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ABSTRACT 

 

 

 

 

Unsteady flow of viscous and second grade fluids in non-coaxial rotation past a 

vertical oscillating disk have been studied by a number of researchers due to wide 

applications in boundary layer control, food processing, mixer machines and cooling 

turbine blades. Therefore, in this research, heat and mass transfer of viscous and 

second grade fluids were studied. The effect of magnetohydrodynamics (MHD) flow 

through a porous medium was considered. The main purpose of this study was to 

obtain the exact solutions for four problems of non-coaxial rotating flow. Two 

problems were studied for viscous fluid, whereas another two problems were studied 

for second grade fluid. All problems were considered in mixed convection flow and 

without magnetic and porosity effects. Appropriate non-dimensional variables were 

used to simplify the governing equations into non-dimensional equations along with 

initial and boundary conditions. Through this non-dimensional process, the non-

dimensional parameters such as Grashof number, modified Grashof number, Prandtl 

number, Schmidt number, velocity of oscillation, magnetic, porosity and second 

grade fluid were obtained. The exact solutions for velocity, temperature and 

concentration expressions were obtained by using Laplace transform technique. 

From these corresponding expressions, the skin friction, Nusselt number and 

Sherwood number were calculated. The solutions were plotted graphically to discuss 

the influence of non-dimensional parameters in velocity, temperature and 

concentration profiles. Results show that, velocity profile with magnetic effect is 

lower compared to velocity without magnetic effect, whereas the velocity with heat 

and mass transfer phenomena is higher than just a heat transfer. It is also observed 

that velocity of second grade fluid solutions is always lower compared to the velocity 

of viscous fluid. All the obtained results are compared with published results and 

found to be in good agreement, validating the obtained solutions. The exact solutions 

obtained in this thesis provide an interesting and complete benchmark to verify 

numerical schemes for solving different complex flow situations. 
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ABSTRAK 

 

 

 

 

Aliran tak mantap bagi bendalir likat and gred kedua di dalam putaran bukan sepaksi 

melalui cakera yang menegak telah dikaji oleh beberapa penyelidik kerana terdapat 

banyak aplikasi di dalam kawalan lapisan sempadan, pemprosesan makanan, mesin 

pencampur dan penyejuk turbin bilah. Oleh itu, dalam penyelidikan ini, aliran 

pemindahan haba dan jisim bagi bendalir likat dan gred kedua dikaji. Kesan aliran 

hidrodinamik magnet (MHD) yang melalui bahantara berliang turut 

dipertimbangkan. Tujuan utama kajian ini adalah untuk mendapatkan penyelesaian 

tepat bagi empat masalah aliran putaran bukan sepaksi. Dua masalah telah dikaji bagi 

bendalir likat, manakala dua lagi masalah dikaji untuk bendalir gred kedua. Semua 

masalah telah dipertimbangkan di dalam aliran olakan campuran dan tanpa kesan 

magnet dan keliangan. Pembolehubah tak bermatra bersesuaian digunakan untuk 

mempermudahkan persamaan menakluk ke dalam persamaaan tak bermatra bersama 

dengan syarat awal dan syarat sempadan. Melalui proses tak bermatra ini, parameter 

tak bermatra seperti nombor Grashof, nombor Grashof diubahsuai, nombor Prandtl, 

nombor Schmidt, halaju berayun, magnet, keliangan dan bendalir gred kedua 

diperoleh. Penyelesaian tepat bagi ungkapan halaju, suhu dan kepekatan diperoleh 

dengan menggunakan teknik penjelmaan Laplace. Dari ungkapan ini, geseran kulit, 

nombor Nusselt dan nombor Sherwood dikira. Penyelesaian diplotkan secara bergraf 

untuk membincangkan kesan parameter tak bermatra di dalam profil halaju, suhu dan 

kepekatan. Keputusan menunjukkan bahawa profil halaju dengan kesan magnet 

adalah lebih rendah berbanding dengan halaju tanpa kesan magnet, manakala halaju 

dengan fenomena pemindahan haba dan jisim adalah lebih tinggi berbanding dengan 

hanya pemindahan haba. Diperhatikan juga halaju bagi penyelesaian bendalir gred 

kedua adalah sentiasa lebih rendah berbanding dengan halaju bagi bendalir likat. 

