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ABSTRACT

The global demand of toluene is expected to increase at an annual rate of 1.5% 

from 1995 to 2020. Thus, it is important to increase the yield of toluene by upgrading 

the productivity of benzene methylation process without constructing a new plant. One 

of the alternatives is by modifying the catalysts that are commonly used in industry to 

provide a better catalytic activity and performance. During the synthesis, the oil phase 

was varied using benzene (HFZSM-5-B), toluene (HFZSM-5-T) and xylene (HFZSM- 

5-X). All catalysts were characterized with X-ray diffraction (XRD), field emission 

scanning electron microscopy (FESEM), N2 physisorption, Fourier transform infrared 

(FTIR), and electron spin resonance. The acidic property was determined by lutidine 

adsorbed FTIR spectroscopy, while the catalytic activity was carried out in a 

microcatalytic pulse reactor in the reaction temperature range o f423-673 K. The XRD, 

FESEM and N2 physisorption results have confirmed the structure of all HFZSM-5 

type catalysts with a spherical dendrimer silica fiber possessing high surface area of 

HFZSM-5-B (717 m2/g), HFZSM-5-T (691 m2/g) and HFZSM-5-X (307 m2/g). The

2,6 - lutidine adsorbed in FTIR revealed that HFZSM-5-B has abundant strong 

Bronsted and Lewis acid sites, followed by HFZSM-5-T and HFZSM-5-X. At a low 

temperature of 423 K, all HFZSM-5 type catalysts possessed excellent conversion of 

more than 90%. HFZSM-5-X gave the highest yield of toluene (35.27%) which 

attributed from its controllable micropores area in inter-dendrimer structure and 

reduction amount of Bronsted and Lewis acid sites. Meanwhile, it was noted that 

HFZSM-5-T revealed the highest yield of Cs (71%) due to high mesopore area (647 

m2/g).
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ABSTRAK

Permintaan dunia terhadap toluena dijangka akan meningkat pada kadar 1.5% 

setahun dari 1995 hingga 2020. Oleh itu, adalah penting untuk meningkatkan 

penghasilan toluena dengan cara menaik taraf produktiviti metilasi benzena dengan 

tanpa membangunkan loji yang baharu. Salah satu cara adalah dengan melakukan 

modifikasi terhadap pemangkin yang biasa digunakan di industri bagi menghasilkan 

aktiviti pemangkinan yang lebih baik. Semasa sintesis, pelarut diubah dengan 

mengunakan benzena (HFZSM-5-B), toluena (HFZSM-5-T) dan xilena (HFZSM-5- 

X). Semua pemangkin dicirikan dengan belauan sinar-X (XRD), mikroskop elektron 

imbasan pancaran medan (FESEM), penyerapan fizikal nitrogen (N2), infra-merah 

jelmaan Fourier (FTIR), dan resonans putaran elektron. Sifat berasid ditentukan oleh 

lutidina yang terserap oleh spektroskopi FTIR, manakala aktiviti pemangkin dilakukan 

dalam reaktor denyut mikrobermangkin dengan julat suhu tindak balas 423-673 K. 

Keputusan XRD, FESEM dan penyerapan fizikal N2 telah mengesahkan bahawa 

semua struktur jenis mangkin HFZSM-5 dengan serat silika dendrimer sfera 

mempunyai luas permukaan yang tinggi HFZSM-5-B (717 m2/g), HFZSM-5-T (691 

m2/g) dan HFZSM-5-X (307 m2/g). 2,6 - lutidina yang diserap oleh FTIR 

mendedahkan bahawa HFZSM-5-B mempunyai banyak tapak asid Bronsted dan 

Lewis yang kuat, diikuti oleh HFZSM-5-T dan HFZSM-5-X. Pada suhu rendah 423 

K, semua mangkin jenis HFZSM-5 mempunyai penukaran yang baik melebihi 90%. 

HFZSM-5-X memberikan hasil toluena tertinggi (35.27%) yang disebabkan oleh liang 

mikro yang terkawal di dalam struktur inter-dendrimer serta pengurangan jumlah 

tapak asid Bronsted dan Lewis. Sementara itu, telah diperhatikan bahawa HFZSM-5- 

T menghasilkan Cs tertinggi (71%) kerana mempunyai kawasan liang meso yang 

tinggi (647 m2/g).
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

The increase in demand for aromatics compound, such as toluene and xylene 

has placed alkylation process into important process in petrochemical. Toluene has 

been widely used in industries as an intermediate of commodity petrochemical and 

valueable fine chemicals. Toluene is used mainly as a solvents in dilution, extraction, 

pharmaceutical, paint stripping, carpet adhesive solvents, machinery, insecticide and 

rubber manufacture. Besides, toluene were also high in demand for printing industry 

and car seat industry as a initial material of toluene diisocyanate to form polyethane 

(CMA 1998).

