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Abstract

Measurement difficulty is one of the process control issues
arising from the complexity and the lack of on-line
measurement devices. One of the alternative solutions to
deal with this problem is inferential estimation where
secondary variables, such as temperature and pressure are
used to predict the unmeasured primary variables that are
mainly product qualities. This paper presents the estimation
of product compositions for a fatty acid fractionation
column using a hybrid technigue. The proposed technique
combines partial least squares regression (PLS) and
artificial neural networks (ANN) in an estimation paradigm
to provide better estimation properties. The aim is to take
advantage of ANN capability to capture the non-linear
relationships as well as the statistical strength of PLS
method. The results of process estimation using both PLS
and hybrid methods are presented. The significant
improvement obtained by the hybrid strategy revealed its
capability as a potentially viable estimator for product
properties in chemical industry.
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Introduction

The world trend of chemical production is now moving
towards full capacity operation with zero accidents, zero
emissions and high profitability. Under this stringent
environment, many plants have been forced to revamp their
existing control system. However, problems that are related
to process dynamic and measurement remain largely
unsolved, even when advanced control system is in place.
Process dynamic issues are often related to the non-linearity
of chemical processes while problems arising from
measurement are mainly due to difficulty in implementing
on-line measurements. For example, an on-line gas
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. chromatograph, a common instrumentation for the

measurement of product compositions, is not suitable for
on-line application in many cases. This is due to the low
sampling rate and occasional result inconsistency,
Furthermore, it is not economic from the viewpoint of
operational and maintenance cost. Due to these difficulties,
inferential estimation has been recommended as one of the
alternative solution,

Inferential estimation is a strategy that employs the
measurement of secondary process outputs such as
temperatures and pressures, to infer the unmeasurable
disturbances on primary process outputs, such as product
compositions [1]. For example, intermediate tray
temperatures are usually being used to predict product
compositions in a distillation column. Hence, the main role
of the estimator is to predict the primary variables using
selected secondary variables. The estimated values are then
fed into the controller for control purposes. For practical
implementation, the estimator should provide reliable

prediction of the unmeasured.

Background of Inferential Estimation

‘Since the development of inferential control in 1970s,

various approaches to construct the process estimator have
been widely studied. The fundamental method is to use the

- information of the process, such as mass and energy balances,

to construct the estimator. Although this is a reliable and
direct approach, the developments of such models are
laborious and knowledge intensive. For these reasons,
researchers. have been formulating alternative methods,
Most of these methods use the input-output data and some
basic knowledge of the process to develop the process
estimator, such as Kalman filtering, statistical methods and
black box modelling methods.

Application of statistical methods in chemical process
modelling and control is not new. These methods include
linear regression (LR), multiple linear regressions (MLR),
principal component regression (PCR), principal component
analysis (PCA) and partial least square regression (PLS).
MLR is among the most widely applied methods in chemical
industry for estimation. Recently, the PLS methed is also
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gaining popularity in this field compared with more classical
" MLR and PCR due to'its robustness [2]. In process
" estimation, the use of PLS was pioneered by Mejdell and
'Skogestad [3,4]. Over the years, they had developed the
" composition estimator using PCR and PLS models for a
binary distillation column. The estimators, which were based

" on steady-state data and multiple temperature measurements,

performed well in various conditions such as
multi-component mixtures,  pressure variations, and
non-linearity. Dealing with the problems of non-linearity
and noise in distillation’ column, they proposed the use-of
additional factors, weighting functions, and logarithmic
transformations.

Some other researchers had also investigated the application
of PLS in process estimation and control. Budman and
co-workers [5] addressed the development of a robust
inferential estimator for a packed-bed reactor by using PLS
model. This estimator was then comparing with another
estimator developed by using Kalman filter technique.
Results showed that PLS estimator was significantly more
accurate for estimating the actual concentration in a wide
range of operating conditions. Another example is the work
by Kresta and co-workers [6]. Their estimator, which was
designed to estimate the distillation compositions, had
shown good prediction when dealing with large numbers of
highly correlated measured variables without over-fitting,
They had also proved that the model was more robust to
missing data and sensor failures.

