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Abstract 
 
Insertion is an operation in formal language theory that generalizes the operation of concatenation of 
words, where its variants allow the operation in different ways. Parallel insertion is a variant of 
insertion that simultaneously adds words between all letters of a word and also at the right and left 
extremities. In previous research, restrictions on the applicability have been imposed leading to so-
called bonded insertion systems with a sequential and a parallel variant.  Motivated by the atomic 
behavior of chemical compounds in the process of chemical bonding, the generative power of 
bonded insertion systems has been investigated where a language hierarchy was obtained. In this 
paper, we introduce new variants of bonded parallel insertion systems, namely bonded Indian 
parallel insertion systems and bonded uniformly parallel insertion systems. We present some results 
regarding the generative power of these new systems and a language hierarchy. 
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INTRODUCTION 
 

A formal language is a set of finite strings of symbols from a 
finite alphabet. The language theoretical operations which contribute 
to the forming of a sentence consist of concatenation, quotient and 
Kleene closure [1]. 

In [1], Kari introduced a generalization of the concatenation and 
quotient operations, namely the insertion and deletion operations, 
respectively. The study of insertion and deletion operations has been 
conducted extensively ever since its introduction as seen in [2-12].  

Concatenating a word v  to a word u  yields one word, namely 
uv ; whereas inserting a word v  into a word u  may take place at an 
arbitrary position in the word u , resulting in a finite set of words. The 
operation of inserting one word into another word at a time is called 
sequential insertion. Inserting words into all possible positions at a 
time, which includes between all the letters in a word and to its right 
and left extremities, is called parallel insertion. 

The atomic behaviour of chemical compounds in the process of 
chemical bonding motivated the work in [13], where the concepts of 
bonded sequential insertion systems (bSINS-systems) and bonded 
parallel insertion systems (bPINS-systems) were introduced. These 
bonded insertion systems describe operations of insertion on bonded 
alphabets, which is explained in detail in Section 2. 

The results from [13] show that the relation 

   
L REG( )⊂ L(bSINS)⊂ L(bPINS)⊂ L(E0L)  

holds. In this case, 
  
L REG( ) ,     L(bSINS) ,     L(bPINS) , and    L(E0L)  

refer to the families of regular languages, of languages generated by 

bSINS-systems, of languages generated by bPINS-systems, and of 
languages generated by extended interactionless Lindenmayer 
systems, respectively (see, e.g., [13,14]). 

In this paper, we explore the bPINS-systems further.  By 
implementing some restrictions on the insertion rules, we introduce 
the concept of bonded Indian parallel insertion systems and bonded 
uniformly parallel insertion systems.  
 
PRELIMINARIES 

 
We assume that the reader is familiar with the basic concepts of 

formal language theory (see, e.g., [15]). Here, we only recall some 
notations used in the paper. 

The cardinality of a set S  is denoted by S ; the inclusion of a set 

A  in a set B  is denoted by  A⊆ B  and the proper inclusion by 
A B⊂ . 

A set of symbols is called an alphabet, denoted by Σ . The set ∗Σ  
of strings is obtained from the operations on symbols from Σ . A 

language  L  over an alphabet Σ  is a subset of ∗Σ .  
We denote the empty word by λ . For a word w , the length is 

denoted by w . 

We recall here the definition of a bonding alphabet used in [13]. 
Let  ! be the set of integers, as well as 

   
!0
− = 0,−1,−2,…{ } and !0

+ = 0,1,2,…{ } . 

L(EDTOL)	

L(upINS)	

L(ipINS)	

L(FIN)	

RESEARCH	ARTICLE	
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Observe that 
  
!0
+ =" . 