Semua keputusan yang diperoleh dibandingkan dengan keputusan yang telah 

diterbitkan dan didapati penyesuaian yang sangat baik, mengesahkan penyelesaian 

yang diperoleh. Penyelesaian tepat yang diperoleh dalam tesis ini menyediakan suatu 

penanda aras yang menarik dan lengkap untuk mengesahkan skim berangka untuk 

menyelesaikan pelbagai situasi aliran yang sukar. 
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter presents the main area of fluid mechanics for Newtonian fluids

and non-Newtonian fluids, along with an introduction on the research background,

statement of the problem, objectives of research, scope of research, and the significance

of research.

1.2 Research Background

The study on convective transport of momentum, heat and mass in fluid flow has

received special attention, which perhaps is mainly due to their potential applications

in industries such as oil and gas, drilling, food stuffs, polymer processing, blood and

cosmetic products. There are three types of convective transport, namely forced, free,

and mixed convections. Forced convection occurs when the flow is caused either

by external force or by imposing non-homogeneous boundary condition on velocity,

such as moving or oscillating flat plate. Contrary to forced convection, in natural or

free convection, the transport phenomenon occurs due to buoyancy force that arises

from density differences caused by temperature and concentration variation in the
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fluid. A situation where the free and forced convection mechanisms simultaneously

and significantly contribute to the above transport phenomena is called mixed or

combined convection. Combined convection phenomenon occurs in many technical

and industrial problems such as electronic devices cooled by fans, nuclear reactors

cooled during an emergency shutdown, a heat exchanger placed in a low velocity

environment, solar collectors, and so on. Mass transfer is the movement of mass

from one to another location caused by absorption, evaporation, drying, distillation

and many more. It is commonly used in engineering field for physical processes that

involve diffusive and convective transport of chemical species within physical system,

such as reaction engineering, separation engineering, heat transfer engineering and

other chemical engineering. Over time, various publications on mixed convection with

different boundary conditions and situations have appeared.

There are various types of fluid which are responsible for the motion of

convection flow. Normally, the fluid is divided into two types, namely Newtonian

and non-Newtonian fluids. Newtonian or viscous fluids obey the Newtons law of

viscosity and are usually described by Navier Stokes equations. In general, all gases

and most liquids with simpler molecular formula and low molecular weight, such as

water, benzene, ethyl alcohol, hexane and most solutions of simple molecules are

Newtonian fluids. Different from Newtonian fluids, non-Newtonian fluids do not obey

Newtons law of viscosity, since they have variable viscosity at constant temperature,

and their viscosity depends on the applied force. Examples of non-Newtonian fluids

include syrupy mixture of corn-starch and water, quicksand, slurries, pastes, gels,

polymer solutions etc. These non-Newtonian fluids are usually divided into three main

categories, which are differential type, rate type and integral type. Differential and rate

type models are used to describe the response of fluids that have slight memory such

as dilute polymeric solutions, while the integral models are used to describe materials

such as polymer melts that have considerable memory.

One of the most popular subclasses of differential type of fluids is called the

second grade fluid; also known as a viscoelastic fluid. This fluid model was first
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proposed by Coleman and Noll in (1960). It is found in polymer fluids, where these

fluids exhibit both the viscous and elastic characteristics. Viscous materials, like honey,

resist shear flow and strain linearly with time when stress is applied. Meanwhile,

elastic materials strain instantaneously when stretched, and quickly return to their

original state once the stress is removed. In mathematical analysis, the problems of

