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ABSTRACT  

Direct Torque Control (DTC) of induction motor has attracted a considerable 

attention in the motor drives industry. The key merits of DTC include fast torque 

dynamic response, simple structure, insensitivity to motor’s parameters. Nevertheless, 

DTC inherently suffers from two major downsides namely: high torque ripples and 

variable switching frequency. This thesis presents a new technique to minimize the 

torque ripples inherited in the digital-based DTC of induction motor. The typical 

discrete-based DTC imposes a delay time which frequently allows the torque to 

overshoot beyond hysteresis bands. This triggers the selection of reverse voltage 

vectors which, in turn, cause large torque decrements. The torque ripples become of 

great significance at low speeds where torque overshoot is most likely to occur due to 

steep positive torque slope. A multi-level DC link voltage is proposed to vary the DC 

voltage of Voltage Source Inverter (VSI) according to motor’s speed. By varying the 

DC link voltage, the torque slopes can be controlled and, hence, the torque overshoots 

are mostly avoided. Therefore, the torque ripples are significantly minimized. The 

viability of proposed technique has been validated using MATLAB/Simulink 

software. Results show the proposed technique may yield over 50% reduction in the 

RMS torque ripples while maintaining a low switching frequency. Also, the torque 

dynamic response is maintained as good as in the conventional DTC scheme. 
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ABSTRAK 

Direct Torque Control (DTC) untuk motor aruhan telah menarik perhatian 

yang besar dalam industri pemacuan motor. Merit utama DTC termasuklah dinamik 

tork yang pantas, struktur binaan mudah dan tidak sensitif kepada parameter motor. 

Walaubagaimanapun, DTC masih mengalami dua kelemahan utama iaitu: riak tork 

yang tinggi dan pensuisan frekuensi yang tidak tetap. Tesis ini membentangkan teknik 

baru untuk mengurangkan riak tork dalam implementasi digital DTC. Kebiasaan 

implementasi DTC secara digital menghasilkan tork yang terlajak keluar dari jalur 

histerisis. Ini mencetuskan pemilihan vektor voltan terbalik yang, seterusnya, 

menyebabkan pengurangan tork yang besar. Kemungkinan berlakunya riak tork pada 

kelajuan yang rendah adalah besar kerana kecerunan positif tork adalah besar. Pelbagai 

peringkat voltan DC adalah dicadangkan untuk mengubah voltan DC untuk Voltan 

Source Inverter (VSI) mengikut kelajuan motor. Dengan mengubah voltan DC, 

kecerunan tork boleh dikawal dan, dengan itu, lanjakan tork kebanyakannya dapat 

dielakkan. Oleh itu, riak tork dengan ketara dapat dikurangkan. Teknik yang 

dicadangkan itu telah disahkan dengan menggunakan perisian MATLAB / Simulink. 

Keputusan menunjukkan teknik yang dicadangkan boleh menghasilkan pengurangan 

lebih 50% riak tork RMS disamping mengekalkan frekuensi penukaran yang rendah. 

Juga, dinamik tork dikekalkan seperti mana yang diperolehi dalam skim DTC 

konvensional. 
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INTRODUCTION 

1.1 Overview of Electrical Drives 

Prior to the 1960s, DC machines were vastly employed for industrial 

applications that demand a variable-speed and four-quadrant operation. The key 

feature of DC machine is the high performance of torque control at low and near-zero 

speeds. However, DC machines have always suffered from some significant and 

intolerable drawbacks that limited their deployment in industry. These drawbacks may 

include unreliability issues which is mainly due to commutators and brushes; 

incapability to operate in a harsh, dusty or explosive environment; considerable 

maintenance required; and higher costs incurred.  

The aforementioned disadvantages of DC machines could be overcome by 

employing Induction Machines (IMs) at the applications where reliability, efficiency 

and effectiveness are highly required. A principal feature of IMs is that they do not 

need commutators or brushes since the stator and rotor windings are magnetically 

connected. Hence, IMs are maintenance-free machines. Another attractive feature is 

the capability of IMs to operate in an explosive environment owing to the fact that IMs 

do not produce sparks. Other advantages of IMs may include the immunity to a high 

overloading case and high efficiency, leading to less failures at high speeds operation. 

Furthermore, IMs have low weight and inertia as well as a low cost due to their simple 



2 

 

 

and robust structure. Considering all these features, the DC machines were 

tremendously superseded by IMs in the industrial market over the past decades.   

As a result of the technological advances in power electronics and 

semiconductors fields, Adjustable Speed Drives (ASDs), a.k.a. Variable Frequency 

Drives (VFDs), are among the most efficient and reliable drive systems of IMs. ASDs 

have been known with attractive features such as a reliable transient response, control 

of a continuous range of speed and considerable energy saving [1]. Furthermore, the 

torque control performance of the ASDs are much superior to that of DC machines 

drives. This is because of the unprecedented technology evolution in digital 

microprocessors and DSPs that effectively help to handle complex control problems 

in the electrical drives schemes.  

