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Abstract: In this paper, a classification process to group starfruit into six maturity indices is proposed based on 1-
dimensional color feature called hue, which is extracted from the starfruit image. As the original hue is quantified from the 
nonlinear transformation of the 3-dimensional Red, Green and Blue color, this paper proposes a linear hue transformation 
computation based on the 2 colors of Red and Green. The proposed hue computation leads to a reduced computational 
burden, less computational complexity and better class discriminant capability. The hue is then applied as the input for the 
maturity classification process. The classification process is based on the hypothesis that for each of the maturity index, 
certain area of the starfruit surface is supposed to have distinctive value of the hue. In this work, the said starfruit surface 
area is set as 70% of the total area and based on 600 samples, the proposed technique results in 93% classification accuracy.  

Keywords: 2-D hue, Fisher’s discriminant ratio, Maturity classification, Starfruit.

1. INTRODUCTION 
Malaysia has been the largest exporter of starfruits in the 
world since 1989 [1]. The biggest starfruit farm has also 
been setup in Selangor in 2002 [2]. It becomes a serious 
production because the fruit is not only to be fond among 
Malaysian but also to the other communities over the 
world. Over the years, significant export growth has been 
recorded. Malaysia’s export figures for 2000 and 2001 
are 8,745 metric ton and 9,182 metric ton respectively. 
This is more than 60% increase from Malaysia’s export in 
1991, which was 2,723 metric ton [3].  

Some of the major starfruit importers include the 
Netherlands, Germany, Singapore and Hong Kong. These 
four major importer countries contributed 82.28% to 
Malaysia’s starfruit export in 2003 [3]. As an export 
commodity, the production of good quality starfruit is 
vital because most of the importer countries are a quality 
conscious customer. These countries are generally less 
price conscious and they are willing to pay more for good 
quality exotic tropical fruits such as the starfruit. Thus, an 
effort towards the best quality production of the starfruit 
should be discovered. Besides, it will complement 
Malaysia’s ambition in expanding the agriculture 
products to support growth in the economy.    

Quality of the starfruit is defined by its physical 
appearance and taste. Malaysia is acknowledged to have 
the best taste of starfruit amongst the importer country 
compared to other exporter countries [4]. However, good 
taste of the starfruit is only as important as attractive of 
its physical appearance. To ensure only good quality 
starfruit with good physical appearance go to the market, 
FAMA (Federal Agricultural Marketing Authority) 
created a quality label called Malaysia’s Best. Under this 
label, every step from harvesting to packaging the fruit is 
described to ensure quality.  

In this paper, attention is restricted to the process of 
grouping the starfruit into a predefined maturity levels 
according to the Malaysia’s Best label will be discussed. 
Based on this label, starfruit is classified into six maturity 
indices [5]. The purpose of classifying the starfruit into its 
maturity index is to determine the market suitability. For 
export use, only Index 2, Index 3 and Index 4 are 
allowed. Exporting immature starfruit is to ensure it will 
only be mature at the time it arrive its destination. For 
domestic market, Index 5 and Index 6 are the most 
suitable indices as it can be eaten at the time the fruit is 
bought by the consumer. Until this proposal is written, 
the classification process of the starfruit is performed 
manually. Manual inspection will cause inconsistency in 
quality due to human subjective nature, slow processing 
and labor intensity. The classification also need 
experience worker to avoid misclassification. In the 
research reported in this paper, an automated starfruit 
classification process is proposed to improve the current 
manual system.  

As the change of the starfruit maturity is perceived by 
human eyes based on the color change of the starfruit, 
color information will also be applied to this work. Thus, 
Section 2 of this paper will discuss the feature extraction 
process based on color information, where a method of 
selecting the best color feature is also described. A good 
feature is required because it usually gives good 
classification results. In Section 3, the classification 
process of the starfruit into the six maturity indices is 
described. The results of the starfruit classification will 
also be discussed in Section 3. Finally, the paper is 
concluded in Section 4.  
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2. FEATURE SELECTION  

2.1 One-Dimensional Color Feature 
High dimensionality of feature vector will always give 
high computational burden and complexity [6]. 
Therefore, if possible, lower dimensionality is preferable 
to avoid those problems. In starfruit classification for this 
work, color is used as the feature vector. However, the 
original color components or color vector captured from 
the camera is in three dimensions, which are red (R), 
green (G) and blue (B). To reduce the dimension of the 
color vector, a features (color) transformation is needed. 
There are a few typical and widely used color 
transformations from the RGB color such as HSV, HSI, 
CMYK, YIQ and YUV [7]. Each of these transformations 
has it specific purpose.    