Newtonian fluids are simpler compared to non-Newtonian fluids problems for simple

flow geometry. It is due to the fact that the mathematical systems of Newtonian fluids

are not as much complicated and their solutions are convenient. Even the Newtonian

fluid problems for complicated flow geometries are more difficult to solve due to the

complex form of Navier Stokes equations. The problems of non-Newtonian fluids,

on the other hand, are very complicated due to additional non-Newtonian terms in

the constitutive equations. Therefore, the present study aims to investigate unsteady

mixed convection flow of incompressible viscous and second grade fluids in oscillating

infinite vertical disk. Difficulty to cater non-Newtonian fluid further increases when

these non-Newtonian fluids are incorporated in other physical phenomena such as heat

transfer, mass transfer or heat and mass transfer together or by changing the physical

configuration of the problem. One of the complicated physical configurations is when

the fluid and disk are in rotating motion.

Historically, the rotating fluid theory was developed during the process of

understanding and predicting the flow phenomena on the earth surface, especially at

large scale atmospheric and oceanic flows. Significance of rotating fluid can also be

observed by study of the mathematical modeling of rotating flow. Modeling of rotating

flow is critically important across wide range of scientific, engineering, and product

design applications, providing design capability for products such as jet engines,

pumps, and vacuum cleaners, as well as modeling capability for geophysical flows.

Even for applications where rotation is not essentially evident, the subject is often

fundamental to understand, and modeling the details of the flow physics is important.

Examples include the vortices produced in flow along a channel, the secondary flow

produced for flow around a bend, and wing-tip vortices produced downstream of a

wing. Nevertheless, rotating flows over a flat plate are of great importance in terms
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of their relevance to a wide variety of technical applications such as meteorology,

cosmical and geophysical fluid dynamics. The Coriolis force in fundamental rotating

flow equations is more significant in comparison with inertial and viscous forces.

Coriolis force in a fluid is responsible for the differences between the dynamics of non-

rotating and rotating fluids. In many geophysical and industrial energy system flows,

Coriolis force has a significant influence on the fluid dynamic of the system. In physics,

the Coriolis force is defined as a deflection of moving objects in a frame rotating in

the opposite direction. For example, when a frame rotates in clockwise direction,

the moving object will deflect to the left. If the frame rotates counterclockwise,

the deflection of object will move to the right. This effect is very important for

earth rotation, which is evident by observing free-moving objects to veer toward the

right in the Northern Hemisphere and to the left in the Southern Hemisphere. From

the literature survey, rotation can be divided into two types, which are coaxial and

non-coaxial rotation. Coaxial rotation is defined as fluid having a common axis or

coincident axes on a straight line, whereas non-coaxial rotation is rotation that involves

two rotating flows between axes separated by a distance known as length (Erdogan

(1997)). Based on the above discussion, it is interesting to study the behavior of the

fluid motion influenced by non-coaxial rotation in heat and mass transfers.

The rotating flow of an electrically conducted fluid under the influence of a

magnetic field or commonly known as magnethohydrodynamic (MHD) flow in heat

and mass transfer has been conducted extensively in recent years. The study on

MHD flow has attracted the attention of researchers due to its wide range of useful

applications in several areas of science and technology, such as in medical science of

magnetic drug targeting for transporting drugs to the whole human body (Mustapha et

al., (2009; 2010)) and MHD flow as a controller of boundary layer transition (Poggie

and Gaitonde (2002), Nishihara et al. (2005)). Further, the effect of magnetic field

on flows through a porous medium has some specific applications in ground water

flow, irrigation problems, recovery of crude petroleum, heat-storage beds, thermal

and insulating engineering, chromatography and chemical catalytic reactors (Hayat et

al. (2008), Salah et al. (2013)). This study on porous medium circulates about the
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permeability, tensile strength and electrical conductivity, which can sometimes can be

derived from the respective properties of its constituents (solid matrix and fluid) and

the media porosity and pores structure, but such derivation is usually complex. Even

the concept of porosity is only straight-forward for a poroelastic medium.

The present study focuses on magnetic and porosity effects. Specifically, the

problem of non-coaxial MHD mixed convection flow of fluid in a porous medium is

the main focus since it is still not available in the literature. All problems considered

in the present study are tackled by using Laplace transform technique, since exact

solutions are considerably important for comparison with the numerical scheme.