Let Σ  be an alphabet. Then the set 
   
BΣ =!0

+ × Σ×!0
−  is a 

bonding alphabet over Σ .  An element 
  

i, a,− j( )  of BΣ  is called a 
letter a  with left bond i  and right bond j− . To simplify the 

presentation, we write i ja−⎡ ⎤
⎣ ⎦  instead of 

  
i, a,− j( )  for a letter from 

BΣ . Let  

   
w= i0

a1i1
⎡
⎣⎢

⎤
⎦⎥ i2

a2i3
⎡
⎣⎢

⎤
⎦⎥ i4

a3i5
⎡
⎣⎢

⎤
⎦⎥
! i2n−2

ani2n−1

⎡
⎣⎢

⎤
⎦⎥

 

 
be a non-empty sequence of letters from BΣ .  The sequence w  is 
called a bond word and is said to be well-formed if all bonds fit, i.e., 

2 1 2 0j ji i− + = , for 1 1j n≤ ≤ − . If additionally, 0 2 1 0ni i −+ =  holds, 

then w  is said to be a balanced word or, for short, a word. In case 

0 2 1 0ni i −+ ≠ , then the word is said to be unbalanced. Moreover, a 

word is neutral if 0 2 1 0ni i −= = . For a well-formed word  
 

   
w= i0

a1−i1
⎡
⎣⎢

⎤
⎦⎥ i1

a2−i2
⎡
⎣⎢

⎤
⎦⎥ i2

a3−i3
⎡
⎣⎢

⎤
⎦⎥
! in−1

an−in
⎡
⎣⎢

⎤
⎦⎥

, 

 
we say that the word w  has the left bond 0i  and the right bond 

ni−  as the outer bonds and    
i1,…, in−1  as inner bonds. If we are not 

interested in the inner bonds, we shortly write w  as  
 

   i0
a1a2a3!an−in

⎡
⎣⎢

⎤
⎦⎥

. 

 
The set of all well-formed words built from letters of BΣ  

including the empty word is referred to as 
 
BΣ
∗  and the set of all 

balanced words built from letters of BΣ  including the empty word is 

referred to as 
  
BΣ
! . By definition 

  
BΣ
!⊂ BΣ

∗ . The empty word is the 

neutral element of both structures B∗Σ  and 
  
BΣ
! . For the empty word, 

we write 
  i0

λi0
⎡
⎣⎢

⎤
⎦⎥

 for some number 
   
i0 ∈!0

+ . The empty word is 

always a balanced word. 

The length of a bond word w  from B∗Σ or 
  
BΣ
!  is denoted by w  

and is equal to the number of letters in w . In particular, the empty 
bond word i iλ⎡ ⎤⎣ ⎦  is of length 0 . 

According to [13], let Σ  be a finite alphabet, 
  
A⊆ BΣ

!  be a finite 

set of axioms which contains only neutral words, and 
  
I ⊆ BΣ

!  be a 
finite set of insertion strings. A bonded parallel insertion system 
(bPINS-system) is a triple 

  
γ = Σ, A, I( ) , where the derivation relation 

⇒γ  is defined as follows: let 
   
α ,β ∈BΣ

! . Then γα β⇒  if and only 

if 

   
α =α1α2!αn  

 
for letters   

α i ∈BΣ  with 1≤ i ≤ n
 
and there are insertion strings i Iα′∈  

for 1 1i n≤ ≤ +  such that  
 

   
β = ′α1α1 ′α2α2! ′αn−1αn−1 ′αnαn ′αn+1 . 

 

Since 
  
β ∈BΣ

! , the insertion of the strings iα′  is balance 
preserving. 

The reflexive and transitive closure of γ⇒  is denoted by γ
∗⇒ . If 

there is no risk of ambiguity, we write ⇒  and ∗⇒  instead of γ⇒  

and γ
∗⇒ , respectively. 

A homomorphism 

    
hbe : BΣ

!→ Σ∗  
is defined by  

  
hbe i a− j

⎡
⎣

⎤
⎦( ) = a  

for every 
 i a− j
⎡
⎣

⎤
⎦∈BΣ  and is called the bond erasing 

homomorphism. The language generated by a bPINS-system 

  
γ = Σ, A, I( )  is defined as  

   
L γ( ) = hbe β( ) | there is an axiom α ∈A such that α ⇒γ

∗ β{ }.  

