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ABSTRACT 

Over the past few decades, nanofluids have emerged as a promising technology for 

the enhancement of the intrinsic thermophysical properties of many convectional 

heat transfer fluids such as water and oil. Many researchers have been investigated 

the merits of dispersing nanometer-sized particles into base fluids to enhance heat 

transfer, thermal conductivity and viscosity of the fluids. Therefore, this research 

focused on radiative heat transfer in magnethohydrodynamics mixed convection flow 

in a channel filled with nanofluids containing different type of nanoparticles. Five 

types of nanoparticles 2 3( ,Al O  3 4 ,Fe O  ,Cu  2 ,TiO  and )Ag
 
with five different 

shapes (platelet, blade, cylinder, brick and spherical) were used in water 2( )H O  and 

ethylene glycol 2 6 2( )C H O , as conventional base fluid. An important subtype of 

nanofluids called ferrofluids 3 4(Fe O in water based nanofluids) was also studied. 

Four different problems were modelled as partial differential equations with physical 

boundary conditions. In the first three problems, the channel walls were taken rigid, 

while the fourth problem the walls were chosen permeable where suction or injection 

was taking place. Perturbed type analytical solutions for velocity and temperature 

were obtained and discussed graphically in various graphs. Results for skin friction 

and Nusselt number were also computed and presented in tabular forms. This study 

showed that 2 6 2C H O  was the better convectional base fluid compared to 2H O  

because of the higher viscosity and thermal conductivity. Ag  nanoparticles had the 

highest thermal conductivity and viscosity compared to other type of nanoparticles. 

Increasing nanoparticles size had caused variation in velocity. It was also observed 

that, variation in velocity for Ag  nanoparticles was obtained at low volume 

concentration, whereas for 2 3Al O  nanoparticles, this variation was observed only at 

high volume concentration. Velocity increases with increasing Grashof number, 

radiation, heat generation and permeability parameters, but decreases with increasing 

magnetic parameter and volume fraction of nanoparticles. However, the effects of 

these parameters were quite different in the case of suction and injection. Results had 

also shown that, temperature increases with increasing radiation and heat generation 

parameters. In this study, the temperature of ferrofluids was found smaller when 

compared to the temperature of nanofluids.   
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ABSTRAK 

Sejak beberapa dekad yang lalu, bendalir nano telah muncul sebagai suatu teknologi 

yang berpotensi untuk meningkatkan sifat-sifat termofizikal intrinsik dalam 

kebanyakan bendalir pemindahan haba yang lazim seperti air dan minyak. Ramai 

penyelidik telah mengkaji merit penguraian partikel bersaiz nanometer kepada 

bendalir asas untuk meningkatkan pemindahan haba, kekonduksian terma dan 

kelikatan bendalir. Oleh itu, penyelidikan ini memberi tumpuan kepada pemindahan 

haba sinaran di dalam aliran olakan campuran hidrodinamik magnet di dalam saluran 

yang dipenuhi dengan bendalir nano mengandungi pelbagai jenis partikel nano. Lima 

jenis partikel nano 2 3( ,Al O  3 4 ,Fe O  ,Cu  2 ,TiO  dan )Ag
 
dengan lima bentuk yang 

berbeza (platelet, bilah, silinder, bata dan sfera) telah digunakan di dalam air, 2( )H O  

dan etilena glikol 2 6 2( )C H O , sebagai bendalir asas lazim. Subjenis penting dalam 

bendalir nano dikenali sebagai ferobendalir 3 4(Fe O di dalam bendalir nano 

berasaskan air) juga dikaji. Empat masalah yang berbeza telah dimodelkan sebagai 

persamaan pembezaan separa berserta syarat sempadan fizikal. Dalam tiga masalah 

yang pertama, dinding saluran adalah tegar, manakala dalam masalah keempat 

dinding saluran telap dipilih bagi membolehkan berlakunya sedutan atau suntikan. 

