

Malaysian Journal of Computer Science, Vol. 19(1), 2006

29

DESIGN AND IMPLEMENTATION OF A PRIVATE AND PUBLIC KEY CRYPTO PROCESSOR
FOR NEXT-GENERATION IT SECURITY APPLICATIONS

Mohamed Khalil Hani, Hau Yuan Wen, Arul Paniandi

VLSI-ECAD Research Laboratory
Faculty of Electrical Engineering

Universiti Teknologi Malaysia
81310 Skudai, Johor

 Malaysia
Email: khalil@fke.utm.my

ABSTRACT

The growing problem of breaches in information security in recent years has created a demand for earnest efforts
towards ensuring security in electronic systems. The successful deployment of these electronic systems for e-
commerce, Internet banking, government online services, VPNs, mobile commerce, Public Key Infrastructure (PKI),
etc., is dependent on the effectiveness of the security solutions. These security concerns are further compounded
when resource-constrained environments and real-time speed requirements have to be considered in next-
generation applications. Consequently, these IT security issues have been a subject of intensive research in areas of
computing, networking and cryptography these last few years. This paper presents the design and implementation
of a crypto processor, a special-purpose embedded system optimized for the execution of cryptographic algorithms
in hardware. This cryptosystem can be used in wide range of electronic devices, which include PCs, PDAs, wireless
handsets, smart cards, hardware security modules, network appliances, such as routers, gateways, firewalls,
storage and web servers. The proposed crypto processor consists of a 32-bit RISC processor block and several IP
cores that accelerates private and public key crypto computations, LZSS data compression, SHA-1 hashing, and
wide-operand modular arithmetic computation. These dedicated crypto IP cores, which are implemented as
coprocessors, permit high-speed execution of the compute-intensive operations in AES encryption, ECC and RSA-
based digital signature, and other PKI-enabling functions. The proposed embedded system is designed using SoC
technology, with hardware described in VHDL and the embedded software coded in C. The resulting
cryptohardware is implemented into a single Altera Stratix FPGA microchip. The operating system frequency is set
to 40 MHz. A demonstration application prototype in the form of a real-time secure e-document application has
been developed to verify the functionality and validate the embedded system.

Keywords: Embedded system, Cryptography, Data Security, AES, RSA, ECC.

1.0 INTRODUCTION

Nowadays, it is difficult to open a newspaper, watch a television program, or even have a conversation without
some mention of the Internet, e-commerce, smart cards, m-commerce and government online systems. The rapid
progress in wireless communication system, personal communication system, and smart card technology in our
society makes information more vulnerable to abuse - the content of the communication may be exposed to an
eavesdropper, or system services can be used fraudulently. It is critical that these information systems are made
secure before these systems are deployed extensively in society. These security concerns are further compounded
when next-generation system requirements of resource-constraints and real-time speed are taken into account.
Consequently, in the last few years, these IT security issues have been a subject of intensive research in areas of
computing, networking and cryptography.

Cryptography offers a robust solution for IT security by providing security services in terms of confidentiality, data
integrity, authenticity and non-repudiation. These services form the core operations in Public Key Infrastructure
(PKI), which is an essential framework for managing digital certificates and encryption keys for people, programs
and systems [1] [2]. PKI-enabling functions are required in secure electronic systems applied in e-commerce, e-
health systems, e-government (e.g. MyKad) and secure military communications. The crypto processor proposed in
this work supports comprehensively these functions, which include 128-bit AES, 163-bit ECC, 1024-bit RSA,
LZSS data compression, SHA-1 hashing, wide-operand modular arithmetic. AES (Advanced Encryption Standard)
is replacing DES and 3DES as the standard for private key cryptography. RSA (Rivest, Shamir & Adleman is
currently the legacy and widely installed public key cryptography, which will migrate to ECC (Elliptive Curve
Cryptography) in next-generation security devices [3].

Design and Implementation of a Private and Public Key Crypto Processor for Next-Generation IT Security Applications pp. 29 - 45

30
Malaysian Journal of Computer Science, Vol. 19(1), 2006

Cryptographic (crypto) algorithms can be implemented either in hardware or software. It is relatively easy to
implement crypto algorithms completely in software, but due to increasing data rates and complexity of security
protocols, such approach is typically too slow for applications such as embedded systems, networks routers, online
databases, etc. These shortcomings are most felt in systems that need to process a large number of transactions at
very high speed (e.g. network routers, firewalls, web servers, online databases), and systems with resource-
constrained environments (e.g. PDAs, cell phones and smart cards). In addition, new techniques for breaking
security, such as power analysis and fault analysis, require that the system implementation itself be secure even
when it is physical accessed by malicious entities. Resistance to these attacks can be ensured if suitable tamper-
proof or clone-free features are built in the designs.

To achieve optimal system performance while maintaining physical security, it is desirable to implement crypto
algorithms in hardware. Hardware-based solutions add specific custom crypto hardware components in order to
offload time-consuming computations and to reduce bottleneck. While custom hardware techniques address the
security-processing gap to some extent, their implementations are expensive and their flexibility and ability to
handle evolving standards is limited. Hence the emerging trend is to design hardware/software platforms, utilizing a
combination of programmable embedded components and hardware for security processing. The solution
implements only specific parts of the security protocol, that is, the time-consuming crypto algorithms in hardware.
This leaves the book-keeping, packet processing, control functionality and other non-computation-intensive
processing to be performed by the system’s host processor.

Today’s systems, particularly those networked, also need to be flexible if they are to be commercially viable. In this
regard, a desirable feature in most modern security protocol is algorithm agility required to support algorithm
independent protocol. Hence it is desirable to implement crypto algorithms within reconfigurable devices such as
Field Programmable Gate Arrays (FPGAs). Besides providing for dynamic system evolution, FPGA architectures
also allow complex arithmetic operations that are not suited to general purpose CPUs to be implemented more
efficiently [4]. They also offer a more cost-effective solution than traditional VLSI/ASIC hardware, which has a
much longer design lead-time. The fast prototyping development time of an FPGA design allows modifications to
be implemented with relative ease [5]. System-on-chip (SoC) design methodology is employed in the hardware
design of the proposed cryptosystem. SoC is designed as a programmable platform that integrates most of the
functions of the end product into a single chip. It incorporates at least one processing element (microprocessor,
DSP, etc.) that executes the system embedded software. The SoC system employs a bus-based architecture, which
also includes peripherals, random logic and interfaces to the outside world. The proposed embedded system is
prototyped on an Altera Nios Prototyping Board containing a Stratix EP1S40F780C5 FPGA chip. To the authors’
knowledge, the design and single-chip implementation of the combination of the cryptographic algorithms and
hybrid systems considered in this paper have not been reported in existing literature.