The PLS model had been inferior due to its dependericy on
" steady state data and insufficiency when dealing with
non-linear system [5]. Efforts to improve this technique in
order to deal with both dynamic and non-linear process had
been explored. Dayal & MacGregor [7] proposed recursive
exponentially weighted PLS algorithm to improve parameter
estimation. This newly developed algorithm was tested on a
multivariable CSTR and an industrial mineral floating
circuit, In the estimation of distillation compositions, Kano
and co-workers [8] carried out a comprehensive study of
dynamic PLS to improve the accuracy of estimation by using
simulated time series data. They concluded that the
estimation of top and bottom column quality based on reflux
flow rate, reboiler duty, pressure and multiple tray
temperatures was much better than the usual tray
temperature control system.

Another approach to extend the PLS model in dealing with
dynamic and non-linear system is by hybridising the model
with other modelling paradigm such as artificial neural
networks (ANN). The use of ANN within the PLS modelling
paradigm and was first recommended by Qin & McAvoy [9].
The capability of ANN model in dealing with non-linear
system had inspired the merging of these methods. Since the
results of the NNPLS model were encouraging, some other
researchers had also worked on this field to improve the
model capabilities. Baffi and co-workers [10] had proposed
two extensions models. These were the modified NNPLS
and radial basis function network PLS (RBFPLS). Both of
these model employed error-based input weights updating
procedure to improve the prediction capability.
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Consequently, Abebiyi & Corripio [11] had also carried out

similar investigation to NNPLS model. They proposed a
dynamic NNPLS (DNNPLS) in which the static neural
network models in the inner relationship were replaced by
dynamic neural network models. This approach had been
tested with the data from a highly non-linear fluidised

catalytic cracking unit and an isothermal reactor. Results

showed that the prediction was as good as a MIMO neural
network and it was better than PLS-ARMA model.

. Partial Least Squares Regression

Partial least squares regression is one of the multivariate
analysis methods. It is a linear system identification method
that projects the input-output data down into a latent space,
extracts a number of principal factors with an orthogonal
structure, while capturing most of the variance in the original
data [12]. Details description of the PLS structure can be
found in [2].

The schematic diagram of the PLS model is illustrated in

* Figure 1. It consists of two outer relations and an inner

relation. The outer relations are the matrixes of independent
and dependent variables, which can be represented by X and
Y, respectively. The input X is projected into the latent space
by the input-loading factor, P to obtain the input scores, T,
Similarly, the output scores, U is obtained by projecting the
output Y into latent space through the output-loading factor,
Q. These relations are in matrix form and are wrltten in

" Equation (1) and (2).

Outer relations: X =TP" +E, 0))

Y=UQ"+F; 2)

Latent Space
Input Ladent Ouipni Latent
Scoras Scores

X Y

P Q
—> 2 [ Stoaez |- —

Project inlo Project into
latent space 174 » Mo'deu'l ur » latent space

Inner Model

Figure I Schematic of the PLS Model {11]

The matrices Erand F; are residuals of X and Y, respectively.
X and Y are linked with a linear regression called inner
relation to capture the relationship between the inputs and
output latent scores. The notation of the inner relation is

. written in Equation (3).

Inner relation: . U=TB | .(3)

The procedure of determining the scores and loadings factor
is carried out sequentially from the first factor to the fth
factor, Scores and loading vectors for each factor is

calculated from the previous residual matrices as shown in

Equation (4) and (5), where initially Eg =X and Fy = Y.
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For X, Er=Ez; - TfPfT 4)

For Y, Fr=Fg; - UerT (5)

Calculation of the inner and outer relations is performed
until the last factor, f or when residual matrices are below
certain threshold.

Hybrid PLS-ANN Model

The hybrid PLS-ANN model is constructed based on the
NNPLS model [9]. As mentioned before, this technique
incorporated feedforward networks into the PLS modelling,
where FFN is used to capture the non-linearity in the model
while the statistical strength of PLS is maintained.

