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ABSTRACT: The purpose of this study is to compare results obtained from threc methods of
assigning letter grades to student achievement. These methods referred as summative type of
assessment which is takes place at the end of semester period to measure the student achievement.
The conventional and the most popular method to assign grades is the Straight Scale method.
Statistical approaches which used the Standard Deviation and conditional Bayesian methods are
considered to assign the grades. In the conditional Bayesian model, we assume the data to follow
the Normal Mixture distribution where the grades are distinctively separated by the parameters:
means and proportions of the Normal Mixture distribution. The problem lies in estimating the
posterior density of the parameters which is analytically intractable. A solution to this problem is
using the Markov Chain Monte Carlo approach namely Gibbs sampler algorithm. The Straight
Scale, Standard Deviation and Conditional Bayesian methods are applied to the examination raw
scores of 560 students. The performances of these methods are measured using the Neutral Class
Loss, Lenient Class Loss and Coeflficient of Determination. The results showed that Conditional
Bayesian performed out the Conventional Methods of assigning grades.

Keywords:  Grading Methods. Educational Measurement, Straight Scale, Standard Deviation
Method. Normal Mixture-Markov Chain Monte Carlo, Gibbs Sampling
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INTRODUCTION

Assigning grades is a compulsory part in education. By the time, the instructors facing
complicated moment when they are responsible to assigned grades fairly and meaningfully. On the
student side, grade may vary due to differences in the willingness to trade off leisure for study or
in the ability to learn a subject, which generates a direct relation between student grades and
student learning. For that reason, understanding the relationship between grading practices and
student evaluations is principally important in higher education. Grade is defined as the
instructor’s assessment and evaluation of student’s achievement relative to the some criteria. It
also describes the Student’s level of educational progress and universally means of documenting
student achievement.

In assigning marks to a student by administering mid term test, project or examination, which is
by transforming their performance into a form of numbers of letter grades, the instructors should
know the procedure to measure the students performance. This knowledge is of significant
important to discover instructors’ skills in grading assignment.

There are many schemes to assign grades either followed the norm or criterion-referenced which
all seem to have their advantages and disadvantages. The instructors or graders are the most
proficient persons to form a personal grading plan because it incorporates the personal values,
beliefs, and attitudes of a particular instructor.

There is a classification scheme on various sorts of score that may be used to report the student’s
achievement. If the instructor considered to assign the grades follows the normal distribution then
the instructor must define precisely the mean and standard deviation of the scores. Afterward the
instructor needs to transform the score into linear standard scores such as z-scores and T-scores.
Note that the variance from each graded component must have the same variance as the composite
scores, and then we can apply the normal assumption. Conversely the distribution is no longer
normally distributed but the it is distributed as contaminated normal.

One of the most ridiculous but frustrating criticism of the instructor is the criticism that there are
some courses are not normally distributed since the curve is not symmetrically exactly or the curve
not in bell-shape. In other words, there are so many students below norms or otherwise. The use of
normally distributed here is definitely wrong. The ‘norms’ should not used as ‘average’
synonymously; half of the students must be below the norm. The instructor and the grade
evaluator should knowledgeable about the uses and properties of the normal curve before they can
apply it in describing the students’ achievement.

Generally, the educators often wish to weight some components more heavily than others. For
example, quizzes scores it might be valued at the same weight as a project. A number of studies
indicate that the key for proper weighting is test the variability of the scores. A practical solution
to combining several weighting components is first to transform raw scores to standardized scores;
z-score or McCall T-scores (Robert, 1972; Ebel and Frisbie, 1991; Martuza; 1977; Merle, 1968).
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This grading method called “grading on the curve” or “grading on the normal curve” which
became popular during the [920’s and 1930’s. Grading on the curve is the simplest method to
determine what percentage of the class would get A’s (say the top 10% get an A), what percentage
for B’s, and so on (Stanley, and Hopkins, 1972) Even though it is amounted simply, but it has
serious drawbacks. The fixed percentages are nearly determined arbitrarily. In addition, the used
of normal curve to model achievement in a single classroom is generally inappropriate, except in
large required course at the college or university level (Frisbie and Waltman, 1992). Grading on
curve is efficient from an educator point of view.