This paper is organized as follows. In Section 2, the hardware architecture of the cryptosystem is presented. This is
followed by a discussion on an application demonstration prototype of a secure e-document transfer via Internet,
provided in Section 3. The design of each crypto co-processor is described in Section 4, which is followed by a
discussion of the FPGA implementation and performance evaluation of the proposed crypto processors. Finally, the
conclusion and recommendations for future work are presented in Section 6.

2.0 THE EMBEDDED CRYPTOSYSTEM ARCHITECTURE

The block diagram of our embedded cryptosystem is shown in Fig. 1. This single chip cryptosystem has a RS-232
UART serial interface logic, on-chip memory, timer, PIO (parallel input/output), bus and interface logic to
communicate with memory external to the FPGA chip. The crypto co-processors for the ECC, SHA, RSA, AES,
LZSS and a modular arithmetic processor are also configured in the same microchip. The proposed crypto
embedded system consists of three main components: (1) Hardware processing blocks, (2) Device Drivers, and (3)
Application Programming Interface (API).

The Hardware Processing Block consists of a Control CPU and six IP cores (coprocessors) that perform the 128-bit
AES symmetric cipher, 1024-bit RSA and 163-bit ECC public key cryptography, SHA-1 algorithm, LZSS data
compression and 163-bit Modular Arithmetic Processing (MAP) unit. The dedicated hardware accelerators result in
high-speed execution of the crypto algorithms. The embedded control CPU is the Altera Nios processor. This
processor is a configurable, 5-stage pipelined, single-issue RISC processor, in which instructions run in a single

Design and Implementation of a Private and Public Key Crypto Processor for Next-Generation IT Security Applications pp. 29 - 45

31
Malaysian Journal of Computer Science, Vol. 19(1), 2006

clock cycle. It controls the dedicated crypto IP cores such that the embedded system may perform cryptographic
schemes such as private key encryption, public key digital signature, mutual authentication, key management, etc.

Fig. 1: Block diagram of the proposed crypto embedded system

The device drivers are embedded software executed on the Nios embedded processor. It is the main controller
ensuring the correct execution of the IP cores, and acts as a bridge between the crypto coprocessors and the APIs on
the host PC. The APIs are executed on the host PC. The APIs perform high-level functions such as input file
reading and output file writing. It sends data to and receives output between the host PC and the subsystem
hardware via a UART serial communication channel. These APIs facilitate software development by application
developers.

For an easier comprehension of the design proposed in this paper, we begin, in the following section, with an
overview of the secure e-document demonstration application prototype implemented in the proposed cryptosystem.
In this way, the security schemes implemented are known at the outset, from which the functionality and designs of
the various crypto co-processors can be explained more conveniently. The designs of these crypto co-processors are
detailed out in Section 4.

3.0 APPLICATION: SECURE e-DOCUMENT TRANSFER

We have developed a real-time data security application, that is, an e-document system for the application of secure
document transfer via Internet, which is an insecure communication medium. This demonstration application
prototype is utilized to evaluate the functionality of the embedded cryptosystem and the reusability of the associated
APIs and device drivers. In this application, sensitive documents, which are transferred electronically via FTP
mechanism in a Local Area Network (LAN) environment, are made secure by encrypting and signing in real-time,
using the proposed crypto hardware.

Fig. 2 shows GUI of the control and monitoring PC front-end for our e-document security application (written in
Visual Basic). There are two processes involved, namely (a) sender file uploading, and (b) receiver file download.
The block diagrams for the security schemes at the sender and receiver ends are given in Fig. 3(a) and 3(b)
respectively. In the sending process, a document goes through operations depicted in the security scheme given in
Fig. 3(a), that is:

1. PRNG (pseudo random number generation) module generates a session key for AES encryption.
2. Using this AES session key, the AES encryptor encrypts the document to produce ciphertext.
3. RSA encryptor encrypts AES session key using the receiver RSA public key.
4. SHA Hashing module generates a message digest of the document.
5. ECDSA signing module computes the corresponding digital signature using sender ECC private key.

Design and Implementation of a Private and Public Key Crypto Processor for Next-Generation IT Security Applications pp. 29 - 45

32
Malaysian Journal of Computer Science, Vol. 19(1), 2006

Fig. 2: The GUI of the e-document security system

Fig. 3(a): Security scheme for Sender File Upload

In the receiving process, the now secured document undergoes the recovery process depicted in the security scheme
given in Fig. 3(b) to recover the original data, that is:

1. ECDSA verifying module verifies the received digital signature, using sender ECC public key. If this
signature verification fails, the receiving process stops here, else continue.

2. Using receiver RSA private key, the RSA Decryptor decrypts the encrypted session key to recover the AES
session key.

3. With this key, the AES decryptor decrypts ciphertext to recover original document.

Fig. 3(b): Security scheme for Receiver File Download

Design and Implementation of a Private and Public Key Crypto Processor for Next-Generation IT Security Applications pp. 29 - 45

33
Malaysian Journal of Computer Science, Vol. 19(1), 2006

4.0 THE CRYPTO CO-PROCESSORS

4.1 AES Processor for Symmetric Encryption

NIST (National Institute of Standards and Technology, US Government’s official standard organization) has now
specified AES-Rijndael in the document Federal Information Processing Standard (FIPS) 197, as the new standard
for symmetric encryption. AES comes in three security strengths: 128-bits, 192 bits and 256 bits. In this paper, the
architecture for 128-bit AES has been designed. The number of rounds depends on both of these parameters and is
given in [6]. Therefore, the cipher in all configurations presented operates in Nr = 10 rounds.