The schematic diagram of a NNPLS model is depicted in
Figure 2. As mentioned above, a conventional PLS model
consists of outer and inner relations, where both of these
relations are represented in linear form, In NNPLS model,
the PLS outer relations are kept linear to transform the
original data into score factors (U and T). On the other hand,
neural networks are accomplished in the inner relation as
written in Equation (6):

Ur= N(tf) -+ Iy (6)

where A((*) stands for the non-linear relation represented by
a neural network. Here, the training data is the score factors
generated from the outer relations,
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Figure 2 A Schematic Hlustration of NNPLS Model [9]

Problem Definition

The aim of this paper is to develop a robust inferential
estimator by using hybrid PLS-ANN model based on on-line
measurements of process variables, such as flow rates and
temperatures, For practical implementation, the estimator
should able to provide accurate prediction, and the model
must be robust enough to deal with disturbances and
changing of operating conditions.

Process Description

The case study considered here is the light cut column of a
local fatty acids fractionation plant. At present, indirect
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control of product compositions is achieved by controlling
temperature at selected location. However, this control
scheme cannot function very well due to disturbances in the
feed composition. This has created some difficulties in the
composition control and at times, off-specification products
have been produced. In this project, the focus is on the
development of a robust inferential estimator for the Ii ght cut
column.

Light cut column is a packed distillation column consisting
of three sections, which are stripping, rectifying and
condensing section. This column is operated under vacuum
condition induced by steam ejector. The schematic diagram
of this column is depicted in Figure 3. The feedstock of light
cut column is the bottom product from pre-cut column with
fatty acids ranging from C-10 to C-18. The inlet temperature
is around 220°C at pressure around 6.84 kPa. Distillate

 product from this column is C-12 with around 98 %, and the

bottom products, which are mainly C-14 to C-18 are then fed
to the next column.

Ejector ! Distillate

3

; i
Pump-around
[ -

Feed ]

i P

Bottom

B ®

Figure 3 Light Cut Column in the Fatty Acids
Fractionation Plant s

Dynamic Plant Simulation .

The dynamic simulation was carried out using HYSYS.Plant
simulator, Based on the process flow diagram provided by a
local industry, the light cut column model was set. Here,
seven control loops were activated. These are shown in
Figure 3. Simulation was carried out in both steady state and
dynamic modes. Results of the dynamic simulation were
compared to the actual data collected from the plant DCS
system. Monitoring and tuning of the control loop was
carried out until the simulation results were in close
agreement with the actual data.

Sensitivity Analysis

Since the estimation model was data based, selection of
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appropriate input and output variables is important. Thus,
sensitivity analysis-of both open and closed loop system was
carried out to investigate the dynamic behaviour of process
variables such as flow rates, liquid level, temperatures,
pressure; * and . product compositions. This was done by
imposing. steps: changes to various processes input such as
temperatures and flow- rates. The effects on. the process
outputs such as tray temperatures and product compositions
were then examined. These responses were used as guides to
select appropriate input and output variables that are suitable
for model development.

An example of the sensitivity analysis results is shown in
Figure 4. Here,:a 5% increase in the feed temperature was
introduced. Results show that the C-12 mole fraction is
dropped from .about 0.98 to 0.935. It means that the feed
temperature has significant effect on the C-12 mole fraction.
Based on the results of sensitivity analysis, four input
process variables had been selected, namely the feed
temperature, the top column temperature, the reflux flow rate
and the recycle flow rate. Since tray temperatures had been
proven as the secondary variables that are commonly used in
inferential estimation [3,8], four tray temperatures had also
been chosen. These variables were then used as inputs for the
inferential estimator to predict the composition of C-12 fatty
acid. o :

Model Develiop_ment_

+Inthis section; development of the inferential estimator
‘based on both PLS -and hybrid PLS-ANN: model- are
"described.: The: . performances .of - these  estimators. are
“evaluatéd on the. basis of mean squared error of prediction
-(MSE) and the explained :prediction :variance (EPV). The
“-paleulations of MSE and EPV are shown in Equation. 7 and 8,
‘respectively.. -~ - 7. RO - . ¢ :

) .Fe_enl ‘i’gqnpgl anne {";Si .
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N
MSE =iZ(_xi -3 )2 (7)
N '
N
foi _ii )2
EPV ={1-EL . x100% (8)

N
x-x)
=l

- Here, x is the measurement of the product composition, X is
~ its estimation value, X is.the mean value of measurements,

and N is the number of measurement.,
PLS Estimator ' _
The strength of PLS model is its capability to deal with a-