A relative method called Standard Deviation Method implicitly assumed the data come from a
single population and is the most complicated computationally but is also the fairest in producing
grades objectively. It uses the standard deviation which tells the average number of n students
differ from their class average. It is a number that describes the dispersion, variability or spread of
scores around average score. Unlike grading on curve, this method requires no fixed percentage in
advanced.

In moving from scores to grades, educators can grade on an absolute grading scale (say 90 to 100
is an A). Given that the students only care about their relative rank, which kind of grading is
better? Works by Pradeep and John (2005) have shown that if the students are disparate identical,
then absolute grading is always better than grading on a curve. This shows that when all the
students are disparate identical, it is always better to grade according to an absolute scale.

RESEARCH DESIGN

This research is true experimental designed and quantitatively used of descriptive research to
discover the facts and to describe the reality on the instructor’s grading plan. The approach
supported on the theories of grading methods in statistical point of view. The random type of
sampling applied on the raw scores of the student of various courses and levels.

Subjects and Data Sources

The students from selected courses will be the subject since we are tends to use the student’s raw
score, and the data is collected from senior instructor that influences to assign the grades. The raw
score is collect from previous records/documents as evidence. A sufficiently large enough of 560
student’s raw scores are analyze and they have the same probability to assign the grades. We
assume that every student differs to some degree in an infinite biological, psychological and
sociological trait.

Measurement
From the definitions ([Martuza, 1977), we precisely define measurement as the grading process of
assigning raw score and a letter grade to a student. Thus the illustration in Figure | shows that we
may show the grades in mathematical terms of measurement is a functional mapping from the set
of ebjects (i.e.
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students) {S, ;i 1s the ID of each student } to the set of real numbers of the standardized raw

score {x,;x, €0 } and i,n €] starting from I until n finite number of students.

First, the student and standardized raw scores are ranked in descending order §; > §, >--->§,

and X, > x, >-+-x, . The point of this study is to define the probability set function of the raw

scores that belong to the letter grades accordingly. A probability set function of raw score tells us
how the probability is distributed over various subsets of raw score in a sample space G.

5

8, A
B
c
D

¥ E

Objects
(students) Weighted and Letter grades
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Figure 1: A Functional Mapping of Letter Grades

In addition, a measure of grades is a set function, which is an assignment of a number y (g) to the

set g in a certain class. If G is a set whose point correspond to the possible outcomes of a random

experiment, certain subsets of (G will be called “events” and assigned a probability.
Intuitively, g is an event if the question “Does W (say 85) belong to g (say A)?” has a finite yes
or no answer. After the experiment is performed and the outcome should correspond to the point
85 € G (Ash, 1972).
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We denote G as a sample space of grades g, = E,g, =D, g, = D+,--,g,, = 4;

{g‘,‘ € G} and the subscript L = 1,2, ..., 1/ denote the eleven components of letter grades. We

defined the eleven letter grade components as the set of { A, A-, B+, B, B-, C+,C, C-, D+, D, E
jthat is equivalent the set of grade point averages { 4.0, 3.7, 3.3, 3.0, 2.7, 2.3, 2.0, 1.7, 1.3, 1.0, 0.0 }.

Why Bayesian Method?

In this study, we called the method as Bayesian Grading (GB). In general, GB is applying
Bayesian inference through Bayesian network in classifying a class of students into several
different subgroups where each of them corresponds to possible letter grades.

The method is built according to Distribution-Gap grading method in finding the grades cutoffs.
This is formed by ranking the composites score of students from high to low that is in the form of
a frequency distribution. The frequency distribution is cautiously observed for gaps where for
several shorts intervals in the consecutive score range there are no students obtained. A horizontal
line is drawn at the top of the first gap which gives an As’ cutoffs and a second gap is required.
This process continues until all possible letter grade ranges (A-E) have been recognized.

Bayesian Methods for Mixtures

The Bayesian approach of statistics is an attempt made to utilize all available information in order
to reduce the amount of uncertainty present in making the decision of assigning grades. As new
information is obtained, it is combined with any previous information (raw scores) to form the
basis for statistical procedures. The formal mechanism is known as Bayes' Theorem (Robert,
1998); this explains why the term “Bayesian’ is used to describe this general approach in grading.

