc. According to the American Society for Testing Materials 

(ASTM) defined glass as "an inorganic product of fusion, which has been cooled to a 

rigid condition without crystallizing". It is a mixture of sand and other minerals melted 

together at very high temperature (normally between 900 and 2000°C). The exact 

melting temperature depends on the glass composition. Chemically, a glass is actually 

like a liquid at room temperature, it became softer gradually at higher temperature and 

more like a liquid which allows the glass to be poured, blown, pressed and mould into 

different shapes. Even though, there are other methods used in glass formation, it can 

be formed by chemical vapour deposition (CVD), by sol-gel processing of solution, 

thermal evaporation techniques (TET), Sputtering techniques and by neutron 

irradiation of crystalline materials (Shelby and Schubert, 1997). 

The oxides glasses are formed when metals combine with oxygen, the 

principles that classified cations in glass network are categorized in 3 stages these are; 

Glass formers, Modifiers and Intermediate glasses.  

Network modifiers are alkali or alkaline earth metals oxides that break or 

interrupt the network when they are added to the host materials to increase the 

workability of a glass, examples are CaO, MgO and Na2O3 etc.  
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Intermediate are oxides capable of entering the network of glass formers, 

sometimes to re-enforce other networks. They act as network formers like aluminum, 

but ordinarily, they cannot form glass network themselves rather they join existing 

glass networks added to obtain a special properties examples: Al2O3, Ti3O, TeO2, 

SeO2, WO3 etc (Hussin, 2011) including SO4.  

Addition of modifier oxides e.g K2O; Rb2O to basic constituent (network 

former) such as Phosphate, borate, silicate etc can alter the structure and physical 

properties depending on the quantity added, the properties of modified glass show a 

non-linear behaviour with a gradual increase in alkali oxide. The deviation from 

linearity causes the host anomaly (Saddeek, 2004). The structure of binary phosphate 

is similar to that of binary silicate based on the tetrahedral structure. This structure 

depends on the phosphate content and the content of glass modifier oxides, such as 

CaO, MgO, and Na2O etc. Addition of glass modifier to phosphate glass will increase 

its durability and results in the cleavage of P-O-P linkages to form non-bridging 

oxygen’s (NBOs) thereby disrupting the structure of the glass having covalent P-O-M 

bonds and also ionic cross-linkages between non-bridging oxygen (NBOs). 

The glass formers are the major bulk materials that result in the formation of 

glasses viz: Tellurium oxide (TeO2), Silicon dioxide (SiO2), Phosphorus pentoxide 

(P2O5) and Boron trioxide (B2O3) etc. Other constituent of glasses are the flux 

responsible for reducing the melting temperature of the glass former such as PbO, even 

though,  certain times may lead to the changes in properties of the glass former, while 

colour additive are added to give out a colour to the glass e.g. silver or gold. The 

Fining/Refining agents are to improve the quality characteristics of the glass by 

removing bubbles examples, arsenic, antimony oxides etc.    

Phosphate glasses differ from other glass-former due to the existence of 

terminal oxygen on each network, results in less cross-link, such as terminal oxygen 

(TO) limit the connectivity of phosphate glass structure (PGs) and reduces their inter-

atomic forces and rigidity. This may cause easy in the de-polymerisation process. 

Furthermore, phosphate-based glasses contain a lesser cross-link with the high number 

of TO atoms. When mixed with other metal oxides result in higher flexibility of 
−3

4p
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tetrahedra. For this reason, ranges of phosphate glass formation are expected to be 

wider than the other based glasses (Egan et al., 2000). It has the ability to dissolve 

completely in an aqueous solution, and the dissolution rate is sensitive to glass 

composition (Bunker et al., 1984). This indicates that phosphate-based glasses have 

numerous advantages over the other based glasses due to superior physical properties 

e.g high ultraviolet (UV) transmission (Brow, 2000), high electrical conductivity (Shih 

et al., 2003). This is suitable candidates for technological applications as optical fibers 

for data transmission, host glasses for solid state lasers, solid state batteries and glass-

to-metal sealing (Hassan and Hafid, 2004), poor chemical durability can often limit 

their suitability, although can be improved by modifier addition. It also has high 

thermal expansion coefficients (258 ×10-7 to 99×10-7/℃ ) low melting temperature 

and low glass transition temperature (Tg below 420℃) depending on composition 

(Shih et al., 1998). Low softening temperatures of phosphate glasses make it suitable 

for hermetic seals (Marzouk et al., 2017).  

However, the thermal expansion (αep) of the glass depends on the asymmetry 

of the amplitude of thermal vibrations in the glass. Therefore, the thermal vibration is 

small when there are many strong bonds present in the network. These properties make 

them useful candidates for fast ion conducting materials and other important 

applications (Hassan and Hafid, 2004). 