.- large set of correlated data. For the unity of the data, the
- selected input variables should be mean-centred and

variance scaled through Equation 9 and 10, respectively. _
' ' ©

Iy =2-2;
- i
T = (10)
E i=1

Here, z is an input variable,. 7 is the mean value-of the input
set, 7., is a mean centred value , z, is the mean centred and

- variance scaled value,; and N is the number of inputs in a

data set.
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The development of the inferential model was carried in the
MATLAB environment. The NIPALS algorithm of PLS,
which is shown in Table 1, was transferred to the platform of
MATLAB using its programming language. The model was
first trained using a training data in order fo obtain the
associate score factors. The numbers of latent variable were
set at 20. After the training, the score factors were kept, and
they were further used to cross validate different sets of
operating data. These results are shown in Figure 5,

Table I NIPALS Algorithm of the PLS Model [2,10]

Step Summary of Steps
0 | Mean centre and scale X and Y
1 | Set the output scores u equal to
acolumn of Y
2 | Compute input weights w by r ut-X
regressing X on u W o
3 Normalise w to unit length W= wi”w”
4 | Calculate the input scores t . X-w
wl.w
5 | Compute output loadings q by o Y
regressing Y on t q = Tt
6 | Normalise q to unit length q=q ;‘“q"
7 Calculate new output scores u Y.q
u=
: q'-q
8 Check convergence on u. If
yes goto step 9 else goto 2
9 | Calculate the input loadings p r tT-X
by regressing X on t P = Tt
10 | Normalise p to unit length p=p ,r"pH
11 | Compute inner model - tT.u
regression co-efficient b b= g
12 | Calculate input residual matrix E=X-t-p
13 | Calculate input residual matrix | F=Yy-b-txq
14 | If additional PLS dimensions
are necessary, replace X and Y
by E and F, respectively and
repeat steps 1 to 13

- The training

In order to evaluate the performance of the inferential
estimator, the model was tested on three sets of data. They
were made up of different operating conditions:
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= Data A - Normal operating conditions
=  Data B — Intermediate fluctuations
s Data C — Severe fluctuations

The purpose of the evaluation was to investigate the
accuracy and robustness of the model. The actual values and
the prediction results of these data are plotted in Figure 6, 7

_and 8,

Estimation of C-12 Mole Fraction (Training Data)

ssamen
Pl Y PLS

[\j \ ANNPLS:E

©-12 Mole Fraction

[=]
4
=
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S S—
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. H
a 200 400 800 800 1000 1200 1400
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Figure 5 Training Results by Using PLS and Hybrid
PLS-ANN Models

Formulation of Hybrid PLS-ANN Model

As mentioned earlier, the PLS model is a linear
identification method. In order to improve the ability of the
model to deal with non-linear system, a hybrid model, called

" hybrid PLS-ANN ‘model were formulated. A feed forward

network with one hidden layer was incorporated into the
PLS model. Hence, it replaced the linear inner model and
includes the non-linear feature in the PLS model. Similar to
the PLS model, the hybrid model was built in the MATLAB
environment using both the Neural Network Toolbox and
the MATLAR programming language.

The network was a single input single output {SISO}
network, where the inputs were the matrix of score factors, T,
and the outputs were the matrix of score factors, U. Before
the network training, it is important to determine the ‘best’
network topology to avoid the problems of either over-fitting

‘or under- fitting. Hence, the optimal number of hidden

neurons should be decided. In this work, we used trial and
error approach, and the number of hidden neurons was
determined to be 7. :
algorithm of this network was
Levenberg-Marquardt method. For network training, cross
validation was implemented as the stopping criteria. The
data set was split into a training set and a testing set. The
trained model was validated with the testing set sequentially.
The training was terminated when the prediction error of the
testing dipped intoc a minimum and started to increase.