Figure 1.1 shown the pai chart of the world consumption of toluene throughout 

year 2012. Throughout the world, the global demand for toluene is expected to grow 

at a steady rate in most regions. The fastest growing regions are Africa, the Indian 

Subcontinent and Northeast Asia. However, the Asia-Pacific region such as China, 

Japan, Taiwan and Republic of Korea is alone expected to dominate the market . The 

demand for toluene in this country regions was driven by their robust gross domestic 

product (GDP) growth in recent times. Since 2009, world toluene demand has been 

growing, and the demand level in 2012 was above the peak. This should not be too 

surprising, toluene is often mixed with gasoline as it improves its octane number and 

to reduce the vapor pressure. 85% of the toluene produced globally was used as 

solvents and in production of benzene and xylene.
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Developed countries such as those in Asia-Pacific, Latin America, and Eastern 

Europe, and the Middle East are expected to shows an increase in construction activity 

during 2012 -2018. Shell chemicals, Shanghai Dinghan Chemical co Ltd, Dongjin 

Semichem co ltd. etc are some of the leading global manufacturers of toluene since its 

is usage as a solvent, paint and booming adhesives in industry (Transparency Market 

Research, 2016).

China
(26%)

Unite
States
(24%)

M exico(1% ) Central Europe(2% )
\  /  j C IS(2% ^_C anada(2% )

'S ou theast Asia(2% ) 

South Am erica(3% ) 
Indian(5% )

Taiwan(5% ) 

Japan(6% )

M iddleEast/A frica
(7%)

W estern Europe(7% ) 

Republic o f  Korea(8% )

Figure 1.1 World Consumption of Toluene in 2012 (Inc. Nexant, 2009)

Toluene demand is expected to increase at average an annual rate of 1.5% from 

1995 to 2020 as shown in Figure 1.2 and will be continue increase year by year (Robin 

et al., 1998). Growth in 1995-2005 is expected to be 1.3%, while growth in 2005-2020 

is estimated to be slightly higher 1 .6 % annually.

2100

£  1400 - 
a£

^  700 - 

0 -
1995 2000 2005 2010 2015 2020

Year

Supply

Demand

T T T T T T T T T T T T T T T T T T T T T T T T T

Figure 1.2 Supply/Demand Future Outloook of Toluene (Robin et al., 1998)
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Toluene demand consists of both domestic demand and exports demand. 

Domestic demand for toluene was slow after 2005 from an annual growth rate. Steady 

increase in demand is driven by an anticipated slower rate of fall in export volumes. 

This slowdown in the demand growth rate reflects the maturity of the various end-use 

markets for toluene. At the same time, BMAI sees no new toluene manufacture being 

constructed, and it is conclude by the fact that only little increased refining capacity is 

expected. Although overall demand rate will slow during 2005-2020, demand will still 

exhibit a net increase in each successive year. By keeping stocks low, demand will 

have to be met out of production supply.

^-Xylene is an important industrial compound, and its demand has been 

increasing in recent years. P-xylene is the largest volume isomer of mixed xylenes. 

Around 98% of p-xylene is consumed in the polyester chain, mainly in the production 

of fibre, film, polyethylene terephthalate (PET) bottle resin and dimethyl terephthalate 

(DMT). A small amount of p-xylene is used as a solvent and to produce di-paraxylene 

(ICIS, 2007). P-xylene strong growth driven by increasing purified terephathalic acid 

(PTA) consumption in polyester manufacture meanwhile DMT demand is declining 

slowly as polyester manufacturers prefer more economical PTA route. Due to raised 

issue about PX impact to environment, renewable alternatives to petroleum-based 

para-xylene have been offered. Figure 1.3 shown PTA capacity growth new para- 

xylene plants are being opened mainly in Asia Pacific and Middle East region. Global 

para-xylene market is expected to grow at about 5% per year (Mc Group., 2017).

Figure 1.3 P-xylene Global Capacity by Region (Mc Group., 2017)



Global demand for para-xylene has been growing strongly and this is expected 

to continue. Figure 1.4 shown the supply for para-xylene is growing from 7 100 million 

gallons to 13 400 million gallons in between 1995 until 2015. Growth in the 1995 to 

2000 timeframe will be 3.6%, while growth between 2000 and 2015 will be lower, at 

2.8% annually. Domestic para-xylene demand in figure 2.5 grow in average 3.97 % 

annually from 6  300 million gallons in 1995 to 9 300 million gallons in 2005. Over the 

following 10 years, para-xylene demand rise 3.1% per year, reaching 12 700 million 

gallons in 2015. Although no new capacity is currently scheduled after 2000, BMAI 

anticipates the addition of capacity between 2000 and 2015.