Penyelesaian analitik jenis usikan bagi halaju dan suhu telah diperoleh dan 

dibincangkan secara grafik dalam pelbagai graf. Keputusan bagi geseran kulit dan 

nombor Nusselt juga dikira dan dipersembahkan dalam bentuk jadual. Kajian ini 

menunjukkan bahawa, bendalir asas lazim 2 6 2C H O adalah lebih baik berbanding 

2H O  kerana kelikatan dan kekonduksian terma adalah lebih tinggi. Ag  partikel nano 

mempunyai kelikatan dan kekonduksian terma yang paling tinggi berbanding jenis 

partikel nano yang lain. Peningkatan saiz partikel nano menyebabkan berlakunya 

perbezaan dalam halaju. Dapat diperhatikan bahawa, perubahan dalam halaju untuk 

partikel nano Ag  telah diperoleh ketika isipadu kepekatan rendah, manakala bagi 

partikel nano 2 3Al O  variasi ini diperhatikan hanya ketika isipadu kepekatan tinggi. 

Halaju meningkat dengan peningkatan nombor Grashof, parameter sinaran, 

parameter penjanaan haba dan parameter kebolehtelapan, tetapi berkurangan dengan 

peningkatan parameter magnet dan pecahan isipadu partikel nano. Namun, kesan 

bagi semua parameter ini agak berbeza untuk kes sedutan dan suntikan. Keputusan 

juga menunjukkan bahawa, suhu meningkat dengan peningkatan parameter sinaran 

dan parameter penjanaan haba. Dalam kajian ini, suhu bagi ferobendalir didapati 

lebih kecil berbanding dengan suhu bendalir nano. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

This chapter is intended to provide the research background, problem 

statement, research objectives, scope of research, significance of the study, research 

methodology and thesis outline. The research background describes a brief summary 

of research and embarks on the study of the flow of radiative heat transfer in MHD 

mixed convection flow of nanofluids along a vertical channel. The problem 

statement includes some questions about the mathematical formulation, solutions and 

influence of various parameters on the flow problem. Research objectives provide 

the problems tackled in this research together with scope and significance of the 

study. 

1.2 Research Background 

Fluids are generally consists of liquids and gases, which are two different 

phases of matter. Fluid is a substance that continuously deforms under an applied 

shear stress. There are various types of fluids. However, they are mainly divided into 

two types knows as Newtonian and non-Newtonian fluids. There are two ways for a 

fluid to be Newtonian or non-Newtonian. The first way for a fluid to be non-



2 
 

Newtonian depends on the Cauchy stress tensor used in the constitutive equation of 

motion. The second way depends on the additional nanoparticles and the volume 

fraction of nanoparticles, added to a base fluid. This research focuses on the second 

type of non-Newtonian fluids where the non-Newtonian behavior comes not because 

of the Cauchy stress tensor but due to the additional nanoparticles to the base fluids. 

Only on Newtonian fluid in which the shear stress is directly proportional to shear 

strain. More exactly, in this research Newtonian fluid is used as base fluid and 

various types of nanoparticles are suspended inside it. This mixture forms is called as 

nanofluids (Das et al., 2008). Nanofluids on the other hand are liquids or 

conventional base fluids such as water, ethylene glycol, acetone, decene and oils, 

containing suspensions of solid nanoparticles with sizes typically of 1-100 nm . The 

thermal conductivity and viscosity of nanofluids are much higher than the 

conventional base fluids. Even for very small volume fraction of nanoparticles, a 

large amount of increase in thermal conductivity is observed. Due to this reason, the 

interests of researchers in investigating nanofluids are increasing day by day.  

Different parameters are responsible for the enhancement of thermal 

conductivity and viscosity of nanofluids such as base fluids, volume fraction, size, 

shape, effect of particles material, PH value and clustering of nanoparticles. Besides, 

heat transfer in fluids containing nanoparticles has superior thermo physical 

properties than the conventional base fluid in terms of thermal conductivity, thermal 

diffusivity, viscosity and convective heat transfer coefficient. The reason is that, the 

conventional heat transfer fluids have inherently poor thermal conductivity compared 

to solids. Therefore, scientists have tried to make fluids, which enhance the poor 

thermal conductivity of these conventional heat transfer fluids using uniform 

dispersion and stable suspension of solid nanoparticles. Further, the researchers are 

getting interested in nanofluids because of their importance in industry. Some of its 

applications are found in crystal silicon mirror cooling used in high intense x-ray 

sources. X-ray sources create a large amount of heat which is controlled by these 

mirrors. This advanced cooling technology was established by Lee and Choi (1996).  