Ultra-phosphate glass region, are categories of phosphate glass with RO/P2O5 

ratio less than one, where RO or R2O is the modifying oxides, despite the fact that 

hydroxyl (OH) group may serve as a modifier which affects the optical and thermal 

properties of the glass but often neglected. Ultra-phosphate region mostly has a longer 

terminal oxygen (P=O) and a shorter P-O Q3 bond length when compared with any of 

the phosphate polymorphs (Mercier et al., 1999). It is easier in de-polymerization 

processes. 

Sulphur species are found in oxide glasses and melts of volcanic process. 

Commercially, silica glasses batches contain low levels of sulphur (< 0.2 wt.% S) 

which are deliberately added in the form of sulphate refining agent or as sulphide to 

provide a uniquely amber colour (Bingham and Hand, 2008), sulfur when mixed with 
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phosphate glasses are satisfied in immobilizing radioactive waste. Many glasses 

materials are thermally and chemically stable having good electrical conductivity and 

compatibility with electrode materials with a small amount of sulphur. Cadmium 

sulphides attract more interest in the field of integrated optics, opto-electronics and 

photovoltaic devices with a higher quantity of sulfur. The studies are consistent with 

the hypothesis, that sulphur interact with phosphate network by occupying the 

interstice spaces of oxygen in non-bridging position as a weaker cation-network 

interaction, the results in an increased in conductivity within mol % of Sulphur 

(Chowdari et al., 1993).  

Many types of radioactive waste were certainly incorporated in glass for long-

term safe storage (i.e vitrified) contains a larger amount of sulphur. Generally, low 

solubility of sulphate in silicate (SiO2) melts. In oxidation conditions where a waste 

glass melt could be safely operated and this can result in sulphur becoming the waste-

loading limiting constituent (McKeown et al., 2001). Meanwhile, much is still required 

to know more about the relationship between sulfur solubility in phosphate glass 

system. 

Rare earth ions (REI) comprises of lanthanide and actinide, the lanthanides are 

known elements in 4f shell level located insides the atom. Their spectra arising from 

4f–4f transitions which are narrow and insensitive to their environment, unlike 

transition metal in 3d spectra, transitions of these elements by excitation and de-

excitation causes emissions which are detected in the infrared, visible, or ultraviolet 

region. These ions -doped glasses have attracted more attention due to their usefulness 

in many optical applications such as optical fibers and solid state lasers (Amjad et al., 

2013). For optical amplifier applications as well as lasers, host glasses such as 

phosphate, boro-tellurite, and fluoro-iodate glasses are the vastly promising candidate 

(Florez et al., 2000). The ions incorporated in glasses are extensively used in order to 

activate the luminescence and optical materials. The studies provide fundamental data 

on radiative properties such as transition probability, radiative life-time, branching 

ratios and are used for optical device. 
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Trivalent RE ions -doped phosphate glasses have been developed basically for 

IR active optical devices (Sava et al., 2013). The ions attract higher demand for various 

visible lasers and many other light sources when doped with host glasses. Further 

research was developed on phosphate based glasses doped Dy3+ Tb3+ Er3+ and Eu3+ 

(Pisarska et al., 2011) which identify the various colors of red, orange, blue, yellow 

and violet/blue emission. However, this work differs with Pisarka by modifier oxides 

and the dopant. 

The calcium/magnesium sulfate ultra-phosphate glasses –doped rare earth 

(Sm3+ and Dy3+) has been chosen to improve the quality of glasses. The research aims 

to investigate the structure and optical properties of calcium/magnesium sulfate ultra-

phosphate glasses, this may help to verify the luminescence properties of RE materials 

for better efficiency, hoping that the quantitative estimate on both the structure and 

optical studies would be accurate. 

1.2 Research Problem 

Phosphate glass was recognized as a valuable material in optical glasses. 

Incomparable features of phosphate in the structure or optical stability attract more 

attention to many researchers, but due the hygroscopic and volatility in phosphate 

reduces its performance in many applications, this can also have limitations in their 

low absorption and emission cross-section. Other anomalous behaviours in phosphate 

glasses contribute to its setback in vitreous phosphate pentoxide (P2O5). Ultra-

phosphate on the other hand, is chemically unstable with regards to hydrolysis of P-O-

P bonding by atmospheric moisture attack which mean the vitreous phosphate have 

low resistance to moisture (Lu et al., 2015) and the same time.  