Year

Figure 1.4 Supply/Demand Future Outloook of p-Xylene (Robin et al., 1998)

Thus, it is important to increase yield by upgrading the productivity or 

efficiency of benzene methylation process without constructing new manufacturer and 

in same time could reducing cost. One of the alternative to improve this productivity 

of toluene and C8 in the process is by modifiying the catalysts that commonly used in 

industry to provide a better catalytic activity and performance.

Recently, the production of toluene and xylene by using catalytic reforming 

and naphtha pyrolysis is not convenient anymore due to the shortage of petroleum 

resources (Hu et al., 2014). As an alternative route, alkylate, the cleanest gasoline- 

blending stream produced in a refinery is a main blend stock for reformulated gasoline 

(RFG) production (Pradip et al., 1996). Benzene alkylation with olefins is considered



as one of the promising process that can produce toluene from natural gas and coal. 

Benzene alkylation technology are offer improvements in octane number and gasoline 

volume (Odedairo et al., 2013). Benzene has been chosen because of their prices are 

expected to decrease in coming year since environmental regulations require to 

decrease the proportions of benzene in the gasoline pool. To produce high value 

product of aromatic toluene, any alcohol functional group has been selected as 

alkylating agents. Common alcohol group has been used is the smallest chain, 

methanol.

Most aromatics chemicals are produced by using various resources that can not 

be recycled such as petroleum and fuel sources. In most industrial benzene alkylations 

process to produce alkylbenzenes, strong lewis acids catalysts such as hydrofluoric 

acid, sulphuric acid and aqueous aluminium chloride were used (Carlo et al., 2002). 

However, this type of acid catalysts were highly toxic and corrosive. Another major 

drawbacks in with these type of catalysts are the difficult management, especially 

during transportation in large scale due to corrosive to the storage or tanker, and 

dangerous to human health. Futhermore, the desire products and the catalysts would 

be difficult to separate and would consume more energy during process.

In the last five decades, vast amount of research on material development has 

been done to find more environmental friendly catalyst with high catalytic capability. 

(Xie et al., 2015). Recently, a solid acid catalysts are gaining more interest from many 

researcher due to its advantages, such as high stability-strong acid sites, large pores, 

and economically viable (Yogesh et al., 2011). In addition, various solid acid catalysts 

such as resins, tungstated and sulfated zirconia, polyaniline sulfate, heteropolyacid, 

metal complexes, sulfated tin oxide, zeolite, amorphous silica-alumina, acidic ionic 

liquid, and others have been explored as potential solid acid catalysts. Alkylation with 

solid acid catalysts has more sustainability and safety advantages over conventional 

alkylation reaction. Some solid acid catalyst such as sulfated zirconia and 

SbFs/sulfonic acid resins has were tried in benzene alkylation. Although they were 

active, nevertheless they lack stability (Cheung et al., 1997).



Thus, among various type solid catalysts, zeolites is widely used in various 

petrochemical industries (Christina et al., 2003). Zeolite is compose of tetrahedral TO4 

units (T = Si or Al) which linked together by sharing oxygen atoms to form channels 

of atomic dimensions. Zeolite has crystalline structure with coordinated Si, Al, P or 

certain transition metals. The zeolites are synthesized with different SiO2/AhO3 ratios 

are give large influenced in determining zeolite type catalysts. (Kumar et al., 2013). 

Several zeolite type, such as ZSM-11, ZSM-5, MCM-22, ITQ-2, mordenite, P-(BEA), 

Y-zeolite, SAPO-34, SAPO-11/MnAPO-11, and SAPO-5/MnAPO-5 have been 

extensively reported used in catalyzing benzene alkylation due to its selective shape 

product correspond to the high surface area, good thermal stability and more 

environmental material compare to homogenous catalysts. (Deng et al., 2014).