The control technologies of IMs can be principally classified into two main 

categories: scalar and vector controllers. The scalar controller is a basic drive scheme 

that uses a simple algorithm to control rotor speed based on applying a constant ratio 

between magnitude of the stator voltage and frequency, hence it is well-known as 

voltage/frequency, or V/f, controller. For speed and torque control, the accuracy of 

scalar controllers is typically low especially at transient state since the employed 

algorithm is solely based on the steady-state model of IMs so that the stator flux and 

torque are not well regulated. Nonetheless, the scalar controllers have witnessed 

noticeable improvements in the past decades that make them among the most 

widespread drive schemes used for basic applications in the industry [2-4].     

On the other hand, vector controllers are considered as revolutionary drive 

systems that had a significant impact on the industrial applications. In vector 

controllers, the electromagnetic torque is controlled based on the phase angle and 

magnitude of the motor’s current. Similar to the DC motor drives, the stator flux and 

torque are independently controlled, leading to a high control performance of torque 

and speed in AC machines. Generally, vector controllers have two well-known 

schemes: Field Oriented Control (FOC) and Direct Torque Control (DTC). Each 

control scheme has its own features and downsides, but they share an ultimate 

objective of providing an effective and reliable flux and torque control regardless of 
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any external variations or disturbances. Furthermore, both schemes got a considerable 

attention and a wide acceptance in most variable-speed industrial applications 

worldwide. A brief discussion of both schemes, FOC and DTC, is addressed in the 

following subsections. 

1.1.1 Field Oriented Control (FOC) 

Field Oriented Control (FOC) was first introduced by Hasse [5] and Blaschke 

[6]  in 1972. In FOC of IMs, stator current is transformed to a rotor-flux reference 

frame (i.e. dr-qr coordinates), mostly, using Park’s transformation theory. Similar to a 

separately excited DC machine, the coordinate transformation made possible the 

decoupling process by which stator flux and torque are independently controlled 

through dr- and qr- components, respectively. Furthermore, FOC of IMs can be broadly 

categorized into two main types: Direct FOC (DFOC) and Indirect FOC (IFOC). In 

DFOC, rotor flux angle (θr) is estimated directly by either using a flux-sensor attached 

inside the machine or manipulating measured stator’s parameters (voltages and 

currents). On the contrary, IFOC estimates the angle by using the measured rotor speed 

and slip speed where the latter is estimated through motor’s parameters [7]. Despite its 

high sensitivity to motor’s parameters, IFOC is highly preferred in the industry, 

compared with DFOC, in order to avoid structure complexity, high thermal 

requirement and extra expenses associated with the latter [8].  

A great deal of research attention has been devoted for the performance 

improvements of FOC control scheme at several perspectives. For instance, authors in 

[9, 10] have improved functionality of FOC scheme in terms of parameter sensitivity; 

[11-13] introduced new techniques for flux estimation and [14-16] developed 

sensorless FOC schemes. Among the variety of proposed FOC schemes, Stator FOC 

(SFOC) [13, 17] is the most attractive scheme due to its high immunity to motor’s 

parameters. In fact, SFOC does not require knowledge of rotor speed as the estimation 
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of stator flux is accomplished using stator parameters i.e. its voltage, current and 

resistance [13].  

With the intense research and impressive improvements, FOC-based control 

systems were the most reliable and dominant drive schemes that effectively can control 

the torque of AC machines for a wide range of speeds. However, the necessity for 

position encoder, current controllers and coordinates transformation are major 

shortcomings that significantly degrade the overall system performance. 

1.1.2 Direct Torque Control (DTC) 

After nearly a decade of remarkable technological advancements, a superior 

motor’s control technique was proposed by Isao Takahashi as Direct Torque Control 

(DTC) [18], and Depenbrock as Direct Self Control (DSC) in 1980s [19]. The first 

industrialized DTC scheme was developed by ABB in the late 1990s [20]. Since its 

invention, intense research studies have widely devoted to DTC, or DSC, due to its 

quick dynamic response, simple structure and insensitivity to motor’s parameters. The 

basic block diagram of DTC, as initially proposed in [18], is shown in Figure 1.1. In 

its basic configuration, DTC consists of four main blocks which are: Voltage Source 

Inverter (VSI), parameters (i.e. stator flux and torque) estimator, Switching Table (ST) 

and a pair of hysteresis controllers.  

The fundamental principle of DTC is to select a voltage vector (i.e. inverter 

switching states), from a predetermined lookup table, to compensate the errors of stator 

flux and electromagnetic torque. These errors are basically obtained by comparing the 

reference and estimated values of both parameters. The decoupling process is 

established through the hysteresis controllers where stator flux and torque are 

independently controlled. Two- and three- level hysteresis controllers are used to 

digitize the errors of stator flux and torque, respectively. The outputs of hysteresis 

comparators along with flux position are used to choose a proper voltage vector that 
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simultaneously regulate both stator flux and torque. In contrast to FOC-based 

controllers, DTC allows a quick and instantaneous dynamic torque response without 

the need for coordinate’s transformation.  