The family of all such languages is denoted by    L(bSINS) . 
We now give the definition of an extended deterministically 

tabled interactionless Lindenmayer system (EDT0L-system) because 
there are some similarities in the derivation process of such 
Lindenmayer systems and bonded uniformly parallel insertion 
systems. For further information on Lindenmayer systems, we refer to 
[14]. 

An EDT0L-system is a 4-tuple 
  
Γ = Σ, H ,ω ,Δ( )

, 
where Σ  is a 

finite alphabet, H  is a finite set of homomorphisms on the set ∗Σ  
(which are called tables), ω ∗∈Σ  is called the axiom, and Δ ⊆ Σ . 

Instead of ( )w h a∈  for h H∈  and a∈Σ , we write a w→ . A word 

u ∗∈Σ  is derived to a word v ∗∈Σ , written as u vΓ⇒ , if and only if 

there is a homomorphism h H∈  such that ( )v h u= . 

The reflexive and transitive closure of Γ⇒  is denoted by ∗
Γ⇒ . If 

there is no risk of ambiguity, we write ⇒  and ∗⇒  instead of Γ⇒  

and ∗
Γ⇒ , respectively. 

The language generated by Γ  is defined as 
 

  
L Γ( ) = x∈Δ∗ |ω ⇒Γ

∗ x{ }  

 
The family of all languages generated by an EDT0L-system is 

denoted by    L(EDT0L) . 
The methodology of this paper consists of utilizing all of the 

aforementioned definitions to produce and prove new definitions and 
theorems as shown in the next section. 
 
RESULTS AND DISCUSSION 
 

In a derivation step of a bonded parallel insertion system, at every 
position in a word, an insertion string is inserted if the system contains 
a suitable insertion string for the respective bonds. For different 
positions with the same bonds, different insertion strings may be 
chosen. We introduce here two variants of such a system in which the 
insertion is more restrictive. 

In one other variant, the so-called bonded Indian parallel 
insertion systems, only one bond and a suitable insertion string is 
chosen for insertion in a derivation step. At all positions of other 
bonds, no insertion takes place in this derivation step. The name is 
chosen due to the similarity to Indian parallel grammars [14], where 
every occurrence of a non-terminal in a sentential form is replaced 
according to the same rule in a single derivation step. 
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In another variant, the so-called bonded uniformly parallel 
insertion systems, only one insertion string is chosen for each bond in 
a single derivation step and these insertion strings are inserted 
everywhere where they fit. In another derivation step, a different 
string can be chosen for inserting at every position of the same bond. 
In this way, it is not possible to insert different strings at different 
positions of the same bond in the same derivation step. 

We now formally define the two variants. The systems themselves 
do not differ; the difference is in the derivation process. 

Let Σ  be a finite alphabet, 
  
A⊆ BΣ

!  be a finite set of axioms that 

contains only neutral words, and 
  
I ⊆ BΣ

!  be a finite set of insertion 
strings. A bonded Indian parallel insertion system (ipINS-system) and 
a bonded uniformly parallel insertion system (upINS-system) are 
triples 

  
γ = Σ, A, I( ) , where the derivation relation γ⇒  of an ipINS-

system 
  
γ = Σ, A, I( )  is defined as follows: let  α ∈A  and 

  
β ∈BΣ

! . 

