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Abstract

Measurement difrculry is one of the process contrcl issues
atising frcm the conpleity and the lack of on-lirc
neasurenent devices. One of the ake at e solutions to
deal with this problem is infercnlial estimation where
secondary variables, such as temperature ancl pressure are
used to prcdict the unmeasurcd pinary variables that arc
nahlt product qualities. mis paper presents the estination
of ptoduct conposhions for a fatry acid fructioMtion
colunn using a hybnd kchnique. The proposed technique
combines paftial least squares r.srcssion (PIS) utd
artifcial neural netwotks (ANN) in an estination paradiqm
to provide better estinntion prcpenies. The aim js to take
odvantaSe of ANN capability to captwe the ntn-linear
rclationships as well as the statistical strength of PIS
method. The rcsults of prccess estination usine both PI.s
and htbrid nethoh arc presented- The signifcant
imprcvement obtained by the htbrid strciegt re|ealed its
capabilitt as a potentially riable estimator for prodtlct
properties in chenical industry.
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Introduction

The world (end o[ chemical produclion is now moving
lowards tull capacity operation with zero accidents, zero
emissions and high profitability. Under this stringent
environment, many plants have been forced to revamp their
exhting control system. However, Foblems that are related
to process dynamic and measuremeni remain largely
unsolved, even when advanced control system is in place.
Process dynamic issues aie often related to the non"linearity
of chemical processes while problems arisiflg from
measurement are mainly due to difficulty in implementing
on-lin€ measurements. For example, an online gas
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chromatograph, a cornmon instrumentation for the
mearurement of product composilions, is not suitable fo.
orline application in many cases. This is due to the low
sampling rate and occasional result inconsistency.
Furthermore, it is not economic ftom the viewpoint of
operational and maintenance cost. Due ro rhese difficulries,
inferential esaimation has been recommended as one of the
altemative solution.

Inferenrial estimation is a strategy ihat employs lhe
measuement of secondary Focess outputs such a3
temperatures and pressures, to infer the unmeasurable
disturbances on primary process outputs, such as producl
compositions l. For example, intermediare tray
temperaures are usually being used to predict product
compositions in a distillation column. Hence, the main role
of the estimator is to predict the pdnary variables using
selected secondary vadables. The estimated values are $en
fed into the controller for control purloses. For practical
implementation, th€ estimator should provide reliable
predjction of the unmeasured.

Backgound of Inferential Estimation

Since the development of infercntial conrol in 19?0s,
various apprgaches to construct the process €stimator have
been widely studied. The fundamental method is ro use lhe
inforrnation of the process, such as mass and energy balances,
to construct the estimaror. Although this is a reliable and
dircct approach, the developmenls of such models aft
laborious and knowtedge intensive. For $ese rcasons,
researchen have been formulating altemative methods.
Most of these methods use rhe input-ourput data and some
basic knowledge of the process to develop the process
estimator, such as Kalman filtering, sratistical methods and
black box modelling methods.

Application of statistical methods in chemical process
modelling and control is not new. These methods include
linear rcgression (LR), multiple linear re$essions (MLR),
principal component regession (PCR), principal componenr
analysis (PCA) and partial least square regression (PLS).
MLR is among the most widely applied methods in chemical
industry for estimation. Recendy, the PLS nethod is also
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gaining popularity in this field comparcd with more classical
MLR and PCR due to its robustness [2] In process
estimalion, the use of PLS was pione€red by Mejdell and
Skogestad 13,41. Over the years, they had develoPed the
comDosition esdhator usitg PCR and PLS models for a
b;na;y disrillation colunin Theestimators, which were based
on steady-state data and muitiple lempefature measuremenls,
performed well in vadous conditions such as
muiti-component mixtures, pressure variations, and
nonlinearity. Dealing with the problems of mnlinearity
and noise in distillation column, they Foposed the use of
'additional faclors, weighting functions, and logarithmic

Some other researchen had also investigated thd application
of PLS in Drocess estimation and con$ol. Budman and
co-workers [5] addfessed the development of a robust
inferential estimaior for a packed-bed reactor by using PLS
model. This estimator was then comparing wjth another
estjmator developed by using Kalman filter technique.
Results showed that PLS estimator was sjgnificantly more
accurate for estimating the actual concentration in a wide
range of operating conditions. Another example is the work
by Kresta and co-workers [6]. Their estimator, which was
designed to estimate the distillatior compositions, had
shown good predicdon when dealing with large numbers of
hjghly correlated measured variables without over"fitting.
They had also proved that the model was more robust io
missing data and sensor failures.