RGB color is generally used for monitor display [7] 
and color camera. Computer monitors generally use 24-
bit RGB where each primary color has 8-bit data with 256 
discrete values. RGB color is applied in monitors due to 
its simplicity in constructing color as it only involves 
additive color mixture. In contrast to additive mixture, 
CMYK color is constructed using subtractive mixture of 
RGB color [8]. It is generally designed for printing 
purposes. C refers to cyan, M to magenta and Y to 
yellow. Black (indicated by the letter K) is added as a 
fourth distinct color to enhance appearance, as the 
mixture of cyan, magenta, and yellow pigments does not 
normally generate pure black, but a dark murky color. 
Moreover, text is typically printed in black, and it is 
impractical to expect high speed and low cost printing of 
black color using cyan, magenta and yellow mixture.   

Despite the fact that RGB color space is the most 
suitable for display, human observe color differently. 
HSL and HSV color are more appropriate for human 
sight [8]. Thus, these color space are suitable for 
computer vision and computer graphic application where 
human vision is interpreted by mathematical 
representation. HSL and HSV are non-linear 
deformations of the RGB color [8]. H stands for hue is 
referring to shade of color within the visible region of 
Electromagnetic Spectrum. Converting it from RGB 
color, hue is represents as angle value from 00 to 3600. 
Each degree referring to a specific color. S as the second 
notation is called saturation, which is the intensity of the 
specific hue. Highly saturated hue has a vivid and intense 
color, while a less saturated hue appears more gray. Last 
alphabet in both color space differentiate between these 
two colors type. Both contained luminance information 
but in different way. Lightness (L) in HSL always spans 
the entire range from black through the chosen hue to 
white while Value (V) only goes half the way, from black 
to the chosen hue. Thus, graphically HSL is visualized as 
double cone and HSV is drawn as single cone. 

The last two colors type, YIQ and YUV are designed 
for the purpose of color television broadcasting [7]. The 
YUV color space is used for the PAL broadcast television 
system used in Europe and the YIQ color space is used 
for the NTSC broadcast standard in North America. In 
both systems, Y is the luminance component while I and 
Q (or U and V) are the chromaticity components. YIQ 

and YUV color are designed in order to compressed the 
RGB color while at the same time conserving the color 
bandwidth that suit human visual system. Therefore, in 
general these color spaces are not suitable for digital 
image processing. 

From the above discussion, for the purpose of the 
starfruit classification, HSV and HSL color are the most 
suitable. Although both color transformation into HSV 
and HSL also result three dimension feature vector, only 
certain feature is necessary. Thus, the feature 
dimensionality can be reduced. As mentioned in the 
previous topic, the starfruit classification is a process of 
grouping the starfruit according to its level of maturity. 
Naturally, the maturity change from immature to mature 
in starfruit can be observed as change in its color from 
green to orange. Feature that is most suitable to represents 
the color change is hue where it measure the shade of 
color. In later topic, a measure proving the hue as the best 
feature selection will be discussed. For now, the 
discussion will concentrate on the computation of the 
hue. 

The transformation from RGB color to hue is a bit 
complicated where it is formulated as a nonlinear 
transformation as below [9] 
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Equation 1 consist three key operations, which involve 
a color difference (numerator), normalization and 
shifting. Color difference calculates the second 
dominance of color after the maximum color. As an 
example, if R has the maximum value and its color 
difference computation gives positive value, color 
produce from this combination is between red and green. 
How far the color located from red is depends on how big 
the difference value (domination level). Normalization in 

Equation 1 is referring to the fraction 60
minmax

1
×

−
. Its 

purpose is to fit the color difference value within a range 
of -60° and 60° since degree is used to indicate hue 
position. At 0°, the color difference value is equal to zero. 
Thus, each condition in the hue formulation will have 
range of 120°. As there are three color components, it 
complete the hue circle in 360°. Lastly, the shifting 
operation positioned each hue value properly to avoid 
cross-placement. When R is maximum, no shifting 
involved, means that hue starts with pure red at 0°. Then, 
when G is maximum, hue value is shifted by 120° and 
results pure green positioned at 120°. To complete the 
hue circle, pure blue is positioned at 240° by shifting its 
hue value by 240°. 