Chien et al. (2003) were the first to used gold nanoparticles in electronic cooler and 

enhanced its heat transfer performance. Tsai et al. (2004) improved the quality of 

deionized water (DI) by using gold nanoparticles for meshed circular heat pipe. Heat 
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pipe was constructed as a heat spreader for desktop or CPU and wire of 200-mesh 

was used inside the heat pipe.  It was observed by Tsai et al. (2004) that thermal 

resistance of the meshed circular heat pipe was reduced by using nanofluids. Silver 

(Ag) nanoparticles were used inside DI and improved the heat transfer performance 

of grooved circular heat pipe (Kang et al., 2006). In powerful transmission system, 

Rotary Blade Coupling (RBC) in four wheel drive vehicle easily attains a high local 

temperature at high rotating speed. This high thermal stress can damage the rotating 

components of RBC which is not fixable and should be knocked out. Therefore, 

Tzeng et al. (2005) was the first to used alumina oxide ( 2 3Al O ) and copper oxide 

(CuO ) nanoparticles in transmission fluids to improve the cooling performance of 

RBC. Xuan and Li (2003a) and Yu et al. (2007) worked to improve the heat transfer 

performance of transformer oils. They found that if the oils of transformer are 

replaced by nanofluids then the transformer size can reduced with the same 

efficiency. This work is still challenging. Other dynamic applications are found in 

biomedical processes. Recent, investigations proved that cylindrical shaped 

nanoparticles are seven times more deadly than traditional spherical shaped 

nanoparticles in the delivery of drug to breast cancer cells. Magnetite nanoparticles 

are used in cancer therapy to produce high temperature and damaged the cancer cells. 

Nanoparticles can also used as a safer surgery by cooling around the surgical area 

(Jordan et al., 1999).  

The idea of using small-sized solid particles inside fluids to increase their 

thermal conductivity was initially given by Maxwell (1873). This idea was based on 

suspension of micro-sized or milli-sized solid particles inside fluids. Subsequently, it 

was realized that large sized particles in the milli-scale or even micro-sized particles 

causes several technical problems. For example, (i) faster settling time, (ii) clogging 

micro-channels of devices, (iii) abrasion of surfaces, (iv) erosion of pipelines and (v) 

increasing drop in pressure (Das et al., 2008). Bruggeman (1935) proposed a model 

to estimate the thermal conductivities of nanoparticles at higher particle 

concentrations. However, this model was only applicable for spherical shape of 

nanoparticles. Hamilton and Crosser (1962) extended the Maxwell model to 

incorporate the effect of the different shapes of the solid particles. Both Maxwell, 

and Hamilton and Crosser models were derived for the suspension of micro-or milli-
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sized solid particles inside the fluids. Currently, these models are frequently used for 

the study of nanofluids due to their simplicity. Initially, Choi (1995) gives the idea of 

improving thermal conductivity using nano-sized particles. More specifically, it was 

experimentally verified in this work that addition of nanoparticles in conventional 

based fluids enhances the thermal conductivity. Apart from higher thermal 

conductivity, the addition of nano-sized particles over micro-sized particles to 

conventional base fluid was preferred due to several valid scientific reasons such as 

(i) longer suspension time (more stable), (ii) larger surface area/volume ration (1000 

times larger), (iii) lower erosion and clogging, (iv) lower demand for pumping power 

(v) reduction in inventory of heat transfer fluid, and (vi) significant energy saving. 

Several other theoretical models are available in the literature for calculating the 

effective thermal conductivity and viscosity of nanofluids (Einstein, 1906; Xuan et 

al., 2003b; Koo and Kleinstreuer, 2004; Abbaspoursani et al., 2011; Corcione, 2011). 

Khanafer et al. (2003) studied the buoyancy-driven heat transfer 

enhancement in a two-dimensional enclosure utilizing nanofluids. The role of 

Brownian motion in the enhanced thermal conductivity of nanofluids was 

investigated by Jang and Choi (2004). Chang et al. (2005) analysed rheology of 

CuO  nanoparticle suspension. Tiwari and Das (2007) studied heat transfer 

augmentation in a two-sided lid-driven differentially heated square cavity utilizing 

nanofluids. Temperature and particle size dependent viscosity data for water based 

nanofluids hysteresis phenomenon was investigated by Nguyen et al. (2007). 