 (a)

(a) Encryption (b) Decryption

Fig. 4: Structure of AES algorithm

Fig. 4 shows the encryption and decryption structure of the AES algorithm applied in this work. In encryption, after
the initial roundkey addition, Nr rounds are performed. The operations are the same in the first Nr -1 rounds, with a
small difference in the final round. As shown in Fig. 4(a), each of the first Nr-1 rounds consists of four
transformations: SubBytes, ShiftRows, MixColumns and AddRoundKey. The final round excludes the MixColumns
transformation. The decryption algorithm uses a different ordering of the inverse forms of the transformations used
in the encryption algorithms as shown in Fig. 4(b). The four transformation operations are summarized as follows:

• SubBytes: This transformation is a non-linear byte substitution using a substitution table (S-box). The S-box is

constructed of the compositions of two transformations: multiplicative inverse in GF(28) with irreducible
polynomial m(x) = x8+x4+x3+x+1, and an affine mapping over GF(2). In the decryption process, the inverse S-
box is used.

• ShiftRows: In this transformation, the rows of the State shift cyclically to the left with different offsets. In the
decryption process, the shifting offsets have different values.

• MixColumns: The MixColumns transformation is performed on the State column-by-column. Each column is
considered as s four-term polynomial over GF(28) and multiplier by a(x) modulo x4 + 1, given by a(x) = {03}x3
+ {01}x2 + {01}x + 1 for encryption and a(x) = {0B}x3 + {0D}x2 + {09}x + {0E} for decryption process.

• AddRoundKey: In this transformation, a round key is added to the State using a bitwise Exclusive-OR (XOR)
operation. AddRoundKey is the same for the decryption process.

The decryption model given in Fig. 4(b) is modified from the original described in the NIST standard. It has been
rearranged with some changes to the key generation unit to obtain a structure similar to the encryption model. This
modification is based on the properties of the AES algorithm, which is:
• InvShiftRows transformation immediately followed by an InvSubBytes transformation is equivalent to

InvSubBytes transformation immediately followed by an InvShiftRows transformation.
• InvMixColumns transformation is linear, which means:
 InvMixColumns(State XOR roundkey) = InvMixColumns(State) XOR InvMixColumns(roundkey)

Fig. 5 shows the hardware architecture of AES crypto processor core designed in this work. It combines encryption
and decryption into one block, permitting the sharing of common modules. This crypto processor is designed based

Design and Implementation of a Private and Public Key Crypto Processor for Next-Generation IT Security Applications pp. 29 - 45

34
Malaysian Journal of Computer Science, Vol. 19(1), 2006

on 4-state pipeline so as to increase the maximum running frequency and timing performance. It consists of three
main modules, which are KeyGen, Control Unit and Encryption/Decryption Unit. The KeyGen is designed to
generate the roundkey for AddRoundKey transformation in every round. The data path for encryption/decryption is
as follows:

Pt/Ct → m2 → ARK →M-SB →M-SR →M-MC →m1→m2→ARK →Ct/Pt.
We implemented the SubBytes block (S-box) based on the calculation of multiplicative inverse and affine transform
instead of using ROM-based lookup table to reduce the hardware logic count.

KeyBit
KeyGen

Clk Reset

keySel
EncDec
KeyBit_Request
First_Round
Final_Round

Key

KeyValid

DataValid

Start

Enc

Control
unit

Clk Reset

ReadResult
KeyBitRequest

LoadData
LoadKey

Sel_M1(Final Round)
Sel_M2 (First Round)

KeySelect
UpdateKey

Done

DataRequest
KeyRequest

EncDec

M - SB

M - SR

M - MC

m1

m2

Pt / Ct

ARK

Ct / Pt

128

128

128

128

128

128

EncDec

EncDec

EncDec

EncDec

Sel_M1

Sel_M2

Fig. 5: Block diagram of the AES-128 core

4.2 RSA Processor for Public Key Cryptography

The RSA algorithm, invented in 1977 by Rivest, Shamir, and Adleman [7], is currently the most popular public key
cryptosystem in use, particularly in high-end commercial software products that are typically employed in e-
commerce and VPN servers. It can provide encryption and digital signatures. In hardware implementations, the
RSA algorithm can be found in secure telephones, in Ethernet network cards, and smart cards. The main advantage
of the algorithm is that it can provide both data confidentiality service (via public-key encryption) and data integrity,
authentication and non-repudiation (via digital signatures) using the same key pair and under the same mathematical
operation. Its hard problem is based on the large integer factorization problem.

RSA algorithm is the essence of simplicity [8]. To encrypt a message X to its cipher text P, we perform P = XE mod
M using the public key (E, M). To restore the message, X= PD mod M is performed, where (D, M) is the private key.
For digital signature purpose, we use the private key in signing, S = XD mod M. To verify the signature, we use the
public key to perform X = SE mod M. Fig. 6 below shows the RSA process. In RSA, whether encrypting,
decrypting, signing, or verifying, the operation is basically a wide-operand modular exponentiation. The basic
modular exponentiation equation, given by: Y = XE mod M, essentially consists of thousands of modular
multiplication, A.B mod M, in GF(p). Thus, the modular exponentiation is computation-intensive and requires a long
computation time. A proven method to speed up its operation time is to utilize Montgomery modular
multiplications, which do not have divisions.

Fig. 6: RSA operation

The Modular Exponentiation algorithm, ModExp(), applied in this work is given in Algorithm 1, Fig. 7 below. It
utilizes the Montgomery modular multiplication, MonMult(), with the algorithm given in Fig. 8. For hardware
implementation, the multi-precision version of Montgomery multiplication is employed, in which the algorithm

M-SB : Mixed SubBytes
M-SR : Mixed ShiftRow
M-MC : Mixed
MixColumn
ARK : AddRoundKey
Pt/Ct :
Plaintext/Ciphertext
Ct/Pt :
Ciphertext/Plaintext
 m1 : multiplexer 1
 m2 : multiplexer 2

Encryption/
Decryption
datapath

Design and Implementation of a Private and Public Key Crypto Processor for Next-Generation IT Security Applications pp. 29 - 45

35
Malaysian Journal of Computer Science, Vol. 19(1), 2006

assumes that M is an m-digit number in radix-r, and R = rm. In our hardware design, radix-2 is chosen. More
elaborate explanations on the derivations of these algorithms can be found in [9] and [10].