It is built up earlier understanding with currently measured raw scores in a way that updates the
degree of instructors’ belief on their student performance. The earlier understanding and
experience is called the “prior belief” and the new belief that results from updating the prior belief
is called the “posterior belief”. Prior probabilities are the degree of belief the analyst has prior to
observing any data that may be accept on the problem. The posterior probabilities are the
probabilities that results from Bayes’ theorem. The posterior probabilities of mutually exclusive
and exhaustive events must sum to one for them to be reliable probabilities (Peers, 1996).

In this study, we consider a finite mixture model in which raw scores data X = {Jt:I ,xz,--—,x,,}

are assumed to be independent and identically distributed from a mixture distribution of g
components. Equation (1) is called the mixture density which the mixture proportion constrained
to be non-negative and sum to unity. Our interests are to find the probability that a particular raw
scores belongs to a component of the mixture normal. The raw
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scores are independently and identically with the distribution, that is the mixture density has mixed
probabilities 7T, as follows

(s
2 =
p(x,)=27rg¢(ﬁg,og) fori=1.2.....n (1)
g=l
where X; is the raw score of student?, g is indicator of G=11 components of the mixture, 7T, is

the component probability of component g and it can be written as 7 = {ﬂ'l ,Ez,---,ﬂg} that

cannot be negative and ZE =1. 4;35() denotes the parametric component density function

2 2 ; ;
where L, and O, are mean and variance of component g and written in the form of

2 2
vectors;z={y,,;12,---,yg} and o’ ={a, ,0'2,---,63. We denote

9, = {fr].p,,crf},ﬁz :{7[2’#2’022}""’93 :{Jrg,ﬂg,()';} and therefore we simplify
the sets of @ as equal to @ = {9].,!9 ,---,193}.

A very natural limit is that the eleven components of letter grades are ordered by their mean. Mean
for grade E is the lowest significance to other letter grades, grade D have mean higher than E and
lower than D+, and so on. Therefore, the grade A have the highest ranking and having a shorts

interval belongs to A’s grade. That is £ < ft, <-++< /L, . In grading application, one may

specify that one mixture probability is always greater than another. Depending on grading
assignment problem, one sort of constraint may be more appropriate to a particular raw score data
set; which the inequality mean of each subgroups are well identified. These issues called /abel
switching in MCMC output. This is mainly cause by the nonidentifiability of the components
under symmetric priors (Congdon, 2003).

Prior and Posterior Distributions

Here we have chosen the conjugate prior implementation to the posterior distribution. The

distribution f(x|9) = N(xlp,o‘z) is denote a Normal density with mean £ and variance o’

and we have proof that £ ~ N(V, 52), o’ ~ IG(a,ﬂ) and 7 ~ Di(n); we may refer to

such distribution as a noninformative prior for @ . The posterior distribution is proportional to the
product of Likelihood and Prior distribution. That is
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f{?f,;..t,O‘zlG,x}CﬁL{XJG,JT,#,O'I}h{J’Z‘,ﬂ,O'E} @)
The conditional distribution for posterior 4z, s a |~ N(VXMR,V;]) where
5 Ty
1 ng Vg X eER = B . a2
V=l —+—=| M =—-+- and the conditional distribution for posterior ¢ is
81682 o £ 68 ol 2
x 8 X £

-l
0'§|...~IG o +ngf'2,]i[3;' +l/22(x,—;1£)2}

X Ep

Markov Chain Monte Carlo (MCMC) and Gibbs Sampler

In letter grades assigning problem we are interested to find the optimal mean values for each well
defined grades component. Herein, we are interest to find the unknown parameter@ of the

posterior density. Suppose € ~ p (9) and if we seek
E[p(,u,cr,:r|x)] = Ip(p,cr,;r)[p,cr,ﬂx] d(u,o,m)
]

1 c i i 1
”ﬁgp(# 0T )

which converges toE[p(9|x):| with probability 1 as N —> 0. This integral cannot be

computed analytically since the dimension of the integration exceeds three or four. In such cases
we can compute the integral by Monte Carlo (MC) sampling methods. One problem with applying
the Monte Carlo integration is in obtaining samples from one complex probability distribution

p(x). This problem is solving by MCMC methods. The objectives of MCMC are to generate a

sample from a joint probability distribution of posterior and to estimate expectation of parameters.
The most general MCMC approach is called the Metropolis-Hasting algorithm (M-H algorithm)
which is introduced by Metropolis et al. in 1953 (Press, 2003. A second technique for constructing