Laplace transform has been used in this study because of most engineering problems

involve functions with respect to time, such as piecewise continuous functions, periodic

functions, steps functions, and delta functions. Therefore, there is a need of a method to

solve differential equations involving such functions, thus Laplace Transform, which

was introduced by a French mathematician Pierre Simon de Laplace (1749 - 1827

M), has been chosen. This transform provides a systematic alternative approach for

solving differential equations where mathematical transformations are used to simplify

the solution of problems. The purpose of using a transformation is to create a new

domain to ease the handling of the problem being considered. Once results have been

obtained in the new domain, they can be converted back into the original domain by

taking Inverse Laplace transform. The Laplace transform takes an ordinary differential

equation in the time, t domain into an algebraic equation in the q domain, after the

solution. This is then rearranged using algebraic rules to obtain an expression for

a function, with respect to transform variable. Then, the solution of the differential

equation as a function of t is found by taking inverse transform. While in this problem,

the Laplace transform has distinct advantages because initial and boundary conditions

are involved at early stage and automatically incorporated into the solution. Further

discussions on these topics are provided in Chapter 2 by looking at related literatures

done by previous researchers relevant to this study.
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1.3 Statement of Problem

This research focuses on the investigation of the behavior of unsteady mixed

convection flow in a rotating disk executing non-coaxial rotation. Focus is given to the

flow motion induced by oscillating infinite vertical disk. Two types of fluids, which are

viscous and second grade fluids, are considered. This research explores the following

questions:

(i) How does the mathematical model behave in the problem of unsteady mixed

convection flow of viscous and second grade fluids in non-coaxial rotation?

(ii) How does the mathematical model behave for this problem involving

concentration, magnetic field and porosity effects?

(iii) How can the exact solutions for complicated mixed convection flow for the

proposed fluid models be obtained?

(iv) How do the physical parameters embedded in the fluid flow models affect the

behaviors of velocity, temperature and concentration profiles?

1.4 Objectives of Research

The objective of this research is to investigate theoretically the unsteady mixed

convection flow of non-coaxial rotation for viscous and second grade fluids. This

investigation includes:

(i) to derive and extend the appropriate governing equations, together with initial

and oscillating boundary conditions based on a suitable physical model,
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(ii) to obtain exact solutions for the velocity, temperature and concentration profiles

by using the Laplace transform method for

(a) MHD and porosity effects,

(b) heat and mass transfer phenomenon, and

(c) MHD and porosity effects as well as heat and mass transfer phenomenon,

(iii) to compute the skin-friction, Nusselt and Sherwood numbers, and

(iv) to analyze graphically and in tabulated form of the obtained exact solutions of

velocity, temperature and concentration together with skin friction, Nusselt and

Sherwood numbers.

1.5 Scope of Research

This research focuses on unsteady mixed convection flow of incompressible

viscous and second grade fluids in non-coaxial rotation, specifically the oscillating

infinite vertical disk. In both viscous and second grade fluid problems, the first two

problems focus on the fluid motion induced by heat transfer, or heat and mass transfers

(double diffusion) together, without magnetic and porosity effects. Consequently,

the last two problems of viscous and second grade fluids focus on the fluid motion

induced by heat flow and double diffusion in the presence of magnetic and porosity

effects. The proposed problems are solved analytically by using the Laplace transform

technique. Accordingly, the skin friction, Nusselt number and Sherwood number

are calculated. MATHEMATICA software is utilized to find the complicated inverse

Laplace transformation. The obtained results will then be plotted graphically using

MATHCAD. In order to check the accuracy, the results will be compared with the

published work in the literature.
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1.6 Significance of Research

The results obtained from this project are significant because of the following

reasons.