From all various type of zeolites, ZSM-5 is widely used in benzene alkylation 

industry compare to others type zeolites. This due to its unique structure that contains 

two intersecting channel systems composed of sinusoidal (zigzag) and straight 

channels with 10-membered ring openings of diameter ~5.5A framework that has 

gives good catalytic activity and shape selectivity (Naskar et al., 2012). Moreover, the 

synthesis of ZSM-5 has a speciallity with tunable acidity structure and high thermal 

stability compare to other type zeolites such as zeolite Y and p. However, ZSM-5 

major drawback as a catalyst in benzene alkylation it is high diffusion limitation due 

to micropores, and gives affect to low conversion and selectivity of benzene (Hu et al., 

2014). In order to enhance product diffusion, Combination of the structural features 

between microporosity and mesoporosity is in zeolite is could help to address this 

drawback (Teh et al., 2015). An efforts have been focused on modifiying pore sizes 

and acidity of zeolites, so as to be used these materials in the fine chemicals, 

pharmaceutical and petrochemical industries. Since the kinetic diameter of possible 

product in benzene alkylation is almost similar dimension as the pore openings ZSM- 

5, thus ZSM-5 has been chosen to be used in benzene alkylation compared to other 

type of zeolites. Nevertheless, due to rapid deactivation, unstable structure, high 

temperature reaction, low selectivity of desired product and low conversion of 

reactant, an effort on modifiying structure ZSM-5 during synthesis are still under 

studied and debate.



Modification of ZSM-5 material is play crucial role in order to perform better 

catalytic activity. Fibrous material was initially developed by Polshettiwar et al. in 

2010. The first fibrous material is a silica-based, which has high surface area and better 

accessibility of active site. Several studies showed the potential of silica-based fibrous 

material in adsorption of nitro- and chloro- compounds. Silica-based fibrous material 

was developed by using microemulsion from a surfactant. Even though utilization of 

zeolite synthesis has been explored in many years, up to this time of study, the 

development of zeolite-based fibrous material has never been done. Development of 

zeolite-based fibrous material will significantly improves their catalytic activity, due 

to their tunable acidity, high surface area, and better accessible active site. Zeolite- 

based fibrous material will have a great potential to be applied in petroleum and 

petrochemical industry. Altering the morphology of zeolite material into fiberous 

could help to improve diffusivity active sites into pores and acidity strength.

1.2 Problem Statement and Hypothesis

Zeolites, such as HY, HBEA, HMCM-22, and HZSM-5 have been employed 

as catalyst in alkylation process due to their tunable intrinsic acidity, porosity, and 

crystalinity. Zeolite consists of silica-alumina framework and wide varieties of Si/Al 

ratio, which provides good thermal stability and tunable acidity. Zeolite is a suitable 

catalyst for acid-catalyzed reactions. However, their catalytic activity has been limited 

by their drawbacks, such as diffusion limitation and accessibility of active. Great 

efforts have been conducted to overcome the diffusion limitation, where development 

of hierarchically porous zeolite is one of the most versatile pathways and has been 

proved to increase the catalyst ability in alkylation, isomerization, and cracking.

Silica-based fibrous material has the advantage of high surface area due to the 

presence of the dendrimeric fiber. Silica-based fibrous material also has better 

accessibility of active site because the dispersion of active sites probably located in 

their dendrimeric fiber rather than inside the catalyst pore. Silica-based fibrous 

material also possesses high thermal stability (Polshettiwar et al., 2010). Because the



fibrous material is fully composed with silica, it does not have adequate acid sites to 

promote acid-catalyzed reaction.

Implementation of the concept in developing silica-based fibrous material to 

microporous zeolite will be the key to overcome these problems. The small size in the 

nanometer range and large surface area zeolite allows dispersion in various solvents, 

and their dendrimer fiber structure is expected to enhance the accessibility of bulky 

compounds passing fibrous zeolite catalyst. Utilizing microemulsions method into the 

development of zeolite-based fibrous material will be successfully achieved. The 

dendrimer structure is formed from the water-in-oil micelle basis.

Based on previous studies, several precursors were chosen to solve the 

drawbacks with choosing a suitable chemical in the synthesis of fibrous zeolite with 

high surface area via microemulsion system. The synthesis of this emerging material 

normally is realized by using toxic cetylpyridinium bromide (CPB) as common 

structure directing agent or solvent in conjunction with combined cyclohexane and n- 

pentanol as oil face and co-solvent, respectively (Doo et al., 2012). Moreover, there 

another has report that less toxic cetyltrimethylammonium bromide (CTAB) can be 

the replacement for CPB with combined toluene and n-butanol as affordable solvents 

to synthesize dendrimer fiber with high surface area (Erna et al., 2015). There is a lot 

of studies on surfactant and or co-surfactant, however the effect of substitute oil phase 

during synthesis fibrous-type catalyst toward the catalyst morphology, physical and 

chemical structure properties has not been explored yet.