MC samplers is by Gibbs sampling algorithm. For  =1,2,..., B+T , Construct 0" as follows:
nl-——~ D:’(ry, + 1,00y + 1y, 1], +ng), g |~ N(VgM V. )

g’ g
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-1

02|...~1G ag+ng/2, ,6‘;+1/22(x,.—ﬂg)2

g
X €g

forall # < B, where B[] T .The Gibbs sampling updates were performed in the

order 77, He s O'g :

Data Analysis

The 100 examination points are used to assign grades. In this study, a grading method that
statistically based adjusted to the conventional grading plan. We are interested in converts the
scores to grades. Structured instruments taken from test, exam, project, portfolio, laboratory or
studio works are used. Here we are tends to find a probability set function of raw score that it tells
us how the probability is distributed over various subsets of raw score in a sample space G. The
model have been implemented using WinBUGS software. WinBUGS uses precision instead of

1
variance to specify a normal distribution. We denote T=— or 0 = /7.
a

In setting the initial parameter values, 0" we first sort the data to the descending and subdivided
into G =11 group of equal size. The lowest observations are in group one, the lowest
observations which are not in group one are in group two and so on. The initial parameter
estimates for the computations are easily obtained by estimating 4, as }_Cg that is the average of

the observations in the g”’group, for each g =1,2,...,G, and estimating O'f: as the average of

the G within group sample variance, Si, .

RESULTS AND DISCUSSION

In this section, we present two real life sampling results. Both cases observed from a small class
and large class of students, We have assumed that the final scores are transformed to the
composite score. In addition, we compare the letter grades assignment from GB to the letter grades
actually assigned by instructors. Therefore the reader can judge how well GB does by visual
inspection,

Small Class

We have a small class of 62 students that attend one of a course for a semester. The mean raw
score is 75.9, the median is 74.5 and the standard deviation is 12.88. Table 1 show WinBUGS
output of the marginal moments and quantiles for means of each letter grade upon sampling. Time
for 150,000 sampling was less than 50s for computer on 3.0GHz of Pentium 4. At least 500
updates burn in followed by a further 75,500 updates gave the parameter estimates.
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We can see the MC error for £ is too large, then we conclude that there are no students should

be assigned to the grade E. Besides, we have 4, (i.e. mean for grade D) with lower bound of
al/2=0.025 is 37.87.

Table 1: Optimal Estimates of Component Means for Small Class

Node Mean Std. Dev MC error 2,5% Median 97.5% Start Sample
T 0.0135 0.009429 2.57E-5 0.001647 001139 0.03707 501 150000
1
T 0.03374 001476 3.706E-5 0.01117 0.03166 0.06801 501 150000
2
T 0.03378 001476 4.052E-5 001118 0.03172 0.06816 501 150000
3
T 0.05401 0.01855 4.707E-5 0.02371 0.05197 0.09575 501 150000
4
T 0.05403 0.01846 461E-5 0.02393 0.05203 0.09541 501 150000
5
T 0.08111 0.02243 5.829E-5 0.04297 0.07916 0.13 501 150000
[
T 0.1756 003105 8. 129E-5 0.1192 0.1741 0.2404 501 150000
7
T 0.1756 0.03114 7.68E-5 0.1189 0.1742 0.2407 501 150000
8
T 0.1893 0.03208 8.16E-5 0.1306 0.1879 0.256 501 150000
9
T 0.1149 0.02622 6.407E-5 0.06869 0.1132 0.1709 501 150000
10
7 0.07433 0.02148 5.709E-5 0.03788 0.07238 0.1213 501 150000
11
# 1 435E+6 3.2E+6 88630 -4 843E+6 1 43E+6 7.698E+6 501 150000
1
380 0.06298 | .609E-4 37.87 38.0 3813 501 150000
H,
450 0.05662 1.454E-4 44 89 450 4511 501 150000
Hs
55.67 0.8745 0.005166 5393 55.66 5743 501 150000
Hy
u 60.0 0.02515 6.647E-5 59.95 60.0 60.05 501 150000
5
65.6 03317 9.094E-4 64 .94 65.6 66.26 501 150000
He
69.5 0.1071 2.751E-4 69.29 695 69.71 501 150000
H
75.0 04676 0.001335 74.08 75.0 75.93 501 150000
Hg
84.0 0.5011 0.001446 83.01 84.0 84.99 501 150000
Hy
92.56 0.2583 6.781E-4 92.05 92.56 93.07 501 150000
Hio
ﬂ 95.33 0.1076 2.735E-4 95.12 95.33 95.55 501 150000
11
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Therefore the instructor would decide to assign grade E if the raw scores of their students is less
than 37. Conversely, grade D should be assigned for the scores between 37 and 43, grade D+ for
scores greater than 43 and less than 53 and so on.