Numerical study of natural convection in partially heated rectangular enclosures 

filled with nanofluids was studied by Oztop and Abu-Nada (2008). Timofeeva et al. 

(2009) analyzed particle shape effect on thermophysical properties of alumina 

nanofluids. Prasad et al. (2010) studied the effect of variable fluid properties on the 

magnetohydrodynamic (MHD) flow and heat transfer over a non-linear stretching 

sheet.  

Khan and Pop (2010) investigated boundary-layer flow of a nanofluids past a 

stretching sheet. Ahmad and Pop (2010) focused on mixed convection boundary 

layer flow of nanofluids from a vertical flat plate embedded in a porous medium. 

Kuznetsov and Nield (2010) investigated natural convective boundary-layer flow of 
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nanofluids past a vertical plate. In two other investigations Nield and Kuznetsov 

(2009) and Nield and Kuznetsov (2011) analysed the Cheng-Minkowycz problem for 

natural convection flow and double diffusive natural flow of nanofluids past a 

vertical plate embedded in a porous medium. Radiation effect on viscous nanofluids 

with three different types of spherical shapes of nanoparticles over a nonlinearly 

stretching sheet was investigated by Hady et al. (2012) using shooting technique. 

They found that ethylene glycol (EG) ( 2 6 2C H O ) has the highest cooling performance 

than nanoparticles in water ( 2H O ) base nanofluids. Free convection boundary layer 

flow past a horizontal flat plate embedded in a porous medium filled with nanofluids 

was investigated by Khan and Pop (2011). Bachok et al. (2010a) provided numerical 

solutions for the boundary-layer flow of nanofluids over a moving surface in a 

flowing fluid. By taking the porosity and MHD effects together, Zhang et al. (2015) 

studied radiation heat transfer in nanofluids containing ,Cu  2 3Al O  and Ag  past a 

flat plate having variable surface heat flux and the first-order chemical reaction is 

also considered.  

MHD or magneto-fluid-dynamics (MFD) is the field of fluid mechanics 

which deals with the dynamics of an electrically conducting fluid under the influence 

of magnetic field. First time, Hannes Alfvn introduced MHD, and received Noble 

Prize in 1970 in the field of physics. MHD is decribed by a set of equations which is 

the combination of Navier-Stokes and Maxwell equations. Currently, the study of 

heat transfer by mixed convection in a MHD fluid through a porous channel has 

garnered the attention and interest of several researchers. This is primarily attributed 

to the plethora of its applications in the field of science of technology, for instance 

the heat exchange between atmosphere and soil to form heat beds, beds of fossil 

fuels; the leaching of salt into soil; the distribution of chemical pollutants into 

saturated soil; the collection of solar power; insulation of nuclear reactors; moisture 

migration in fibrous insulation; underground disposal of nuclear waste; the extraction 

of geothermal energy; chemical catatlytic reactors; the storage of grain and many 

more. Taking into account the significance of MHD in nanofluids, Mansur et al. 

(2015) conducted a study to explore the MHD stagnation point flow of nanofluids 

over a stretching/shrinking sheet with suction. Colla et al. (2012) investigated water-

based nanofluids characterization, thermal conductivity and viscosity measurements 
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and correlation. Abareshi et al. (2010) studied fabrication, characterization and 

measurement of thermal conductivity of nanofluids. Borglin et al. (2000) studied 

experimentally the flow of magnetic nanofluids in porous media. 

Effects of a transverse magnetic field and radiative heat transfer on the mixed 

convection unsteady oscillatory flow of a viscous fluid in a channel filled with 

porous medium was studied by Makinde and Mhone (2005). Mehmood and Ali 

(2007) extended their work by taking into account the slip condition. However, such 

studies for nanofluids in the presence of magnetic field and porous medium are not 

available. Maghrebi et al. (2012) investigated forced convection heat transfer of 

nanofluids in a porous channel. Mahdi et al. (2014) studied the influence of 

geometrical shapes on mixed convection through open-cell aluminium foam filled 

with nanofluids.   

The above study shows that, using fluids such as water, ethylene glycol, and 

mineral oils are found to have poor thermal characteristics when compared with 

metals, non-metals and their oxides. Due to this, it was noticed that the flow analysis 

of nanofluids with the interaction of magnetic field have increased enormously. 