In this work, a linear hue formulation is proposed in 
order to simplify the computation. Linear hue formulation 
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is possible if one of the RGB color component is ignored. 
By normal human eyes observation, ignoring one of the 
RGB color component is acceptable because only red and 
green color are dominance in the starfruit while blue 
color is almost imperceptible. This circumstance is also 
proved by color density plot shown in Figure 1 where 
most of the blue color is concentrated at low pixel value. 
In this plot, the horizontal axis is representing the pixel 
value while the vertical axis represents color 
concentration.  

 

Figure 1. Starfruit color density plot 

Eliminating blue component from the hue formulation 
is done by setting the blue value equals to zero. Thus, 
Equation 1 becomes 
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Now, the equation only has two constraints notation left. 
The third constraint is eliminated, as it is impossible that 
the blue component will have the maximum value 
compare to red and green because it was set to zero. The 
range of the hue is also different from the original hue 
where it is shorten to 120°. The new hue starts with pure 
red at 0° and ends with pure green at 120°. Thus, the 
entire original hue value that relates to blue component 
was eliminated. To complete the linearization of the hue 
formulation, Equation 2 is rearranged to eliminate the 
constraint notation, as both constraints are complement to 
each other. The linear version of the hue formulation is 
represented as Equation 3 below. 
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Instead of the linearity of the new hue formulation, it 
also has the advantageous of reduced amount of data 
throughout the color transformation process where blue 
component is not considered in the formulation (Equation 
3). Here the data is reduced by 3

1  of the original data. 
Thus, it is showed that the linear version of RGB color 
transformation into hue is certainly reduced the 
computational burden and complexity. 

2.2 Class Discriminant Measure 
Having the advantage of less computationally burden and 
complexity is insignificant if the feature does not have a 
good discrimination capability. Poor discriminant 
capability will result poor classification. To quantify the 
discriminant capability, a class separable measure called 
Fisher’s Discriminant Ratio (FDR) is applied [10]. 
Basically, FDR gives higher value when the distance of 
mean between two classes is far and the total variance of 
the two classes is small. This is shown by Equation 4 
where 1μ  and 2

1σ  are the mean and variance of class 1 
while 2μ  and 2

2σ  are the mean and variance for class 2.  
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For multi-class case, FDR is quantifying each possible 
class pairs and computes their average value as shown by 
Equation 5 where M is the total class [11].   
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Separable measure based on the Equation 5 gives 
global information about the discriminant capability [11]. 
In some cases, where only a few class pairs results low 
FDR compared to the rest of the class pairs, unfortunately 
the global information will neglect the low FDR due to 
the averaging operation. In measuring the discriminant 
capability for multi-classes, in fact the low resulted FDR 
is more significant as it shows low discriminant capability 
while high discriminant capability measurement is less 
significant because good discriminant capability usually 
does not gives a difficulty for classification process. To 
formulate a low sensitivity of FDR value formulation, 
this paper proposed a computation as in Equation 6. This 
formulation is formulate specifically for the starfruit 
classification process and might not appropriate for other 
purposes.  
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In Equation 6, FDR2 is computed between two 
adjacent class pair only. It is formulated such that because 
these are the class pair that will result lower FDR while 
the other class pair will most probably result higher FDR. 
As there are six maturity indices for the starfruit 
classification process, M is equals to 6. Thus, FDR2 will 
only compute the five most probably lower FDR. Table 1 
shows the resulting FDR2 for hue (H1) as in the Equation 
2 and also for a few other features as a comparison. Apart 
from the last row of Table 1, the rest of the features are in 
1-dimensional. As can be seen in the table, the last feature 
is based on 3-dimensional color of RGB.   