Then we write γα β⇒  if and only if there is a number 1n ≥ , an 

insertion word Iδ ∈  with a left bond iδ , and a set S  of non-empty 

bond words 
    i0

a1−iδ
⎡
⎣⎢

⎤
⎦⎥ , iδ

a2−iδ
⎡
⎣⎢

⎤
⎦⎥ ,!, iδ

αn−1−iδ
⎡
⎣⎢

⎤
⎦⎥ , iδ

αn−in
⎡
⎣⎢

⎤
⎦⎥  of the set 

B∗Σ  such that 

• 
   
α = i0

a1−iδ
⎡
⎣⎢

⎤
⎦⎥ iδ

a2−iδ
⎡
⎣⎢

⎤
⎦⎥
! iδ

αn−1−iδ
⎡
⎣⎢

⎤
⎦⎥ iδ

αn−in
⎡
⎣⎢

⎤
⎦⎥

, 

• 
   
β = ′δ i0

a1−iδ
⎡
⎣⎢

⎤
⎦⎥
δ iδ

a2−iδ
⎡
⎣⎢

⎤
⎦⎥
δ!δ iδ

αn−1−iδ
⎡
⎣⎢

⎤
⎦⎥
δ iδ

αn−in
⎡
⎣⎢

⎤
⎦⎥

′′δ , 

where δ ′  is equal to δ  if 0i iδ=  and 
0 0i iλ−⎡ ⎤

⎢ ⎥⎣ ⎦
 otherwise; as 

well as δ ′′  is equal to δ  if ni iδ=  and 
n ni iλ−⎡ ⎤

⎢ ⎥⎣ ⎦
 otherwise, and 

• the string δ  cannot be inserted somewhere else in the word α  

(every bond word from the set S  does not have iδ  as an inner 
bond).  

Meanwhile, the derivation relation γ⇒  of a upINS-system 

  
γ = Σ, A, I( )  is defined as follows: let  α ∈A  and 

  
β ∈BΣ

! . Then we 

write γα β⇒  if and only if 
   
α =α1α2!αn  for a number 1n ≥  and 

non-empty subwords 
 
α i ∈BΣ

∗  with 1 i n≤ ≤  and there are balanced 

words 
  
δ i ∈BΣ

!  for 0 i n≤ ≤  such that 

• 
   
β =δ0α1δ1α2!δn−2αn−1δn−1αnδn  and i Iδ ∈  for1 1i n≤ ≤ − . 

0 Iδ ∈  if there is an insertion word in I  which fits to the left 

bond of 1α . Otherwise, 
0 00 i iδ λ−⎡ ⎤= ⎢ ⎥⎣ ⎦

. n Iδ ∈  if there is an 

insertion word in I  which fits to the right bond of nα . 

Otherwise, 
n nn i iδ λ−⎡ ⎤= ⎢ ⎥⎣ ⎦

, 

• whenever 
   
δ jα i!α j−1δ i  

  
1≤ i < j ≤ n+1( )  is also well-formed, 

then i jδ δ= , and 

• there is no insertion string which can be inserted inside some 
word iα  with 1 i n≤ ≤  (for any decomposition i i iu vα =  with 

1 i n≤ ≤  and insertion string  ζ ∈I , the bond word i iu vζ  is not 

well-formed). 

The reflexive and transitive closure of γ⇒  for both variants is 

denoted by γ
∗⇒ . If there is no risk of ambiguity, we write ⇒  and 

∗⇒  instead of γ⇒  and γ
∗⇒ , respectively.  

The language generated by an ipINS-system or a upINS-system 

  
γ = Σ, A, I( )  is defined as  

   
L γ( ) = hbe β( ) | there is an axiom α ∈A such that α ⇒γ

∗ β{ }.  

The family of all languages generated by an ipINS-system is 
denoted by    L(ipINS) ; the family of all languages generated by a 
upINS-system is denoted by    L(upINS) . 

In order to clarify our notation, we give examples for the new 
variants. 

 
Example 1 

Let 
   
γ 1 = a{ }, A, I( )  be an ipINS-system with  

   
A = 0 a0⎡⎣ ⎤⎦ , 0 a−1⎡⎣ ⎤⎦ 1a0⎡⎣ ⎤⎦{ }  and 

  
I = 1a−2⎡⎣ ⎤⎦ 2 a−1⎡⎣ ⎤⎦{ } . 

Since the system contains only one insertion string, this system 
generates the same language no matter whether it is considered as an 
ipINS-system (where only one insertion string is inserted at every 
possible position in a derivation step), a upINS-system (where, for 
every different bond, only one insertion string is inserted at every 
possible position in a derivation step), or a bPINS-system (where at 
every position some suitable insertion string is inserted in a derivation 

step). As shown in [13], the language  
   

a2n |n≥ 0{ }  is generated by 

the system 1γ . 
 

Example 2 
Let 

   
γ 2 = a,b{ }, A, I( )  be a upINS-system with 

{ }0 3 3 0 0 1 1 3 3 2 2 0,A a b a a b b− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  and 

{ }1 3 3 1 2 3 3 2,I a a b b− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . 