There are three categories which describe how a material is equivalently affected by 

a magnetic field. (i) Diamagnetism: materials such as copper, lead, quartz, water, 

acetone, and carbon dioxide are diamagnetic and are very weakly affected by 

magnetic fields, (ii) Paramagnetism: materials such as sodium, oxygen, iron oxide, 

and platinum are paramagnetic. They are affected somewhat more strongly than 

diamagnetic materials, and become polarized parallel to a magnetic field (iii) 

Ferromagnetic: ferromagnetic materials include gadolinium, iron, iron oxide 

(magnetite), and nickel, cobalt ferrite and manganese bismuth. These materials are 

strongly affected by magnetic fields. In addition, they become strongly polarized in 

the direction of the magnetic field and retain their polarization state after the 

magnetic field is removed (Scherer and Figueiredo Neto, 2005)  

Amongst these three types, ferromagnetic materials produce a strong 

magnetic field. The resulting fluid is called ferrofluids which is also known as 
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magnetic fluid or magnetite nanofluids. More specifically, ferrofluids are colloidal 

suspensions of small magnetic particles in a carrier liquid. Some important uses of 

ferrofluids are found in mechanical damping in loudspeakers and in heat exchangers. 

In the present research, nanoparticles of magnetite ( 3 4Fe O  ), being the most 

commonly used magnetic work and water is chosen as a conventional base fluid.  

Based on the importance of ferromagnetic materials, Qasim et al. (2014) 

examined MHD flow with slip condition in the presence of heat transfer in 

ferrofluids with magnetite ( 3 4Fe O ) nanoparticles over a stretched cylinder with given 

heat flux. Khan et al. (2014) tackled a stagnation-point flow problem of ferrofluids 

along a stretching sheet with viscous dissipation and heat transfer. They considered 

ferroparticles of three types: 3 4Fe O , cobalt ferrite ( 3 4CoFe O ), and Mn Zn ferrite 

( 3 4Mn ZnFe O ). However, they selected two types of base fluid, water and kerosene 

and found some interesting results for these two types of base fluids after using 

implicit finite-difference method with quasi-linearization technique as the solution to 

a resultant problem. Sheikholeslami and Ganji (2014) analysed ferrohydrodynamic 

and magnetohydrodynamic effects on ferrofluids flow and convective heat transfer. 

Hamad et al. (2011a) studied the magnetic field effects on free convection 

flow of nanofluids past a vertical semi-infinite flat plate. Then, followed by Hamad 

(2011b) where analytical solution of natural convection flow of nanofluids over a 

linearly stretching sheet in the presence of magnetic field has been obtained. The 

conjugate phenomenon of heat and mass transfer of nanofluids over a moving 

permeable surface with convective boundary conditions has been analyzed by Qasim 

et al. (2013). Mahajan and Sharma (2014) embark on convection in magnetic 

nanofluids in porous media. 

The problems discussed above are mostly carried out either using 

experimental, numerical or any approximate scheme. Exact solutions for nanofluids 

are very rare. The first exact solution for nanofluids seem to be that obtained by 

Loganathan et al. (2013) using the Laplace transform method. Turkyilmazoglu 
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(2014) observed the unsteady convection flow of some nanofluids past a moving 

vertical flat plate with heat transfer. The governing equations are solved for exact 

solutions using two types of boundary conditions namely prescribed uniform wall 

temperature (PST) and prescribed uniform heat flux (PHF). Asma et al. (2015) 

obtained exact solutions for the MHD flow of nanofluids using the Laplace transform 

method. 

It is also noticed from the above discussion, researchers have conducted 

many experimental or numerical investigations that the heat transfer enhancement 

through nanofluids either due to free or forced convections in different geometrical 

configurations. However, limited analytical studies on mixed convection flows of 

nanofluids in vertical channels have been carried out.  Such studies are even scarce in 

the presence of MHD and porous medium. Therefore, this project mainly focuses on 

the analytical study of nanofluids and ferrofluids passing through a vertical channel 

together with heat transfer due to mixed convection. The effects of MHD and 

porosity are also considered.   