Table 1. Class separable measure for various type of color 
features 

Feature FDR1 FDR2 
H1 33.2713 5.7289 

H (original 
computation) 32.8763 5.3814 

I (intensity) 3.5871 1.8638 
S (saturation) 21.0347 4.0035 

R (red) 18.8353 3.9818 
G (green) 3.2836 1.5630 
B (blue) 15.1069 2.6288 
R, G, B 12.1100 3.0466 

Table 1 also includes results for FDR1 (global value) 
where all of its results have higher value compare to 
FDR2. This proves that FDR2 computation is most likely 
picking up the five lowest FDR. Most of the FDR1 results 
are inaccurate because heuristically results above 20 will 
have a perfect class separation. However, as shown by 
Figure 2, the class separation is not perfect even for H1 
that has the highest FDR1 value. Figure 2 is actually plots 
of normal distribution of the six maturity classes of the 
starfruit based on four selected color features (H1, R, G 
and S). All features have been normalized for better 
comparison. These features are selected to show various 
class separations for higher, middle and lower 
discriminant capability (FDR). As the whole four features 
show intersection between classes or imperfect class 
separation, it can be said that the class separable measure 
is more accurate based on FDR2 computation because it 
results values less than 20 for all features tested as in the 
Table 1.  

Based on Table 1 and Figure 2, it can be concluded that 
HI, which has the highest value of FDR2 is the best 
feature for the classification process compared to the 
other features. Although using the 3-dimensional feature 
of RGB, the discriminant capability is still lower than the 
discriminant capability of H1. For H, which is the 
original computation of H1, the FDR value is slightly 
lower. This shows that discarding the blue component 
from the hue computation is worthy as it reduced the 
computational burden, less computational complexity and 
results slightly better class discriminant capability. 
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Figure 2. Normal distribution of the maturity classes. For 
each figure, class 1 to class 6 is referred as the most left 
plot to the most right plot accordingly. (a) H1, (b) R, (c) 

G, (d) S. 
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3. MATURITY INDEX CLASSIFICATION 
From the previous section, H1 was chosen as the input 

feature for the starfruit classifier. Although H1 has been 
proven to be the best feature among the other features 
tested in this work, its class discriminant capability is still 
imperfect. Hence, the classification process will not be 
straightforward. To solve the problem, the classification 
process will be based on the hypothesis that for each 
maturity indices, certain area of the starfruit surface is 
supposed to have distinctive value of the hue (H1). Based 
on this hypothesis, it involves two parameters, which are 
the starfruit surface area (A) measures in area percentage 
(Equation 7) and hue (H1) as the thresholds that separate 
two maturity indices. Basically, as there are six maturity 
indices, thus each A and H1 will have five different 
values. The subsequent discussion will describe the 
search for the best values of A and H1. Then, a few rules 
are designed based on these values to classify the 
starfruit.  

Searching for the A and H1 values are based on 600 
pre-classified samples where there are 100 samples for 
each of the maturity indexes. Two steps are involves in 
the search of the A and H1 values, which are based on 
known H1 and known A. For the former technique, the 
five values of H1 or better noted as H1(i,i+1) are preselect 
to have similar distance between their adjacent values as 
shown in Figure 3.  

 The first value of H1(i,i+1) is selected equals to 40 
while the end value is selected as 60 based on Figure 2(a) 
where most of the H1(i,i+1) values of the six maturity 
classes recline between this ranges. With the known 
H1(i,i+1) values, seven values of A are tested to quantify 
the class error between the classes. The class error is 
computed referring to Equation 7 where Ai and Ai+1 are 
percentage of area of two starfruit samples with adjacent 
maturity index.       

 { } { }∑ ∑ >+≤= + AAQAAPE ii 1   (7)  

In Equation 7, P{.} and Q{.} are equal to one if the 
arguments are true and set to zero if otherwise. Thus, E is 
actually the total number of misclassified samples of two 
adjacent maturity indices. Ai and Ai+1 are represented by 
Equation 8 and 9 as below. 
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Ci and Ci+1 are input samples of maturity index i and 
maturity index i+1 respectively where 1≤ i ≤5. Results 
for the seven tested values of A are shown in Table 2. 
Logically, the best values of A at each of the H1(i,i+1) are 
the values with minimum E. However, to simplify the 
classification rules, which will be discussed later, a single 
value of A is picked for all value of H1(i,i+1). From Table 
2, A equals to 60 is the best chosen value.  