Ultra-phosphate region has every tendency in becoming crystal. Hence, if the 

chemical durability were identified the potential application needs to be expanded 

accordingly. To improve the required performance by choosing a suitable modifier 

oxide such as CaO, MgO, ZnO, PbO etc, magnesium oxide added to phosphate exhibit 

a higher forming ability (Karakassides et al., 2004). Many researchers are more 
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interested to study the structure and luminescence properties of binary or multi-

component phosphate glasses doped with RE ions.  Studies on the structural features 

of the phosphate-based glass system especially in the composition of calcium sulfo-

phosphate and magnesium sulfo-phosphate glasses need to be the focus. The effects of 

doping RE ions (Sm3+ and Dy3+) on its optical and luminescence properties and the 

influence of the ions on the structural features need to be studied. The calculated values 

of Judd-Ofelt parameters will be utilized in evaluating the various radiative parameters 

such as transition probabilities radiative lifetimes and branching of rare earth ion 

(REI). 

1.3 Research Objectives 

The objectives of the research are: 

(a)  To determine the amorphous phase of un-doped xCaSO4 (80-x) P2O5, 

xMgSO4 (80-x) P2O5 and doped 20CaSO4 (80-x) P2O5-xSm2O3, 20MgSO4 (80-

x) P2O5-xDy2O3 at different concentration. 

(b)  To determine the influence of calcium sulfate/ magnesium sulfate as a 

modifier oxide on the structure and physical properties of ultra-phosphate 

based glasses.  

(c)  To determine the effect of rare earth ions (Sm3+ and Dy3+) on optical 

(e.g Band gap, Urbach energy) and luminescence properties of calcium sulfate/ 

magnesium sulfate ultra-phosphate glasses at different concentration.  

(d)  To evaluate the Judd-Ofelt intensity parameters (Ωλ) from experimental 

and calculated oscillator strength for Sm3+ and Dy3+ ions so as to demonstrate 

the validity of the theory and to verify the optical quality of the materials.. 
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1.4 Scope of the Research 

In achieving the objectives, the work has the following scope. 

(a)  The amorphous phase of the samples was determined by X-ray 

diffraction (XRD) spectroscopy for calcium sulphate/magnesium sulfate ultra-

phosphate glass doped dysprosium and samarium ion prepared by the melt-

quenching method. 

(b) The structural characterization was also investigated using FTIR, 

Raman and NMR  spectroscopy,  

(c)  Optical and luminescence characterization were identified using 

Photoluminescence and UV-Vis-NIR spectrometer.  

(d) Judd-Ofelt intensity parameter was analyzed and compared with those 

in literature 

1.5 Significant of Research 

The spectroscopic study of phosphate glass doped and un-doped rare earth 

(RE) helped in developing material for optical data transmission, laser amplification, 

fibre optical amplifier or biomedical applications. Phosphates were chosen as a host 

due to its low transition temperature and are well fitted for doping RE ions for optical 

devices (Marino et al., 2001). Phosphate encourages de-polymerization process owing 

to terminal oxygen availability, de-polymerization is important in increasing the 

phosphate durability. Also, the used of ultra-phosphate (Q3) glasses phase contain a 

relatively larger amount of hydroxyl group responsible for protonic conductor 

(Mercier et al., 1998, Mercier et al., 1999), another side, lesser work has been observed 

on ultra-phosphate glass phase.  

Due to the limited research based on xCaSO4-(100-x) P2O5 and  xMgSO4-(100-

x) P2O5 glass system doped rare earth ions. Therefore, the present study is aimed to 
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understand the effect of RE3+ (Sm3+, Dy3+) ions and to analyze the optical and 

luminescence properties of the samples. Consequently, the spectroscopic studies will 

give information about the efficiency of the samples; it can also give a better 

understanding of the structural and optical features of sulphate containing alkaline 

earth. The remarkable outcomes of this study will help in developing many functional 

glasses and long afterglow material. Therefore, knowing the structure and optical and 

luminescence characteristics of the glass system will contribute to the new knowledge 

in material field. 

1.6 Thesis Plan 

Preparation and characterization of REI (Sm3+ and Dy3+) doped phosphate-

based glasses using conventional melt quench method will be discussed below, the 

thesis comprises of five chapters viz; 

Chapter 1: Present the background of the research and an overview mentioned 

with emphasis on the development of phosphate glasses including the behaviour of 

REI, research problems, research objectives, scope of research and significance of the 

study including the thesis outline. 

Chapter 2: Explores the literature review on magnesium/calcium sulfo-

phosphate glasses with other modifier oxides; Phosphate based glass, modifier pseude-

reaction on phosphate glass, XRD, FTIR, Raman and NMR analysis on phosphate 

glass, Structure by IR, Raman and NMR,  optical, luminescence properties and the 

Judd-Ofelt analysis was also discussed. 

Chapter 3: Demonstrate the experimental method which includes Samples 

preparation by the melt-quench method, samples instrumentation on XRD, FTIR, 

Raman, NMR, UV-Vis-NIR and Photoluminescence spectroscopy.  

Chapter 4: The results of our findings were discussed in this chapter which 

serves as the most important part of the thesis. 
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Chapter 5: Conclusion and the future perspectives 
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