1.3 Problem Statement 

 

This study explains the following questions. How the Newtonian based 

nanofluids and ferrofluids models behave in the problem of heat transfer in MHD 

mixed convection flow inside a vertical channel? How does the mathematical model 

behave in this problem involving heat transfer? How does the presence of some 

parameters including porosity, MHD, heat generation, and some fluids parameters 

including shape, size, base fluid, particle material, volume fraction and clustering of 

nanoparticles affect the fluid motion? How does the mixed convection phenomenon 

occurs in a vertical channel with wall transpiration?  How do the analytical solutions 

for heat transfer in mixed convection flow inside a vertical channel under different 

effects can be obtained?  Specifically, the problems of nanofluids and ferrofluids 

investigated in this research are: 

 



9 
 

Problem I. MHD mixed convection flow of a ferrofluids along a vertical 

channel. 

Problem II. Radiation and heat generation effects on MHD mixed 

convection flow of nanofluids along a vertical channel. 

Problem III. MHD mixed convection flow of nanofluids in a vertical 

channel filled with saturated porous medium. 

Problem IV. MHD Mixed convection flow of nanofluids in a porous channel 

with permeable walls. 

1.4 Research Objectives 

 

This theoretical investigation studies the effect of radiation on MHD mixed 

convection flow of nanofluids and ferrofluids along vertical plate, as mentioned in 

problem statement. The objectives of this research are: 

 

i) to derive the mathematical models of the problems which  consists of 

continuity, momentum and energy equations. 

ii) to solve the dimensionless governing equations analytically by using 

perturbation method. 

iii) to obtain the results of velocity and temperature profiles as well as skin 

friction and Nusselt number for each of the problem mentioned in problem 

statement. 

iv) to analyse the results obtained graphically and via tabulated results for 

different physical conditions namely radiation parameter, magnetic 

parameter, heat generation parameter, permeability parameter, Prandtl 

number and Grashof number as well as different types of nanoparticles, 

shapes, sizes and volume fractions. 
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1.5 Scope of the Study` 

This thesis is focused on the unsteady MHD mixed convection flow of 

nanofluids inside a vertical channel. Nanoparticles are suspended inside regular 

fluids where water and ethylene glycol are chosen for this purpose. Nanofluids or 

ferrofluids are introduced by using several models and equations. Three different 

driving forces have been considered, which are responsible for inducing the motion 

into the fluid. These are buoyancy force, external pressure gradient and boundary 

wall. The first problem emphasized on MHD mixed convection flow of ferrofluids 

passing through a vertical channel with stationary walls. The second problem focuses 

on the influence of radiation and heat generation effects on MHD mixed convection 

flow of nanofluids along a vertical channel. The third problem explores the MHD 

mixed convection flow of nanofluids in a vertical channel filled with porous medium 

together with stationary and oscillating boundary conditions. The fourth problem 

highlights the study of mixed convection flow of nanofluids in a porous channel 

filled with permeable walls. Perturbation technique has been used to solve the 

governing linear partial differential equations. Analytical solutions for velocity and 

temperature are obtained for all the proposed problems and plotted through various 

graphs. A computational software namely Mathcad has been used for plotting graphs 

and for computing tabulated results. Further, the limiting cases of the present results 

give the published results in literature. 

1.6 Significance of the study 

 

1. The results obtained in this research enable to enhance the knowledge of the 

MHD mixed convection flow and heat transfer characteristics through porous 

medium, with different fluid parameters for nanofluids in a vertical channel. 

2. Thermo-physical properties of liquids play a vital role in heating as well 

cooling applications. Thermal conductivity of a liquid decides its heat transfer 

performance, due to which it has been regarded as one of the important 

thermophysical property. 
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3. The results obtained in this project for Newtonian based nanofluids can be 

used as bases for complex flow problems frequently occurring in engineering 

and applied sciences. This idea can be extend for other.  

4. Heat transfer is one of the important process in many industrial, consumer 

products, power generation, microelectronics, air conditioning and 

transportation. 

5. Convection in porous medium and heat generation effects plays an important 

role in many applications such as geothermal energy storage and flow 

through filtering devices. 

1.7 Research Methodology 

This section intends to provide the current development of research which 

contains two sub-sections, mathematical analysis and numerical computations.  