The PLS model had been inferior due to its dependency on
steady state data and insufficiency when dealing with
non-linear system {51. EfTorts to improve this technique in
oder !o deat with both dynamc and non-linear Fo€ess had
been explored. Dayal & Maccregor [7l Foposed recusive
exponentially weighted PLS algorithm to imFove parameter
estimation. This newly developed algorithm was tested on a
muitivariable CSTR and an industrial mineral floating
circuil. In the estimation of distillation compositions, Kano
and co-workers [8] canied out a comprehensive study of
dynamic PLS to improve the accuracy ofestimation by using
simulated tirn€ series data. They concluded that the
esiimation of top and bottom column quality based on reflux
flow mte, reboiler duty, pressure and multiple tray
tempemhrres was much better than th€ usual tray
tempemture control system.

Arc$er approach to extend the PLS model in dealing with
dynamic and nonlinear system is by hybridising the model
with other modelling pamdigm such as artificial neu|al
network (ANN). The use of ANN wi6in the PLS rnodelling
paradigm and was first recommended by Qin & McAvoy t9l,
The capability of ANN model in dealine with non-linear
system had inspired the merging of these methodr. Since the
rcsults of the NNPLS model were encouraging, some other
researchers had also worked on this field to improve the
model capabilities, Baffi and co-workers 001 had proposed
two extensions models. These were the nodified NNPLS
and Iadjal basis function network PLS (RBFPLS). Boih of
ihese model employed enor-based input weights updaling
procedure !o improve the prediction capability.

ISBN:983-2643-15-5

Pnc.edius ol l.tetwtiual Cdfcrence On Chefticat and Biauoc*s Encineerins
27' - 2y Ausu$ 2AB , anive^ni Malorsia sdbah, rab Kinabalu

Consequendy, Abebiyi & Cotipio [1 l] had also carried out
similar investigarion to NNPI-S model. They proposed a
dynamic NNPLS (DNNPLS) in which the static neural
network models in the inner relationship were replaced by
dynamic neuml network models. This approach had been
tesled with the data hom a highly ron-linear fluidised
catalytic cracking unit and an isothemal r€actor. Results
showed that the prediction was as good as a MIMO neural
network and it was betier than PLS-ARMA model.

Partial Least Squares Regression

Partial least squares regession is one of the multivariate
analysis methods. It is a linear system identification method
that projects the input-output data down into a latent space,
extracts a number of principal factors with aD orthogonal
s&ucture, while capnrring most of the variance in the original
data [2]. Derails description of the PLS st$cture can be

The schematic diagam of the PLS model is illustrated in
Figurc l. [t consists of two outer relations and an inner
relation. The outer rclations are the matrixes of independenr
and dependent variabl€s, which can be represented by X and
Y, respectively. The inpul X is projected into the latent space
by the input-loading facaor, P to obtain the input scores, T.
Similarly, the output scores, U is obtained by projecting the
output Y inlo lateni space through the outputloading factor,
Q. These relations are in matdx form and are written in
Equation (l) and (2).

Outer relations: X = TPr + E/ (1)

Y=UQr+Fr

!$s!-&s!
h'r '&oi 'aroh|

Fisure t Schenatic ofthe PIS Model t I I l

The matrices Er and F.r are residuals of X and Y, rcspernvely
X and Y arc linked with a linear regression called inner
relation to capture the relationship between the inputs and
output latent scores. The notation of the inner relation is
written in Equation (3).

lnner r€lation: U = TB (3)

The Focedwe of determining the scores and loadings factor
is caried out sequentially from the flrst factor to the J'lh
factor. Scores and loading rectors for each faclor is
calculated from the prcvious residual mairices as shown in
Equation (4) and (5), where initially E0 = X and F0 = Y.

(2)
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ForX,

For Y,

rrJ= r{{tt) + rr

Fr=Frt -r.If

&=&.,-urQi' (5)
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control of product composirjons is achiered by controlJing
tempemture at selected location. However, this control
scheme canlot funcrion very welt due to distu$ances in the
feed composition. This has qeared some difficulries in the
composition contol and at times, off-specificarion products
have been produced. In rhis Fojecr, the focus is on the
developmenr of a robust inferenriat eslimaror for the light cu1

Light cut column is a packed disrillation colurnn consisting
of thiee sections, which are srripping, recriflng and
condensing section. This colurm is operaltd under vacuum
condition induced by steam ejector. The schernatic diagram
of this colurDn is depicted in Figure 3. The feedstock of light
cut column is the bottom product from pre-cut column wjth
fatty acids ranging from C-10 to C-l8. The intet temperature
rs around 220PC at pressufe aiound 6.84 kpa. Disrillare
product fmm this colunn is C-12 with around 98 qo, and rhe
bottom producrs. which are mainty C,l4 to C- I 8 are then fed
!o the next column.