The words of the set A  yield the words ab  and aabb . The word 

0 1 1 3 3 2 2 0a a b b− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  has two positions where insertions can be 

applied; at every such position, only one insertion string fits. After 
inserting, the word aaaabbbb  is obtained which has four insertion 
positions, two of each bond for which an insertion string exists. Inside 
the insertion strings, no insertion is possible. Hence, in each 

derivation step, from a word 2 2n n
a b  (which has 12n−  possible 

insertion positions for every insertion string) for some natural number 

1n ≥ , the word 
1 12 2n n

a b
+ +

 is obtained which has 2n  possible 
insertion positions for every insertion string. Other words are not 

generated. Thus, the language generated is { }2 2 0|
n n

a nb ≥ . 

If the system 2γ  is considered as an ipINS-system, then the word 

0 1 1 3 3 2 2 0a a b b− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  would yield either the word aaaabb  or 

aabbbb  in one derivation step. This is because either the first 
insertion string is inserted at every possible position or the second one 
but not both at the same time. Hence, as an ipINS-system, the system 

2γ  generates another language than as a upINS-system. 
 

In the sequel, we will prove a hierarchy of language families 
relating the families of the languages generated by ipINS-system and 
upINS-system to the family of finite languages and the family of the 
languages generated by extended deterministically tabled 
interactionless Lindenmayer systems (EDT0L-systems). 
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Theorem 1 
The proper inclusion 

  
L FIN( )⊂ L ipINS( )  holds. 

Proof. 
Any finite language can be generated by an ipINS-system by 

taking all its words as axioms with bonds zero and giving no 
insertions words. A witness for the properness is the infinite language 

{ }2 0|
n

a n≥  which is generated by 1γ  from Example 1. 

□ 
 
Bonded Indian parallel insertion systems form a specialization of 

bonded uniformly parallel insertion systems, as we will show in the 
next theorem. 

 
Theorem 2 

The proper inclusion 
  
L ipINS( )⊂ L upINS( )  holds. 

Proof. 
An ipINS-system γ  can be simulated by a upINS-system Γ  

which is obtained by extending γ  with empty insertion strings. Then 
any derivation in γ  can be simulated in Γ  by using the same 
insertion string and empty insertion strings for all other bonds. Every 
derivation in Γ  can be simulated in γ  by sequentially inserting the 
insertion strings for different bonds.  

A witness for the properness is the language { }2 2 0|
n n

L a b n= ≥  

which is generated by the upINS-system 2γ  from Example 2 but not 

by an ipINS-system since such a system would increase the number of 
occurrences of either a  or b  but not both in one step. 

□ 
 
As the last result in our paper, we show the following relation to 

EDT0L-systems. 
 

Theorem 3 
The proper inclusion 

  
L upINS( )⊂ L EDT0L( )  holds. 

Proof. 
The idea for the simulation of a upINS-system 

  
γ = Σ, A, I( )  by an 

EDT0L-system is as follows. We represent a well-formed word of the 

set B∗Σ  by a sequence of symbols, where each position where an 
insertion word can be inserted is represented by a non-terminal 
symbol, and each letter of Σ  is represented by itself and is considered 
as a terminal symbol. The tables of the constructed EDT0L-system 
ensure that at every insertion position of the same bond, the same 
insertion string is inserted (the non-terminal representing the insertion 
position is replaced by a word representing the insertion string). Also, 
there is a table which eliminates all the non-terminal symbols at once 
(which simulates the bond erasing homomorphism   

hbe ). 
Let  

    
B = ℓ |  there are ℓar⎡⎣ ⎤⎦ ∈BΣ  and u,v ∈BΣ

∗ ,with u ℓar⎡⎣ ⎤⎦v ∈A∪ I{ }.  

We now separate the insertion strings according to the positions where 
they can be inserted: for each b B∈ , let bI  be the set of all insertion 

strings which have b  as their left bonds: 
 

{ }|b b b b bI w w I− −⎡ ⎤ ⎡ ⎤= ∈⎣ ⎦ ⎣ ⎦  

 
Only those bonds, for which an insertion string exists, need to be 

considered:   
BI = b | Ib ≠ ∅{ } . These and only these bonds are called 

expandable. 