1.7.1 Mathematical Analysis 

Mathematical formulation of the problem is done where the equation of 

momentum and energy are derived for the problems mentioned in Section 1.3. Fluid 

motion is originated due to buoyancy force together with external pressure gradient 

of oscillatory form. Water and EG are are used as a conventional base fluids. 

Nanoparticles of magnetite 3 4( )Fe O , silver ( )Ag  in spherical and aluminium oxide 

2 3( )Al O
 
in four different shapes namely cylinder, platelet, brick and blade shape are 

used. The problems are modelled in term of Partial Differential Equations (PDE’s) 

with physical boundary conditions. Perturbation technique has been used to solve the 

governing problems. Based on the boundary conditions, three different flow 

situations are discussed. 
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1.7.2 Numerical Computations  

Analytical solutions for velocity and temperature are obtained and plotted 

through various graphs. The results are dicussed for different parameters such as 

magnetic, radiation, heat generation, permeability, types of nanoparticles, volume 

fraction, and Grashof number. Water based nanofluids have been compared with EG 

based nanofluids. Influence of different shapes and sizes of nanoparticles has also 

been analysed. A computational software namely Mathcad has been used for plotting 

graphs and for computing tabulated results. Further, it is found that the limiting 

results give the published results in literature. 

1.8 Thesis Organization 

This thesis includes total 7 Chapters.  Chapter 1 is an introductory chapter 

which includes the research background, problem statements, objectives and scope of 

the research, research methodology, significance of the study and finally thesis 

outlines. Chapter 2 provides the literature review.  

Chapter 3 discussed the first problem on MHD mixed convection flow of 

ferrofluids along a vertical channel. This chapter contains four sections including 

introduction, mathematical formulation of the problem, solution of the problem and 

results and discussion. Introduction includes a brief discussion of the problem. 

Mathematical formulation of the problem is performed where the equations of 

continuity, momentum and energy are derived. Analytical solutions of velocity and 

temperature are obtained using the perturbation technique. Expressions for skin 

friction and rate of heat transfer are also computed. The results are plotted and 

discussed for different parameters of interest. 

Chapter 4, extends the idea of Chapter 3 to the case when the temperature 

equation takes into account the heat generation parameter. In addition different 
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models for finding thermal conductivity and viscosity of nanofluids are used to 

evaluate the effect of sizes of nanoparticles on the flow problem. Same procedure as 

in Chapter 3 is used for finding velocity and temperature. Results are plotted and 

discussed for various embedded parameters. 

 The third problem is discussed in Chapter 5. This problem deals with the 

MHD mixed convection flow of nanofluids in a channel filled with saturated porous 

medium. Darcy’s law is incorporated in momentum equation. Water and EG are used 

as conventional base fluids. The energy equation is the same as in Chapter 3. 

However, here three different flow situations are discussed. Similar to Chapter 3, the 

solutions of velocity and temperature are obtained by using the perturbation 

technique. They satisfy all imposed boundary conditions. Further, it is found that the 

limiting results give the published results in literature. Different from Chapter 3, 

various models of viscosity and thermal conductivity has been used and based on 

them, the results of velocity and temperature are computed for three different flow 

problems depending on the boundary conditions. The shape-based viscosity and 

Hamilton and Crosser model (1962) of thermal conductivity are used to incorporate 

the shape effects of nanoparticles. In first case, both of the bounding walls of the 

channel are at rest. In the second case, the upper wall of the channel is set into 

oscillatory motion in its own plane whereas the third case extends this idea when 

both of the channel walls are set into oscillatory motion. Similar to Chapter 3, the 

associated expressions for skin friction and rate of heat transfer are also evaluated. 

The graphical results are displayed to see the effects of various embedded parameters 

on the velocity and temperature profiles. 

In Chapter 6, the problem of mixed convection flow of nanofluids in a porous 

channel with permeable walls is studied. The focal point of this chapter is to study 

the influence of permeable walls on momentum and heat transfers. The permeable 

parameter which physically corresponds to suction and injection is incorporated in 

both the momentum and energy equations. As in previous chapters, solutions of the 

problem are obtained by using the perturbation technique. Expressions for velocity 

and temperature are obtained. Effects of various parameters such as thermal Grashof 

number, volume fraction, different types of nanoparticles, radiation, suction and 



14 
 

injection are studied in different plots. Finally, in Chapter 7, summary of the research 

and future recommendation are included.  
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