Table 2. Class error quantification for various values of A 
Class Error (E) A 

(%) )2,1(1H  
)3,2(1H  

)4,3(1H  
)5,4(1H  

)6,5(1H  

100 50 50 50 50 50 
90 10 24 44 30 29.5 
80 3 16 32.5 23 9.5 
70 0 7 22 14.5 7 
60 1 5 14 9 16 
50 1 7 19 30.5 28.5 
30 7.5 11 32 49 48 
 
Now, as value of A is known, the next step is to find 

the five best values of H1(i,i+1). This is done by scrolling 
each of the H1(i,i+1) values as shown in Figure 3 to higher 
and lower values. For each new value of the H1(i,i+1) and 
with A equals to 60, E is quantified. H1(i,i+1) with the 
lowest value of E will be chosen as the best value for the 
H1(i,i+1).Table 3 shows the results when H1(i,i+1) are 
change up to ±3 from the early-chosen value in Figure 3.  

In the quantification, most of the H1(i,i+1) except for 
H1(3,4) and H1(5,6) results lowest E at zero change. H1(3,4) 
has the lowest E at value of 51 and H1(5,6) at 59. Hence, 
the chosen values for H1(1,2), H1(2,3), H1(3,4), H1(4,5)  and 
H1(5,6)  are 40, 45, 51, 55 and 59 accordingly. 

Based on the chosen values of A and H1(i,i+1), the 
hypothesis of the starfruit maturity classification will be 
proved by creating rules. The rules are given in Figure 4. 
In this rules, Ai is computed based on Equation 8 and A = 
60. Based on the 600 early-classified samples, which are 
also used in determining the values of A and H1(i,i+1), 
classification using rules given in Figure 4 results 93% of 
accuracy. Most of the misclassification is in Index 3 and 
Index 4 where 14 and 11 samples are misclassified 
accordingly. 

 

 

 

 

 

401 )2,1( =H  451 )3,2( =H 501 )4,3( =H 551 )5,4( =H 601 )6,5( =H  

Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 

H1 

Figure 3. Predefined value of H1(i,i+1) 
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Table 3. Class error quantification for various values of 
)1,(1 +iiH  

Class Error (E) H1(i,i+1)  
adjustme

nt 
)2,1(1H

 
)3,2(1H

 
)4,3(1H

 
)5,4(1H

 
)6,5(1H

 
0 1 5 14 9 16 

+1 5 7 12.5 25 22 
-1 2.5 20 22 13.5 7.5 
+2 12 8 21.5 34 30 
-2 4 25 29 18 9 
+3 25 16 34 48 37 
-3 11.5 38 40 32 12 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Maturity index classification rules 
 
5 samples are misclassified for Index 2 and Index 5 

while Index 1 and Index 6 samples are perfectly 
classified. Fortunately, the 600 samples, which have been 
classified earlier by the expert, are inaccurate. All the 
misclassified samples are then reclassified by the expert 
on the knowledge of the classification process perform in 
this work. Finally, the classification rules given in Figure 
4 gives 100% of accuracy when the classification process 
is repeated. This shows that although the manual 
classification is performed by expert, confusion is 
unavoidable and machine vision approach can certainly 
avoid the confusion because it involves better precision of 
computation compared to human.  

4. CONCLUSION 
A linear one-dimensional color feature called hue (H1) 
has been introduced in this work to be used as input for 
starfruit maturity classifier. The purpose of using linear 

one-dimensional hue is to reduce the computational 
burden and computational complexity. The proposed hue 
(H1) has also proved to have the best class discriminant 
capability compared to the other color features discussed 
in this paper. Good class discriminant capability will 
ensure good classification accuracy. For the classification 
process, it is based on the hypothesis that for each 
maturity index, certain area of the starfruit surface is 
supposed to have distinctive value of the hue. Although a 
tedious process was performed searching for the best 
values of A and H1(i,i+1), the classification rules based on 
these values are fairly simple. The first classification 
process yielded 93% of accuracy. When the expert 
reclassifies the samples based on the second opinion from 
the first classification results, a perfect classification of 
100% accuracy was obtained. The classification rules 
may also be designed using fuzzy logic approach where a 
simpler classifier design is expected.  
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