Let 
   
b1,b2 ,…,b|BI |

 be the elements of the set IB  with

1 2 | |IB
b b b< < <L . Furthermore, let 

 

    
T = Ib1

× Ib2
×!× Ib|BI |

. 

 
We now construct an EDT0L-system   

Γ = N ∪Σ, H , S ,Σ( )  which 

simulates the derivation of the upINS-system γ . The set N  of new 
symbols is defined as 

  

  
N = S{ }∪ Xb | b∈BI{ } . 

 

Let 
   f : BΣ

!→ # N ∪Σ$∗  
be a mapping which transforms a bond word into its representation for 
the EDT0L-system: every expandable bond Ib B∈  is represented by 

bX , the other bonds are omitted, and the basic letters are kept as they 
are. 

We now define the tables of the EDT0L-system.  
For every axiom w A∈ , we create a start table  

  
hS ,w = S → f w( ){ }∪ Xb → Xb | b∈BI{ }∪ a→ a | a ∈Σ{ } . 

 

For every tuple 
   

wb1
, wb2

,…, wb|BI |

⎛
⎝⎜

⎞
⎠⎟ ∈T , we create a table

   
h(wb1

,…,wb|BI |
) = S → S{ }∪ Xbi

→ f wbi( ) |1≤ i ≤ BI{ }∪ a→ a | a ∈Σ{ }.

 
For eliminating the non-terminal symbols, we create the table 

  
hλ = S → S{ }∪ Xb →λ | b∈BI{ }∪ a→ a | a ∈Σ{ } . 

 
Finally, we set  

    

H = hS ,w | w∈A{ }∪ h
wb1

,wb2
,…,wbBI

⎛
⎝⎜

⎞
⎠⎟

| wb1
, wb2

,…, wbBI

⎛
⎝⎜

⎞
⎠⎟
∈T

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
∪ hλ{ }.

 
This completes the description of the EDT0L-system Γ . 
From the construction, it is not hard to see that any uniformly 

parallel insertion of words from I  into the current bond word can be 
simulated by an application of an appropriate table of rules described 
above at the correct corresponding positions within the sentential form 
derived by the EDT0L-system. The details of the proof showing that 

 
L Γ( ) = L γ( )  are left to the reader. Thus,   

L upINS( )⊆ L EDT0L( ) . 

A witness for the properness is the language 

   
L = a2n

bn−1c | n ≥1{ },  which is generated by the deterministically 

interactionless Lindenmayer system (D0L-system) G , defined as 
 

  
G = a,b,c{ }, a→ aa,b→ b,c→ bc{ }, aac( ) . 

 
In [13], it was shown that the language L  cannot be generated by 

a bPINS-system, where the argumentation did not use the possibility 
of a bPINS-system to use different insertion strings for different 
positions of the same bond. Hence, the same argumentation shows 
that also no upINS-system can generate the language L .  

□ 
 
 
 
 
 



 Yosman et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 13, No. 4 (2017) 769-773  

	
773 

CONCLUSION 
 

In this paper, two new variants of bonded parallel insertion 
systems have been introduced, namely bonded Indian parallel 
insertion systems and bonded uniformly parallel insertion systems. 
The hierarchy of language families relating the families of the 
languages generated by ipINS-system and upINS-system to the family 
of finite languages and the family of the languages generated by 
extended deterministically tabled interactionless Lindenmayer 
systems (EDT0L-systems) is illustrated in Fig. 1. An arrow from an 
entry X  to an entry Y  represents the proper inclusion X Y⊂ . The 
labels on the edges refer to the theorem where the respective inclusion 
is proven.  

The results are not only of interest for research in theoretical 
computer science, but also have practical application in the 
advancement of research in biochemistry and DNA computing due to 
the more accurate modeling of DNA recombination by considering 
real-world atomic behavior of chemical bonding. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1  Hierarchy of language families. 
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