Fig. 7: Modular Exponentiation algorithm Fig. 8: Montgomery Modular Multiply

We now present the design of the modular exponentiation module, which is the core operation in an RSA processor.
This design can perform RSA operations with key length up to 1024-bit. The design is described completely in
parameterizable VHDL code, such that it is scalable for increase in key length for future stronger key strength. Fig.
9 shows the architecture of RSA crypto processor core (ModExp), which is designed based on Montgomery
Modular Exponentiation algorithm given in Fig. 7. It consists of a Montgomery modular multiplier (MonMult),
operand RAMs, multiplexer, 1-bit to 32-bit shift register (MM2ME32) and a state machine (SM_ModExp). All the
modules are synchronously clocked. Five RAMs are needed to store the operands R2 mod M, X, E, M and a
intermediate modular multiplication result Pi+1 in a Algorithm 1 step 2b. A 32-bit shift register, MM2ME32, is used
to collect the modular exponentiation result bit stream in 32-bit packets. SM_ModExp is the controller that governs
the signal’s flow between modules.

The MonMult module performs the Montgomery modular multiplication based on algorithm shown in Fig. 8. The
design is implemented as a one-dimensional two-way systolic array for high-speed operation. The systolic array
consists of several processing elements (PE) and each PE computes successive values for a single bit position. The
PEs are pipelined so that the data flow from the right cell to the left cell and each cell takes a clock cycle to process.
Detailed architecture design and hardware mapping can be found in [10].

 Fig. 9: Modular Exponentiation architecture for RSA

Algorithm-1:
ModExp(R2 mod M, X, E, M)

Compute P = XE mod M,

E =∑ −

=
⋅

1

0
2n

i
i

ie , ei Є {0, 1}

1. P0 = MonMult(1, R2 mod M, M)

 Z0 = MonMult (X, R2 mod M, M)
2. For i = 0 to n-1
2a. Ptemp = MonMult(Pi, Zi, M)
 Zi+1 = MonMult(Zi, Zi, M)
2b. if ei = 1 then Pi+1 = Ptemp
 else Pi+1 = P1
3. End For
4. P = MonMult (Pn, 1, M)

Algorithm-2: MonMult(A, B, M)

Compute P = A.B.2-(m+2) mod M,

M = ∑ −

=
⋅

1

0
2m

i
i

im

B = ∑ =
⋅

m

i
i

ib
0

2 , B < 2M

A =∑ +

=
⋅

2

0
2m

i
i

ia , mi, bi, ai Є {0, 1},

 am+1 = am+2 = 0, A <2M

1. P0 = 0
2. For i = 0 to m+2 Loop
2a. qi = pi,0
2b. Pi+1 = (Pi + qi·M)/2 + ai·B
3. End Loop
4. Return P = Pm+3

Design and Implementation of a Private and Public Key Crypto Processor for Next-Generation IT Security Applications pp. 29 - 45

36
Malaysian Journal of Computer Science, Vol. 19(1), 2006

In RSA, each user has a pair of keys, i.e. public key (E, M) and private key (D, M). M is the modulus, E is the public
exponent and D is the private exponent. RSA key length refers to the bit length of the modulus. These keys are
generated using the algorithm as shown in Fig. 10. p and q must be kept secret or deleted. (gcd stands for greatest
common divisor. D is the multiplicative inverse of E modulo M.)

Fig. 10: RSA key pair generation algorithm

4.3 ECC Processor for Public Key Cryptography

N. Koblitz and V. Miller first suggested Elliptic Curve Cryptography (ECC) in 1985 [1]. The main strength of ECC
rests on the concept of solving discrete logarithm problem (DLP) over the points on an elliptic curve. This provides
for higher strength-per-bit than any other public key cryptosystem, implying that significantly smaller parameters
can be used in ECC as compared to other competitive systems, but with equivalent levels of security. For example,
the security level of a 160-bit ECC key is equivalent to 1024-bit RSA [11]. The benefits of having smaller key sizes
include faster computations, and reductions in processing power, storage space and bandwidth. This makes ECC
ideal for resource-constrained environments such as pagers, PDAs, cellular phones and smart cards.

Fig. 11(a) shows the arithmetic hierarchy of ECC, which indicates that ECC essentially requires the application of
two types of mathematics: elliptic curve arithmetic and the underlying finite field arithmetic. ECC-based security
protocols such as ECDSA (Elliptive Curve Digital Signature Algorithm), ECDH, and ECES are performed using
ECC arithmetic functions at the top level of the ECC arithmetic hierarchy. An example is shown in Fig. 11(b),
where ECC point multiplication and point add is performed in ECDSA security scheme. Elliptic curve arithmetic
defines the algorithms to perform these point multiplying, point adding, point doubling, and other
control/conversion functions. The finite field arithmetic provides basic finite field operations include field inversion,
field addition, field multiplication and field squaring.

Fig. 11(a): The arithmetic hierarchy of ECC Fig. 11(b) ECDSAsSignature verification

The current version of the proposed cryptosystem applies the ECC domain parameters as follows:

1. Type of underlying finite field: Binary field in GF(2163).
2. Field representation: Polynomial basis representation.
3. Type of elliptic curve: Over F2

m, Koblitz Curve sect163k1 taken from [8].

1. Generate 2 primes, p and q randomly.
2. Calculate M = p.q, and Φ(M) = (p-1).(q-1).
3. Generate E that fulfills both the conditions 1

< E < Φ(M), and gcd (Φ(M) , E) = 1.
4. Calculate D = E-1 mod Φ(M).

1.0 ECDSA SIGNATURE VERIFICATION
ALGORITHM

 Input: G (Finite point in domain parameter),

Q (public key of entity A),
m (message),
 (r, s) Signature on message of entity A.

 Output: Accept or reject signature from A.

1. Verify r, s are integers in the interval [1, n-1].
2. Perform crypto hashing, e = SHA-1 (m).
3. Compute w = s-1 mod n
4. Compute u1 = ew mod n

 and u2 = rw mod n.
5. Perform ECC point multiply & point add: X(x2, y2) =

u1G + u2Q.
6. If X = O, then reject the signature. Otherwise, compute v

= x2 mod n.
7. Accept the signature if and only if v = r.