(4\

Caiculation of ihe inner and outer relations is performed
unlil th€ lasi factor, /or when residual matrices are below
certain threshold.

Hybrid PLS-ANN Model

The hybnd PLS-ANN model is construcred based on tbe
NNPLS nodel I9l. As mentioned before, this rechnique
incorporated f€edforward oerworks into the PLS modelling,
where FFN is used to capture the nonlineariiy in the model
while the statisrjcal strength ofPLS is mainrained.

The schematic diagram of a NNPLS nodel is depicr,ed in
Figure 2. As rnentioned above, a convenrional PLS model
consists of outer and inner relations, where both of these
relations are represented in linear form. In NNPLS model,
the PLS outer relations are kept linear to transform the
original data into scorc factors (U and T). On the other hand,
neural networks are accomplished in the irner relation as
written in Equation (6):

(6)

whe.e r{(, stands for lhe nonlinear relation represented by
a neural network. Here, the training dak is rhe score factors
generated from the outer relations.

FiEurc 2 A Schenatic lusttution of NNPIS Model [9]

Problem Definition

The aim of this paper is ro develop a robust inferentjal
estimator by usjng hybrid PLS-ANN model based on on-line
measuements of process variables, such as flow raies and
temperatures, For pmclical implementation, the estimator
should able to provide accurate prediction, and the model
must be robust enough ro delal witb distwbances and
changing of operating conditions.

Process Description

The case study considered here is rhe light cut column ofa
local fatty acids fractionation plant. At plesent, indirect
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Figu/e 3 UEht Cut Cotunn in the Fatt, Acids
Frucrionation Plant

Dynamic PIatrt Simulation

The dynamic simulation was carried out usins IrySys.planr
simulalor. Based on lhe process flo* diagrai provided by a
local 

'ndusFy. 
$e lighL cur column model was sel. Here,

seven contml loops were activated, These are shown in
Figue 3. Simulatior was carried our in both steady state and
dynamic modes. Results of the dynamic simulation were
compared to the actual data collected from the planr DCS
system. MoniLoring and runing of lhe conrol loop \Las
cs.rned oul unLil the simulaLion resulrs were in close
agreement with the actual data.
Sensitivity Analysis

Since the estimation model was data based, selection of
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aDDroDriale inpul and oulpuL variables is imponant Thus'

.insiLiuiry anaiysis ofboth open and closed loop syslem was

carried our ro investigare the dynarnic behaviour of process

var;ables such as llos rales. liquid level temperarures

Drcssure, and producr composidons This was done by

imoosine sleps changes Lo vatious processrs inpuL such as

r"riroerarures and now mre\' The effects on the process

outputs such as Fay temperatures and product compositions
were ihen examjned. These responses were used as gurdes Io

select appropriate input and output variables that are suitable

for model develoPment
An examDle of lhe sensi l iv i l )  anaivsis resuhs is shown in
Fisure 4: Here, a 5% increase in the feed tempersure was
iniroduced. Results show lhat the-C-I2 mole fraction is
droDD€d from about 0.98 to 0935 It means that the feed
rempirature has significanl effect on the C-12 mole ftaction.
Basio on the rcsults of sensitivity analysis, four input

orocess variables had been selected, namely the feed
temperature, the top column temperatue, the reflux flow mte
and the recycle flow mte. Since tray temperatures had been
pmven as the secondary variables that are commonly used in
inferential estimation [3,8], four tray temperatures had also
been chosen. These variables were then used as inpuls for the
inferential.estimator to Fedict the composition of C- 12 falty
acid,

Model Development

In,this section, develobment of the infercntial estimator
rbased. on both PLS and hybrid PLS'ANN model are
'descnbed. The perfomB ces of these esdmatoa! 8re
evaluated.on. the basis of mean squared efior of.ptediction

.( 4SE) and the explained prediction variance (EPV) The
' calculadons ofMSE and EPV are show! in Equation ? and 8,
respecnvely:

Fernl.n'rxntns fCl
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asn= j'Lr,; -it I'

Hefe,.x is the measurement of the producfcomposition, i is
its estimaajon value, tis the mean value of measurements,
and /y' is the number of measurement,

PLS Estimator

The strength of PLS model is its capability to deal with a
large set of correlated data. For tie unity of the data, the
selected input variables should be mean-centred €trd
variance scal€d through Equation 9 and 10, rcspectivety.