(i) to build a better understanding on the rheological behavior of non-coaxial

rotation of fluid flows in oscillating infinite vertical disk,

(ii) to enhance the knowledge on the magnetic, porosity, heat and mass transfers

characteristics in rotating viscous and second grade fluids,

(iii) to give insight on the physical behavior of non-coaxial rotation of fluid flows

affected by mixed convection phenomenon,

(iv) to introduce new knowledge of theoretical study that can be a good reference to

researchers, engineering applications and education, and

(v) these exact solutions can be used as a check of correctness for the solutions of

more complex mathematical models obtained through numerical schemes.

1.7 Research Methodology

The unsteady dimensional momentum, energy and mass equations of the

incompressible viscous and second grade fluids shall be modeled in the form of partial

differential equations with initial and oscillating boundary conditions. These governing

equations, together with conditions, will then be transformed into non-dimensional

equations by using the corresponding non-dimensional variables. After that, the

Laplace transform technique, subjected to non-dimensional initial and boundary

conditions, will be applied into non-dimensional equations in order to obtain the

analytical solutions of velocity, temperature and concentration profiles. This technique

is chosen because it is applicable to the geometry of infinite vertical disk for the
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proposed problems, and shall be applied in each case. Then, the results for skin friction,

Nusselt number and Sherwood number of the fluid flow are computed.

For the sake of physical understanding, analytical results for velocity,

temperature and concentration profiles will be plotted graphically for the emerging

flow parameters such as Grashof number, modified Grashof number, Prandtl number,

Schmidt number, amplitude parameter, second grade parameter, phase angle parameter

and time parameter. MATHCAD and MATHEMATICA are the main tools in this

research to plot the solutions and find the inversion of Laplace transform. As

the velocity is a complex function, the graphs for both primary (real part) and

secondary (imaginary part) velocities shall be shown separately. The results will be

used to ensure the correctness of the solutions by satisfying all imposed initial and

boundary conditions. The limiting cases will then be compared with those of previous

publications to confirm the correctness of the obtained solutions. The operational

framework for research methodology is shown in Figure 1.1.

1.8 Thesis Organization

This thesis contains eight chapters. Chapter 1 discusses the research

background, which describes all definitions of problem, followed by statement of

problem, objectives of research, scope of research, significance of research, research

methodology and thesis organization. The following Chapter 2 reviews some published

researches related to proposed problems, as acknowledged in the objectives.

Chapter 3 presents the derivation of governing momentum equations for non-

coaxial rotation of viscous and second grade fluids with simultaneous effects of heat

and mass transfers (double diffusion). An oscillating disk for sine and cosine cases

with the effect of MHD and porous medium is also derived.
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Chapter 4 presents the exact solution for unsteady MHD viscous fluid due

to non-coaxial rotation over an isothermal oscillating vertical disk through a porous

medium. The dimensional governing equations are reduced to non-dimensional form

by using some suitable non-dimensional variables. Then, the expressions of velocity

and temperature profiles are obtained by using the Laplace transform method. These

profiles are plotted by using the MATHCAD software in order to investigate the

behavior of various parameters involved. The comparison of solutions between MHD

and without MHD is displayed graphically and discussed in detail in this chapter.

The results validation are obtained in two ways, which are by comparing the present

solution with published result by Guria et al. (2010) and comparing the present exact

solution with numerical solution by using Stehfest–Algorithms. The numerical results

for skin friction and the Nusselt number are calculated, then tabulated in tables.

Chapter 5 is an extension of work in Chapter 4 by considering mass transfer. In

this chapter, the new velocity profiles and concentration profile are obtained by using

the same procedure explained in Chapter 4 and discussed via figures. Chapter 6 focuses

on the similar problem as in Chapter 4 but considering the second grade fluid. The

new expression is used to obtain velocity for comparison with viscous fluid solution in

Chapter 4. The exact solutions are also obtained by using the Laplace transform, and

the research methodology of this chapter can be referred from Chapter 4.

Chapter 7 presents the extension of the problem reviewed in Chapter 6 by

considering mass transfer. Finally, Chapter 8 summarizes this research, inclusive of

suggestions for future researches. References and appendixes are listed at the end of

this thesis.
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