Design and Implementation of a Private and Public Key Crypto Processor for Next-Generation IT Security Applications pp. 29 - 45

37
Malaysian Journal of Computer Science, Vol. 19(1), 2006

4. Elliptic curve point representation: Point Multiplication in Projective Coordinates, and Point Addition in
Affine Coordinates, supported by trinomial & pentonomial as recommended by IEEE, NIST.

The elliptic curve point multiplication is the core operation. In ECC, the fundamental crypto operation is this point
multiplication, i.e. a point Pa is (point) added to itself k times, over an elliptive curve.

Q = kP = P + P + … + P (k times) ……(1)

An elliptic curve over the finite field GF(p) is defined as the set of points (x, y) which satisfy the operation:
y2 = x3 + ax + b ……(2)

where x, y, a and b are elements of the field, and 4a3 + 27b2 ≠ 0. To encrypt, the data is represented as a point on the
chosen curve over the finite field.

This work implements binary field GF(2163), or so called binary finite field, because of its high efficiency
achievable in hardware implementation. Due to the reason that normal basis representation is not the best choice for
an elliptic curve processor with flexible finite field support, the polynomial basis representations have been chosen
as the basis of binary field arithmetic in this work. The field elements are represented as polynomial basis with
coefficient 0 or 1. The design is adapted towards supporting both trinomial and pentanomial as recommended by
IEEE and NIST. The projective coordinate system is applied instead of affine coordinate system, and this is to
eliminate field inversion in point addition and point doubling. Field inversion is the most complex and expensive
operations in terms of processing time and hardware resource. Montgomery point multiplication algorithm in
projective coordinate is chosen in this work because it prevents information leakage in the form of power signature
differences and offers comparatively better performance. Fig. 12 gives a summary of Montgomery Point
Multiplication in projective coordination.

 Fig. 12: Montgomery Point Multiplication (Projective Coordinate Version)

Fig. 13 shows the architecture of the control unit and the datapath module of the ECP core. The control unit utilizes
a micro sequencer and an iteration counter. Meanwhile, the datapath module performs basic finite field arithmetic
operations such as field addition, field multiplication and field squaring. It comprised a register file and an
arithmetic unit incorporates a finite field multiplier, a parallel squarer and accumulator and a zero test circuit. For a
more detailed description of the algorithm and design of the ECP, please refer to [12] and [13].

To strike a balance between parallel and bit-serial multiplication, this work implements Least Significant Digit First
(LSD-First) multiplication to perform finite field multiplication in the ECP design due to its shorter critical path
delays. Besides, parallel squaring with fixed irreducible polynomial support together with Itoh-Tsuji inversion are
applied in this design for the purpose of simple and efficient hardware implementation of field inversion. The ECP
design is described completely in parameterized VHDL code, such that the core is reconfigurable and reusable. In
this parameterizable design, the processor can be configured to support any field size and polynomial, as
recommend by NIST and Certicom [3]. For working environment with memory, bandwidth, or power dissipation
constraint, user can vary the degree of parallelism in the multiplier to achieve desired performance-cost trade-off.

Algorithm-3: Montgomery Point Multiplication

Input: k =]1,0[,21

0
∈⋅∑ −

= i
l

i
i

i kk (multiplier)

 P(x, y) – a random point on an elliptic curve (multiplicand).
Output: Q = kP = (xQ, yQ)

1. (X1, Z1, X2, Z2) = Conv_affine_projective(x, y, b)
2. for i = l – 2 down to 0 do

2.1 if ki = 1 then
(X1, Z1) = M_add(X1, Z1, X2, Z2, x)
(X2, Z2) = M_double(X2, Z2, b)

 else
 (X2, Z2) = M_add(X2, Z2, X1, Z1, x)
 (X1, Z1) = M_double (X1, Z1, b)

end for
3. (xQ, yQ) = Conv_projective_affine(X1, Z1, X2, Z2, x, y)

Design and Implementation of a Private and Public Key Crypto Processor for Next-Generation IT Security Applications pp. 29 - 45

38
Malaysian Journal of Computer Science, Vol. 19(1), 2006

Fig. 13: Architecture of Control Unit and Datapath Module in ECP

4.4 SHA Processor for Crypto Hashing

A hash function maps binary strings of arbitrary length to binary strings of some fixed length, called message
digest. Hash function with cryptographic properties is called cryptographic hash function. Cryptographic hash
function is generally a one-way and collision resistant function [14]. It refers to the function that is relatively easy to
compute, but significantly harder to reverse. Collision resistant means that it is computationally infeasible to find
different messages with same message digest. The hash function serves to compress the large input data for public-
key encryption/signing function.

Among the hashing functions available, the SHA-1 algorithm [15] is preferable. This is because of its balanced
security (secure to all known attacks), speed (higher parallelism) and applicability. In SHA-1 algorithm, input
message that is less than 264 bits is hashed into a 160-bit fixed length message digest. The main operation of SHA-1
algorithm is given in Fig. 14.

Fig. 14: SHA-1 Message digest computation

SHA-1 hash algorithm consists of three main stages, i.e. padding, message digest computation and message digest
output.

• Padding: converts input message into block of 512-bit each.
• Message digest computation: Initializes message digest buffers, and then loops the SHA-1 compression

function for all converted message blocks, such as message expansion, bit-wise logical function, constant
multiplexing, etc.

• Message digest output: Concatenation of five chaining variables after the message digest computation of
the final compression function loop.

Design and Implementation of a Private and Public Key Crypto Processor for Next-Generation IT Security Applications pp. 29 - 45

39
Malaysian Journal of Computer Science, Vol. 19(1), 2006

Because they are not computationally intensive, the padding stage and message digest output stage are normally
performed in software. However, the message computation stage is computation demanding, and therefore should
be performed in hardware. In this work, the Bosselears’s architecture [16] is modified to exploit parallelism and
customization offered by hardware. The modification leads to a systolic array implementation of adder tree in
iteration module.