(e)

( t0),=z '
' I  d 12

l  |Si , .  - ;  12 |
NZ' \ ' t  '  l

Here,.z is an input vadable, Z is.the niean value ofdie input
set, z, is a mean centred value , z, is the mean centi€d and
variance scaled value, and,{ is the number of inputs in a
data set.
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The development of the inferen[ial model was carried in the
MATLAB environment. The NIPALS algorithm of PLS,
which is shown in Table 1 , was transfened to the platform of
MATLAB using its programming ianguage. The model was
first trained using a training daaa in o.der to obtain the
associate score factors. The numbers of latent variable were
set at 20. After the training, the score factors were kept, and
tbey were further used to cross validate different sets of
operating data. These resuLts arc shown in Figure 5.

Table t NIPAIS Alsonhm olthe PIs Model I2J0l

In order to evaluate the Derformance of the infereotial
estimator, the model was tested on three sets of data. They
were made up of differen! opsating conditions:
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. Daaa A - Nomlal operating condilions

. Data B - Intermediate fluctuations

. Data C - Severe fluctuarions

The pur?ose of the evaluation was to investigate the
accuracy and robustness of the model. The actual values and
the prediction results of these data are plotted in Figure 6, 7
and 8.

Figure 5 Training Results by Using PIS and Htbrid
PI,s-ANN Models

Formulation of Hybfid PLS-ANN Model

As mentioned earlier, tne PfS model is a lineaf
identification method. In order to improve the ability of the
nodel to deal with non-linear system, a hybrid model, called
bybrid PLS-ANN model were formulated. A feed forward
network with one hidden layer was incor?orated inlo the
PLS model. Hence, it replaced the linear inner model and
includes the nonlinear feature in the PLS modet. Similar to
the PLS model, $e hybdd model was built in the MATLAB
environment using both the Neural Network Toolbox ,nd
ihe MATLAB programming language.
The network was a single input single output (SISO)
network, wbere the inputs were the matnx of score factofi, T,
and the outputs were the matrix of score facto$, U. Before
the network training, it is important to determine the 'best'
network topology to avoid the problems of either over'fitling
or under- fitting. Hence, the optimal number of hidden
neurons should be decided. In this work, we used trial and
enor approach, and the number of hidden neurons was

The training algorithm of this network was
Levenberg-Marquardt method. For network tmining, cross
validation was implemented as the stopping criteria. The
data set was split into a training set and a testing set. The
trained model was validated with tbe testing set s€quentially.
The lraining was tesninated when the prediction enor of the
lesting dipped into a minimum and started to increase.
Figure 5 shows the rraining results of the hybdd PLS-ANN
model.
Similar with the PLS estimator, the bybrid estirnator was
tested on three sets of data, rvhich were Data A. B and C to
evaluate its performance. The predicted C-12 compositions

,!

i ' "
3."

E.lrrurloi or cr2 More F6dro. (rralnlng Dab)

Step Srmmary of Steps

0

I

2

3

4

5

8

9

6

,7

10

l l

t2

l l

Mean centre and scale X and Y

Set the ouiput scores u equal to

Compute input weights w by
regressing X on u

Nonnalise w lo unit length

Calculate the input scores t

Compute output loadings q by
regressing Y on I

Normalise q to unit lenglh

Calculate new output scores u

Ch€ck convergence on u. If
yes go to step 9 else go to 2

Calculate the inpul loadings p
by regressing X on t

i.{ormalise p to unit length

Compute inner model
regression co-effi c;ent b

Calculate input residual matrix

Calculate input residual matrix

lf additional PLS dimensions
are necessary, replace X and Y
by E and F, respectively and
repeat steps I to 13

r  ur .x

Xw

- 
tTY
t_. t

q = q/ l lq

Y.q
- qr 'q

'  
t r .X
t ' . t

p =p4hll

,  tT,u
- tTt

E=X-t .pr

F=Y-b txqr

'184 ISBN:981-2643-15-5



of these data arc also plotted in Figurc 6, 7 and 8'
Subsequently, the periormance of both PLS and hybrid
model wa! comparcd with the actual values
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Discussions

Tbe mean square enors of the training and validation data
for borh PLS and hybrid estimarorwere summarised in Table
2. For rhe rraining dara. the optimum number of larent
variablesthat can best train the daia was 20. However, only 5
tatent variables wereneeded to train thehybrid model.Irwas
because the MSE for the cross validation rest was nol
decreased and the EPV for the output data was not
remarkable increased using more than 5 larent variables. As
a resuh, the training MSE of PLS model was lower with high
percentage ofEPV.