The synthesis of catalysts involves the use of oil phase that may strongly 

influence the catalyst performance. Thus, the choice of suitable oil phase is frequently 

critical to obtain high catalytic activity and selectivity. The main role of oil phase in 

synthesizing this catalyst is to form an optimal micellar condition during micro­

emulsion process before the fibrous formation. Noted that, study has been done earlier 

by Gorel and he mention that in micro-emulsions process it would contain a continuous 

phase (water) and a dispersed phase (aliphatic hydrocarbon) presents within the core 

of micelle aggregates of surfactant (Gorel et al., 2010). However, the optimal oil phase



selection are still requires a detailed knowledge on the relationship between the 

chemical nature of the oil phase, fibrous formation and benzene alkylation 

performance.

Therefore, in this research, bottom-up approaches was provided to control 

fibrous structured zeolites synthesis during micro-emulsion process in fibrous 

formation. Figure 1.5 shown illustration of micelles, CTAB as the surfactant, butanol 

as co-surfactant and in this cases, aliphatic hydrocarbon which is benzene, toluene or 

xylene are selected to be use as an oil phase. The same chemical properties were 

selected as an oil phase in synthesis fibrous zeolite. However, because of different on 

their size of molecules, it was expected to give a different size of micellar during 

micro-emulsion and which later on effected the particle size and pore size on formation 

of fibrous catalyst. Futhermore, in this study an understanding of the formation fibrous 

mechanism and the precise control of particle sizes in catalyst are still less studied, 

hence it found to be interested. Microporous-mesoporous zeolite-based fibrous 

material is the next step towards efficient catalyst for alkylation.

Figure 1.5 Schematic of the micellar configuration into oil-in-water micro­

emulsion (Holmberg, 1999)



1.3 Objective of Study

The objective of this study are :

1. To synthesize a fibrous protonated HFZSM-5 zeolites with different oil phase.

2. To determine the physicochemical properties of the catalysts.

3. To test the activity of catalysts on benzene alkylation

1.4 Scope of Study

The scope of this study are :

1. Synthesis of fibrous fibrous protonated HFZSM-5 zeolites with different oil 

phase.

HFZSM-5 were prepared by microemulsion technique coupled with zeolite 

seed assisted crystallization and ion-exchanged method with NH4NO3 solution 

(Firmanshah et al., 2016). The oil phases used in the synthesis were varied by 

using benzene, toluene and xylene.

2. Characterization of the catalysts

Characterization of all catalysts was conducted using X-ray Diffraction (XRD), 

Fourier Transform Infrared (FTIR), N2 adsorption-desorption, Electron Spin 

Resonance (ESR) and Field Emission Scanning Electron Microscopy 

(FESEM).

3. Catalytic activity testing.

The activity of the catalysts were tested on benzene alkylation by a 

microcatalytic pulse reactor connected to online 7820-A-Agilent gas 

chromatograph with treatment temperature at 673K, reaction temperature in 

range (423K-673K) and flow of hydrogen (25 ml/min) over 0.2 g weight of 

catalyst (Hu et al., 2015).



1.5 Significance of Study

This study was prepared HFZSM-5 as an efficient catalyst in benzene 

alkylation. The investigation regarding physical and chemical properties of the 

catalysts was studied. Until this period, the fibrous morphology has only been applied 

to silica material. The fibrous morphology is a new way to improve the surface area 

and accessibility to active sites in ZSM-5. This catalyst is expected to give high 

conversion of benzene and high selectivity for value added product and consequently 

will be beneficial for knowledge transfer and also in petrochemical industries. In 

addition, the understanding of the properties-activity relationship of fibrous HFZSM-

5 becomes an archetype in the development of new type of catalyst for benzene 

alkylation.

1.6 Thesis Outline

The study divides into five chapters. The first chapter consists of the 

introduction of aromatic compound demand and uses and cleared vision of catalytic 

benzene alkylation process for their progress on their catalysts. The problem statement 

and hypothesis of the current research is stated to give a clear objective of current 

research. Scopes of study are stated to give clear limitation in this study.

Chapter 2 covers the literature review and previous research regarding benzene 

alkylation and catalyst, advances in zeolite modification development, and principal 

that influence of acidity and structure of catalysts.

Chapter 3 comprise of the details regarding materials and chemicals that are 

used in this research. The complete procedure with experimental setup and analysis 

for catalyst preparation, characterization, and catalytic testing in benzene alkylation 

also included in this chapter.



Chapter 4 contains the results and discussion of the present research. The data 

are presented and analyzed comprehensively.

Finally, chapter 5 covers the conclusion and recommendation for future work 

and development.
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