. Figure 5 shows the training results of the hybrid PLS-ANN

model. _

Similar with the PLS estimator, the hybrid estimator was
tested on three sets of data, which were Data A, B and C to
evaluate its performance. The predicted C-12 compositions
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of these data are also plotted in Figure 6, 7 and 8. '
Subsequently, the performance of both PLS and hybrid

model was compared with the actual values.

c-12 Mole Fraction

C-12 Mole Fraction
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0861 - :
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Figure 6 Estimation Results of Data A by Using PLS and Hybrid PLS-ANN Models
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Fi zgure 7 Estimation Results of Data B by Using PLS and Hybrid PLS-ANN Models
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Figure 8 Estimation Results of Data C by Using PLS and Hybrid PLS-ANN Models
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Discussions

The mean square errors of the training and validation data
for both PLS and hybrid estimator were summarised in Table
2. For the training data, the optimum number of latent
variables that can best train the data was 20. However, only 5
latent variables were needed to train the hybrid model, It was
because the MSE for the cross validation test was not
decreased and the EPV for the output data was not
remarkable increased using more than 5 latent variables. As
aresult, the training MSE of PLS model was lower with high
percentage of EPV.

Table 2 Comparison of MSE and EPV for PLS and

PLS-ANN Model,
Data Evaluation PLS PLS-ANN
MSE | 6.2275E-05 | 1.3464E-04
N EPV 99.38% 36.32%
Data A MSE | 7.4642E-07 | 1.0369E-06
DataA+noise | MSE | 3.3148E-05 | 1.5036E-05 |
Data B MSE | 1.0836E-04 | 8.4157E-05
Data C MSE | 2.5631E-04 | 1.6990B-04

When the PLS model was tested on data with different
operating conditions, the prediction results were good and
acceptable. Referring to Figure 6, 7 and 8, the predicted
compositions were close to the actual value for Data A. For
Data B and Data C, the predicted resulis were not so accurate,
but they were still following the trend of the actual values.
Thus, we can say that when the fluctuation in the process
was increased, the MSE was getting higher as well.

These predicted results can be improved by using the hybrid
PLS-ANN estimator. Similar with the PLS model, this
model was trained and then tested on various sets of data.
Although the training MSE of the hybrid model was higher
than the PLS model, it can perform better when cross
validation was implemented. Results showed that the cross
validation MSE of the hybrid model were lower in all cases.
However, this model faced the similar limitations as in the
case of the PLS model. The resulting MSE increases with the
increase in process fluctuations,

We have also studied the influence of measurement noise to
both of these estimators. 10% noise was introduced to three
control variables, which were the top column temperature,
reflux and recycle flow rate. The MSE of both estimators
were still acceptable and the prediction values were
following the trend of the actual values. Thus, we can
conclude that these estimators have the ability to deal with
measurement noise.

Based on the results, we have proven that the PLS inferential
estimator was able to give good prediction using the on-line
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measured process variables. Moreover, the performance can
be improved using the hybrid PLS-ANN model. Apart from
the statistical methods, artificial neural networks are also the
alternative solution to inferential estimator. A conventional
three layer feed forward networks can be used to develop the
model. It is still able to give proper prediction with
acceptable errors. However, when the model is tested with a
large set of correlated data, it will provide poor prediction.
This is due to the limitation of the network structure, where
the data are not auto-correlated. Nevertheless, the limitation
can be overcome using different network structure.
Recurrent networks, which support the returnable of some
data is suspected to give better results.

Since the structure and development of inferential estimators
- are still immature, this field is still opened for research. Thus,

future works can be done using different model structure.
Besides that, additional devices, such as filter and bias can
be added to the existing model to improve its accuracy and
robustness. '

Conclusion

In this paper, the inferential estimator for the product
composition of a fatty acid fractionation column was built
using PLS model. The on-line measured process variables
such as tray temperatures, reflux flow rate, recycle flow rate,
feed temperature and top column temperature were used to
construct the estimator. This estimator had been performing
well in various operating conditions. Moreover, it was able
to give good prediction under noisy conditions.

"The robustness and accuracy of the PLS estimator can be

improved by introducing non-linear feature into the model.

‘This paper incorporated ANN into the PLS model to capture

the non-linearity that is always exists in chemical processes.
The prediction results proved that the performance was
better compared with the PLS model.

~The hybrid PLS-ANN estimator is therefore concluded to be

applicable to chemical processes. However, the
understanding of the first principle model and the dynamic
behaviour of the process should not be eliminated during the
development of inferential estimator. The lacking of the
process - information may cause to obtain an unreliable
estimator.
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