Fig. 15 shows the block diagram of the SHA1_engine module that maps the SHA-1 compression function into
hardware. The main unit is iteration-step-variable-update unit that initialize, stores and updates the iteration-step-
variables. The message expansion unit reads and expands external input message word (Mt). The constant
multiplexer supplies a constant word for each iteration step. The logical function unit converts three words (B, C,
and D) into single word (Ft) based on logical functions. The feed forward unit stores and updates the chaining
variables, which are finally sent out as the message digests (MD). For an elaborate description of the detail design of
the proposed SHA-1 hardware core, please refer to [14].

Fig. 15: Datapath unit of SHA1_engine

4.5 LZSS Processor for Data Compression

In data communications and data storage system, it is desirable to have faster transfer rates and greater storage
capacity at lower costs. Data compression techniques address these demands by removing redundancy from the
source data and thereby increase the density of transmitted or stored data. Since cryptographic applications require
restored data to be identical to the original, lossless data compression is applied in this work. The design of the
compression core proposed in this work is based on the combination of Lempel-Ziv-Storer-Szymanski (LZSS)
compression algorithm and Huffman coding. In our design of the data compression processor core, the compression
and decompression are performed in separate modules. With a systolic array hardware architecture mapping
approach to part of the algorithm, the resulting IP core offers a data-independent throughput that can process a
symbol on every clock cycle. The design is described completely in parameterized VHDL code such that it can
provide a suitable compromise between the constraint of resource, speed and compression saving, and adaptable for
any specific target application. For a more elaborate description of the design, please refer to [17].

Fig. 16(a) shows the block diagram of the Compression Unit of LZSS processor core. It consists of three
hierarchical blocks, which are LZSS coder, fixed Huffman coder and data packer. All the modules are
synchronously clocked. The LZSS coder performs the LZSS encoding to symbols of source data, which is obtained
from the Compression Interface, and the fixed Huffman coder re-encodes the LZSS codeword to achieve a better
compression ratio. Finally, the data packer packets the unary codes from the fixed Huffman coder into a fixed-
length output packet and sends it to the Compression Interface. Fig. 16(b) shows the block diagram of the
Decompression Unit of LZSS processor core.

Fig. 16(a): Block diagram of compression unit

Design and Implementation of a Private and Public Key Crypto Processor for Next-Generation IT Security Applications pp. 29 - 45

40
Malaysian Journal of Computer Science, Vol. 19(1), 2006

Fig. 16(b): Block diagram of decompression unit

4.6 MAP Processor for Wide-Operand Modular Arithmetic

This section presents the design of a Modular Arithmetic Processor (MAP) for the computation, in hardware, of the
arithmetic operations defined over a Galois Field GF(P). This processor is designed as a complementary core to
enhance the overall timing performance of ECDSA subsystem. The wide-operand (or large integer) modular
arithmetic operations were originally performed in embedded software, but its performance is inadequate for our
purpose as it suffers from a very long computation time. The underlying modular arithmetic operation of ECDSA
scheme requires modular multiplication, division/inversion and addition/reduction. Among these operations, the
modular division is the most computation-intensive underlying operation in ECDSA scheme. Besides, division is by
far the most costly operation in terms of speed and the speed of the overall processor will depend on a high-speed
divider. Therefore, special attention is given to the computation of the modular division, and is now elaborated.

The modular division (y = a/b mod M) is then integrated with other operations, namely modular multiplication (y =
a*b mod M) and modular addition (y = a+b mod M) into a complete modular arithmetic unit. This processor is also
able to perform modular inversion (y = 1/b mod M) by letting a=1 and using modular division instruction. By
letting a=0 in modular addition operation, it can implement modular reduction (y = a mod M). All of the other
algorithms are carefully chosen so they can share the common hardware resources in the modular divider without
any major modification on the hardware architecture. However, to implement the mentioned operations, it needs to
be somewhat extended.

Fig. 17: Hardware architecture of MAP core

Design and Implementation of a Private and Public Key Crypto Processor for Next-Generation IT Security Applications pp. 29 - 45

41
Malaysian Journal of Computer Science, Vol. 19(1), 2006

The proposed modular divider is designed based on a binary add-and shift algorithm to perform modular division
presented by S.C Shantz in [18]. This provides an alternative to division by inversion followed by multiplication.
This algorithm is chosen because the most critical operation is shifting and addition/subtraction operation only
instead of hardware costly operation such as multiplication and exponentiation operation, resulting in simpler
hardware architecture. For modular multiplication, we choose an interleaved algorithm [9], where addition
alternates with modular subtraction. This algorithm is simple and straightforward, yet quite efficient. Since it uses
standard number representation, it is relatively easy to implement in hardware. Fig. 17 shows the top-level
architecture of the MAP core. It consists of MAP_FSM and MAP_DPU. The MAP_FSM works as the control unit to
receive the condition signals from and send the control signals to MAP_DPU unit. The MAP design is described
completely in parameterized VHDL code, such that the core is reconfigurable and reusable for different field sizes.
For the prototype presented in this work, it is set to perform 163-bit modular arithmetic operation to fit into the
implemented ECDSA scheme.

5.0 FPGA IMPLEMENTATION & PERFORMANCE EVALUATION

The design effort of the proposed embedded system involves hardware design, interface design and software development. Hence, it calls for
hardware software co-design, in which both hardware and software are designed in tandem to provide overall system functionality. The hardware
blocks are described in VHDL (VHSIC Hardware Description Language) using VHDLmg, a design entry tool developed in-house in UTM [19].
Modeling the processor in VHDL facilitates quick prototyping and modification of the target design while considering various possible trade-offs
in different implementations of the crypto algorithms with different speed and area characteristics.

Each crypto core is synthesized, simulated, place and routing, and timing analyzed using Quartus II EDA software
from Altera. The complete embedded cryptosystem is prototyped in a single Altera Stratix EP1S40F780C5 FPGA
chip employing Altera SOPC Builder. Design verification is performed via timing simulations and the complete
system is validated through the functional evaluation tests performed on the demonstration application prototype.
These tests verified that all the required security services (data confidentiality, data integrity, non-repudiation and
authentication) are achieved at an approximate speed of 2.2 kbyte /sec. Due to lack of space in this paper, we
provide below only a sample of the design verification of one of key crypto core, and then we present the
performance analysis and results of each processor core developed in this work, in turn. Fig. 18 shows a snapshot of
the timing simulation output of the modulation exponentiation module in our RSA coprocessor core. The timing
diagram shows the behavior the core at the end of operation, which completes with the reading the 32-bit result
from RAM module in the core to Avalon Bus of the main Nios processor. This verifies this design.