 

Figure 1.1: The typical configuration of Direct Torque Control proposed by [18]. 

Furthermore, the parameters estimation (stator flux and torque) technique of 

DTC is much simpler and straightforward than that of FOC.  Generally, the estimation 

is based on manipulation of the stator voltages and currents, expressed in a stationary 

reference frame, as well as the stator’s resistance only.  Nevertheless, the accuracy of 

parameters’ estimation is of significant importance as it may lead to selection of an 

improper voltage vector and hence highly degrades the control performance of DTC. 

The stator flux and torque can be estimated using voltage-, current- based estimators 

or combination of both. The conventional DTC scheme, proposed in [18], was based 

on a combination (voltage and current) estimator. On the one hand, the current-based 

estimator requires the knowledge of rotor speed. Sequentially, a further speed sensor 

is mandatory which, in turn, increases system’s complexity. On the other hand, a 
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speed-sensorless DTC scheme can be only implemented using a voltage-based 

estimator. Nonetheless, the voltage-based estimator may introduce a few critical 

concerns such as integration drift and initial condition issues especially at low and 

near-zero speed operations [21, 22]. 

1.2 Major DTC Problems  

Despite its prominent merits over other drive schemes, the conventional DTC 

experiences two major shortcomings that have to be addressed and rectified. These 

are: high torque ripples and variable switching frequency. They are briefly discussed 

in the following subsections.  

1.2.1 High Torque Ripples 

In the digital implementation of DTC, a finite time should be allowed for data 

acquisition (measuring stator voltages and currents along with DC link voltage), 

manipulation (determining a proper voltage vector for certain torque and flux errors) 

and transmission (passing the selected vector to the inverter side) [23]. Due to this 

delay, the effect the selected voltage vector takes place in the next sampling period so 

that torque excursions cannot be precisely confined within its hysteresis bands. The 

torque overshoots, beyond hysteresis band, lead to the selection of reverse voltage 

vectors (instead of zero voltage vectors) which in turn causes the torque to steeply 

decrease. Therefore, high torque ripples are produced [24-26].   
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1.2.2 Variable Switching Frequency  

In the conventional DTC, switching frequency of VSI highly depends on the 

switching frequency of the hysteresis controllers [18]. The latter is significantly 

affected by the respective slopes of stator flux and torque which vary with operating 

conditions such as speed, fluxes and DC link voltage. As a result, the switching 

frequency of VSI varies as well [18, 26].  It is worth mentioning that the switching 

capability of the switching device cannot be totally used because the switching of the 

hysteresis comparator is designed according to the worst condition [26]. 

1.3 Problem Statement  

This thesis mainly addresses the problem of inherent torque ripples associated 

with the conventional DTC scheme. As discussed earlier, the root cause of torque 

ripples is the delay time associated with the digital implementation of DTC. To 

illustrate this, a simulation study of both digital-based and analog-based DTC was 

conducted with the same simulation settings (speed of 10 rad/sec, load of 1 Nm) to 

investigate further the torque ripples. Figure 1.2 shows the torque ripples and the 

torque error status of both cases. The latter indicates the selection of voltage vectors: 

“1” stands for selection of forward voltage vector, “0” stands for selection of zero 

voltage vectors and “-1” stands for selection of reverse voltage vectors.  

On the one hand, the analog-based DTC does not suffer from high torque 

ripples since the delay time has no impact on it at all, as shown in Figure 1.2. 

Additionally, the torque error status is kept swinging between “1” and “0” which 

implies there is no torque overshoots have occurred. On the other hand, the digital-

based DTC exhibits a significant deal of torque ripples as shown in Figure 1.2. That is 

because of the frequent occurrence of torque overshoots which trigger the selection the 

reverse voltage vectors (indicated by the torque error status “-1”).   
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Furthermore, the prospects of torque overshoots much depend on the torque 

slopes which are primarily influenced by rotor speed. At low speed, torque overshoots 

are very likely to occur. This is because the torque positive slope is relatively steep 

such that it rapidly escalates torque to exceed hysteresis band. This process produces 

considerable torque ripples that need to be rectified especially at low speed operations.  

 

Figure 1.2: Torque ripples in digital-based and analog-based DTC schemes 

1.4 Objectives  

This research project mainly aims to study and improve the performance of 

Direct Torque Control (DTC) drive scheme of induction machines in term of reducing 

the torque ripple at low speed operations.  

The objectives of project are: 

1. To propose a new DTC scheme based on Multilevel DC Link Voltage 

(MDLV-based) to minimize torque ripples.  

2. To develop a simulation model of the proposed MDLV-based DTC. 

 



9 

 

 

3. To validate the effectiveness of MDLV-based DTC against the conventional 

DTC scheme using MATLAB/Simulink.  

1.5 Scope  

This research project primarily focuses on improve performance of DTC drive 

scheme by minimizing current and torque ripples.  

Limitations of the project include: 

1. Utilization of three phase Induction motor only.  

2. Focus on low speed operation. 

3. Simulation validation only due to time constraints 
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