TabLe 2 Conpatison ofMSE and EPv for PLS and
Pl"S-ANN Model.

When the Pl-S model was rested on dara with diffe.ent
operaling condirions, the predicrion results were good and
acceptable. Refening to Figure 6, 7 and 8, the predicted
compositions were close to the acrual value for Dara A. For
DataB and DaraC, thepredicred resulrs were not so accurare,
but they were still following the |rend of the actual values.
Thus. we can say that when the fluctualion in the process
was mcreased, fie MSE was getting higher as we .

These predicted results car be improved by using tbe hybrjd
PLS-ANN estimator. Sirnilar with ih€ PLS modet, rhis
model was trained and then tesred on various sets of dara.
Allhough the raining MSE of the hybrid model was higher
Ihan the PLS model. it can perform berter when cross
validation was implemented. Resulrs showed that rhe cross
validation MSE of the hybrid model were lower in all cases.
However. tbis model faced the similar limitations as in rhe
caseofthe PLS model. The resulting MSEincreases with the
rncrease in process fluctuarions.

We have also srudied the influence of measurement noise to
both ofthese estimators. l0% noise was inrroduced to three
contol variables, which were the top column temperature,
reflux and recycle flow rate. The MSE of botir esumarurs
were still acceptable and rhe prediction values were
following lhe trend of the actual values. Thus, we can
conclud€ that rh€se esrimarors have the ability ro deal with

Based on the results. we have proven that rhe PLS inferenlial
esiinator was able ro give good predidion using rhe online

'786
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measured Focess variables. Moreover, ihe peformance can
be improved usilrg the hybrid PLS-ANN nodel. Apar! from
the statistical melhods, ariificial neurai nerworks are also lhe
alternative solution to inferenrial esrimaror. A conventional
three layer feed forward nerworks can be used ro deveiop the
model. lt is still able to give proper predicrion with
acceptable enors. However, when rhe model is resled with a
large set of corelated dara, it will provide poor predicrion.
This is due to the limilation ofthe network slructure, where
the dala are not auro-correlated. Neverthetess, rhe timiration
can be overcome using differenr rctwork structure.
Recunent networks, whjch support the returnable of some
dala is suspecred to give better resutts.

Since the structure and development of inferential estimarors
arestill immature, this field is srill opened for research. Thus,
futu.e works can be done using d;fferent model structure.
Besides rhat, addirional devices. such as fiiter and bias can
be added to th€ existing model !o improve its accuracy and

Conclusion

In this paper. the inferenrial esrimaror for the product
composjtion of a fa$y acid fractionation colunm was buitr
using PLS model. The online measured process variabLes
such as tray tempefaru.es, reflux flow rate, recycle flow rate,
teed tempemture and top column temperature w€re used to
construct the eslimaror. This esrimaror had been performing
well in various operaring conditions. Moreover. ir was able
to give good pred;clion under nois, condilions.

The robustness and accuracy of de PLS esrimator can be
improved by introducing nonlinear fearue irro the modet.
This paper incorporated ANN into the pLS modet to capture
the nonlinearity that is always exists in chemical processes.
The prediclion resulrs proved rhar $e performance tra.
better compared with the PLS model.

The hybrid PI-S,ANN estimator is therefore concluded ro be
applicable !o chemical processes. However, rhe
understanding of the firsr principle model and ihe dynamic
behavjour of rhe process should nor be elimjnat€d during the
development of inferential esrimator. The tacking of rhe
process information may cause to obrain an unreliable

Acknowledgments

This project is funded by lhe Ministry of Science,
Technology and the Environment rhrough National Science
Foundation Scholarships and IRPA research grant. Our
heartiest appreciations are for everybody who has dircctly or
indirecdy contribute 10 the success of rhis projecr.

Data Evaluation PLS PLS.ANN

T.aining
MSE 6.22758-05 13464E-M

EPV 99.38Vo 36.32%

Data A MSE 7.4642E-07 1.0369E-06

MSE 3.3148E-051.50368-05

Data B MSE 1.0836E-04 8.41578-05

Dala C MSE 2.56318-04 1.69908-04
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