Fig. 18: Timing simulation of Modular Exponentiation core - at the completion of the operation

Design and Implementation of a Private and Public Key Crypto Processor for Next-Generation IT Security Applications pp. 29 - 45

42
Malaysian Journal of Computer Science, Vol. 19(1), 2006

Table 1 shows the performance of AES crypto processor. This AES processor needs 43 clock cycles for single
block of encryption process. However, for the decryption process, 86 clock cycles are needed for first block
decryption process due to the key derivation process. From second block until last block, the clock cycles needed is
the same as the encryption process, that is, 43 clock cycles.

Table 1: Performance of AES processor
Features AES Processor (128-bit)

Speed 297 Mbit/s with 100 MHz clock rate
Area 4584 LEs (Logic Elements)
Latency 43 clock cycles (encryption)

86 clock cycles (for first 128 bit block in decryption)

Table 2: Performance of RSA processor

Features RSA Processor (1024-bit)
RSA key length 1024-bits
fmax 100.25 MHz
Area 12881 LEs (≈ 200,00 gates)
Encryption (5-bits) with 66 MHz 0.25ms (4000 op/s)
Decryption (1024-bits) with 66Mhz 31.93ms (31 op/s)

Table 2 shows the performance of RSA crypto processor for modulus length (key length) of 1024-bit, while Table 3
shows the area and timing performance of ECP processor. The ECP processor implements the binary field GF(2163)
in polynomial basis representations as the basis of binary field arithmetic. It supports both trinomial and
pentanomial as recommended by IEEE and NIST [20]. Montgomery point multiplication algorithm in projective
coordinate is chosen. For this performance evaluation purposes, the elliptic curve system domain parameters over
F2

m associated with a Koblitz Curve sect163k1 [20] is implemented. The Digit Size is the number of bits of LSD
multiplier operand processed in parallel, and it can be varied to achieve the trade-offs between speed, area, power
consumption, and other performance metrics. Register usage in the table refers to the programmable register in each
LEs. As can be seen from Table 3, processing time for each operation decreases as the digit size of the LSD
multiplier increases. However, larger digit size also causes modest reduction of maximum operating frequency in
each case.

Table 3: Area Performance of ECC processor
Point Multiplication Point Addition Digit

Size
(bits)

Fmax
(MHz) Clock

Cycle op/sec Clock
Cycle op/sec

Logic
Elements

(LEs)
Registers

8 115 26445 4348 813 141451 2994 1095

16 110 16599 6626 705 156028 4323 1179

32 105 11685 8985 651 161290 5801 1194

64 95 8711 10905 617 153970 9792 1225

Table 4 shows the area and timing performance of SHA-1 crypto processor. The input is a single block of 512-bit
message after padding function according to FIPS PUB 180-1 standard [15]. The output is a 160-bit message digest
of the single block message after hashing function. The SHA-1 crypto processor is based on systolic architecture.

Table 4: Area and timing performance of SHA-1 processor
Features SHA Processor

fmax 100 Mhz
Speed 0.83 x 106 blocks/s (1 block = 512-bit)
Latency 120 clock cycles (for each 512-bit input block)
Area 1194 LEs

Design and Implementation of a Private and Public Key Crypto Processor for Next-Generation IT Security Applications pp. 29 - 45

43
Malaysian Journal of Computer Science, Vol. 19(1), 2006

Table 5 shows the area and timing performance analysis of our LZSS data compression and decompression core.
Since, in our design a symbol is processed every clock cycle, the formula for calculating our throughput is:

Throughput = f * SymbolWIDTH

where f is the operation frequency and SymbolWidth is one of our parameterized values. In this case the
SymbolWidth = 16. The compression rate achieved by our LZSS data compression processor is 2.35:1.

Table 5: Area and timing performance of LZSS processor

Evaluation Compression Core Decompression Core
LE 8888 1243 Area

Memory Bit 23136 26112
fmax 124.84 MHz 121.51 MHz Speed Throughput 1997.44 Mbps 1944.16 Mbps

Table 6 shows the area and timing performances of MAP arithmetic processor. This architecture is targeted for 163-
bit GF(p) large integer modular arithmetic operations. The architecture is designed based on add-and-shift algorithm
in butterfly structure.

Table 6: Area and timing performance of MAP processor

fmax = 40 MHz Modular Arithmetic
Operation clock cycles Elapsed time

(ms) ops/s

Modular division 806 0.02015 49627
Modular Multiplication 866 0.02165 46189
Modular Addition 40 0.001 1000000
Modular Reduction 40 0.001 1000000
Area 5161 LEs

Table 7 shows the timing performance of ECDSA operations. For evaluation purposes, the input of signature
signing and verification process is assumed to be a block of 512-bit message ready for hashing operation, while the
output is a 163-bit ECDSA digital signature or digital signature verification result. The elliptic curve system is fixed
to domain parameters over F2

m associated with a Koblitz Curve sect163k1 as recommended in [20]. Table 7 shows
that the ECDSA cryptosystem operates at system frequency of up to 40 MHz. This upper limit of the frequency is
due to the bottleneck at the MAP processor which supports fmax of 40 MHz. Therefore, to enhance the timing
performance of overall ECDSA cryptosystem, the MAP processor should be upgraded by using more advanced
algorithm or architecture such as systolic array.

Table 7: Timing performance of ECDSA operation

Running Frequency (40 MHz) Operation
Clock Cycles Elapsed Time (ms) Ops/s

Key pair generation 36846 0.92115 1085
Signing 23567 0.58918 1697
Verifying 42685 1.06713 937

6.0 CONCLUSIONS

In this paper, we have presented the design and implementation of a cryptohardware. The proposed embedded
system successfully provides the complete suite of PKI-enabling functions, which include AES encryption, RSA
encryption, ECC digital signature, SHA-1 hashing, and LZSS data compression. A wide-operand modular
arithmetic module is also available to accelerate modular computations. The hardware design is completely
described in VHDL, and is prototyped in a single reconfigurable microchip, Altera Stratix EP1S40F780C5 FPGA.
The crypto core designs are parameterizable to allow for different implementations and applications, and dependent
on the target hardware resources and required timing performance. A demonstration application prototype is
developed to validate the proposed cryptohardware. The application is a secure e-document transfer via an insecure

Design and Implementation of a Private and Public Key Crypto Processor for Next-Generation IT Security Applications pp. 29 - 45

44
Malaysian Journal of Computer Science, Vol. 19(1), 2006

electronic communication channel. This application thoroughly tests and verifies the functionality of the system and
reusability of the APIs designed. The high performance and flexibility achieved by the proposed embedded system
makes it viable to be deployed in many security applications such as storage devices, embedded systems, hardware
security module, network routers, security gateway, and the like.

REFERENCES

[1] P. C. van Oorschot, A. J. Menezes, and S.A. Vanstone, “Handbook of Applied Cryptography”, CRC press Inc.,

Florida, 1996.

[2] Understanding Public Key Infrastructure, RSA Data Security, 1999.

[3] The Elliptic Curve Cryptosystem, Certicom Corp., July 2000.

[4] A. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA-based performance evaluation of the AES block

cipher candidate algorithm finalists”, in IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
August 2001, pp. 545-557.

[5] F. Crowe, A. Daly, T. Kerins, and W. Marnane, Single-Chip FPGA Implementation of a Cryptographic Co-

Processor, Dept. of Electrical & Electronic Engineering, University College Cork, Ireland, 2004.

[6] J. Daemen and V. Rikmen, The Design of Rijndael: AES – the Advanced Encryption Standard, Springer-

Verlag, Berlin, 2002.

[7] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public key

cryptosystems”, in Communications of the ACM, February 1978, Vol. 21, No. 2, pp. 120-126.

[8] J. L. Massey, “An Introduction to Contemporary Cryptology”, in Proceedings of the IEEE, 1988, Vol. 76, No.

5, pp. 533-549.

[9] P. L. Montgomery, “Modular Multiplication Without Trial Division”, Mathematics of Computation, 1985, Vol.

44, pp. 512-521.

[10] M. Khalil, S. L. Tan, and S. Husin, “FPGA Implementation of RSA Public-Key Cryptographic Coprocessor”,

in Proceedings of IEEE TENCON’2000, Kuala Lumpur, September 2000, pp III-6.

[11] E. Mohammed, A. E. Emarah, and Kh. El-Shennawy, “Elliptic Curve Cryptosystems on Smart Cards”, Arab

Academy for SCIENCE AND Technology, 2001.

[12] M. Khalil and K. W. Lim, “Design of ECC cryptographic coprocessor for implementation in an FPGA-based

Hardware”, Malaysian Science & Technology Congress (MSTC 2003), Kuala Lumpur, Malaysia, September
2003.

[13] M. Khalil and K. W. Lim, “Design of an Elliptic Curve Cryptography (ECC) Processor Core for

Implementation in FPGA-based System-on-Chip (SoC) Cryptosystem”, in Proceedings of the 2003 Malaysian
Science and Technology Congress (MSTC 2003), Kuala Lumpur, Malaysia, September 23-25, 2003.

[14] M. Khalil, A. Z. Shameri, and W. S. Chong, “ Pipeline Implementation of Secure Hash Algorithm SHA-1 for

Cryptographic application in Network Security”, in National Conf. On Telecommunication Technology, Johor
Bahru, Malaysia, 20-21 November 2000.

[15] Secure Hash Standard, National Institute of Standards and Technology, 17 April 1995.

[16] A. Bosselaers, R. Govaerts, and J. Vandewalle, “SHA: A design for Parallel Architectures?”, Advances in

Cryptology, Proc. Eurocrypt’97, LNCS 1233, W. Fumy, Ed., Springer-Verlag, 1997, pp. 348-362.

Design and Implementation of a Private and Public Key Crypto Processor for Next-Generation IT Security Applications pp. 29 - 45

45
Malaysian Journal of Computer Science, Vol. 19(1), 2006

[17] M. Khalil and K. M. Yeem, “FPGA Implementation of Lossless Universal Data Compression Hardware”, in
Malaysian Science & Technology Congress Symposium A, Johor Bahru, Malaysia, 19-21 September 2002.

[18] S. C. Shantz, “From Euclid’s GCD to Montgomery Multiplication to the Great Divide”, Technical Report TR-

2001-95, Sun Microsystems Laboratories, 2001.

[19] M. Khalil and K. H. Koay, “A VHDL Module Generator for Fast Prototyping of Multimedia ASICs”, in

Malaysian Journal of Computer Science, Universiti Malaya, Malaysia, June 2000, Vol. 13, No.1, pp. 65-75.

[20] SEC2: Recommended Elliptic Curve Domain Parameters, Certicom Corp, 2000.

BIOGRAPHY

Mohamed Khalil Hani obtained his PhD in Electrical & Computer Engineering from Washington State University,
Pullman in 1992. Currently, he is a Professor of Digital Systems & Microelectronics at the VLSI-ECAD Research
Laboratory in the Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai. His current research
interests include Digital System, Embedded systems and System-on-Chip (SoC) Technology, VLSI &
Microelectronics System Design, Hardware Cryptosystem Design for IT Security, Artificial Intelligence Techniques
& Neurohardware for Pattern Recognition. He has published an extensive number of papers on these subjects in
local and international conference proceedings and journals. He is a member of IEEE member since 1996 in the
associated Circuits & System Society and the Computer Society.

Hau Yuan Wen obtained her Masters in Electrical Engineering from Universiti Teknologi Malaysia in 2005. Her
specialization is in the field of advanced digital system design, embedded system and System-on-Chip (SoC). She
has served as a research officer at the VLSI-ECAD Research Laboratory in the Faculty of Electrical Engineering,
Universiti Teknologi Malaysia, Skudai.

Arul Paniandi obtained his Masters in Electrical Engineering from Universiti Teknologi Malaysia in 2006. His
specialization is in the field of advanced digital system design, embedded system and System-on-Chip (SoC). He is
currently employed as a design engineer in Altera Corp Sdn Bhd in Penang, working on IP core designs.