In addition, Table 2 demonstrates the minimum and maximum score for each letter grade and
percent of students receiving to the respective letter grade. We seen that the 25.81 percent of the
students assigned to grade B- and more than half of the students was assigned the better and
meaningful grades. The letter grades assigned by Straight Scale and Standard Deviation methods
are shown in Table 3.

Table 2: Minimum and Maximum Score for Each Letter Grade, Percent of Students and Probability of
Raw Score Receiving that Grade for GB

Grade o N;::g:: to d Perc'e/:uage Cumulative Percentage % Probability
3 XY i From To
A 95 100 3 4.84 4.84 0.0743
A- ) 94 7 1129 16.13 0.1149
B+ 83 91 10 16.13 3226 0.1893
B 74 82 13 20.97 53.23 0.1756
& T R Pt < AR 79.03 0.1756
C* 64 68 5 8.06 87.1 0.0811
© 59 63 3 4.84 91.94 0.054
C 53 58 2 323 95.16 0.054
44 52 2 3.23 9839 0.0338
B 37 43 I 161 100 0.0337
0 36 0 0 100 0.0135
Large Class

Now consider to the class of 498 students. The mean is 71.53, the median is 73 and the standard
deviation is 12.58. Table 4 show WinBUGS output of the marginal moments and quantiles for
means of each letter grade upon sampling. The updates for 150,000 sampling took less than 2.5
minutes.

Table 4 shows the optimal estimate of component means and component probabilities of each

letter grade. From Table 4 the instructor should assigned grade A for the raw scores between 91
and 100, grade A- for the raw scores between 84 and 90, and so on. The corresponding grades
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intervals are decided from the credibility interval of 2.5% to 97.5% and
witha = 0.05 (or al2= 0.025). In addition, Table 6 shows the letter grades along with its
score range for Straight Scale and Standard Deviation methods.

Now, we compare Table 2 and Table 5 to the grades assigned by instructor when they applying the
Straight Scale and Standard Deviation method as shown in Table 3 and Table 6. The results
indicate that the grading plan via GB, Straight Scale and Standard Deviation method vary to the
grades interval and to the number of student getting the respective grade.

Table 3: Straight Scale and Standard Deviation Methods

Straight Scale Standard Deviation
Letter T lativ
S R OO SR T
% tudents %
A 85-100 17 27.4 95.57-100.00 1 1.61
A- 80-84 8 403 90.89-95.57 9 16.13
B+ 75-79 6 50.0 86.21-90.89 5 24.19
B 70-74 12 69.4 81.52-86.21 7 35.48
B- 65-79 10 85.5 76.84-81.52 6 45.16
C+ 60-64 4 91.9 72.16-76.84 6 54.84
C 55-59 2 952 69.48-72.16 15 79.03
- 50-54 1 96.8 62.79-67.48 5 87.10
D+ 45-49 1 98.4 58.11-62.79 3 91.94
D 40-44 e - 53.53-58.11 2 95.16
E 0-39 1 100.0 0.00-53.43 3 100.00
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Table 4: Optimal Estimates of Component Means for Large Case

Node Mean Std. Dev MC error 2.5% Median  97.5%  Start Sample
T, 0.03145 0.00547 1.44E-5 0.02163  0.03115 0.043 501 150000
T, 0.03927  0.006077 1.514E-5 0.02825 0.03896  0.05204 501 150000
T, 0.0334 0.00563 1.509E-5 0.02323 0.03309 0.04527 501 150000
T, 0.04322  0.006361 1.651E-5 0.03159 0.04292  0.05644 501 150000
7T 0.05497  0.007151 1.911E-5 0.0418 0.05468 0.06973 501 150000
T 0.09038  0.009001 2.303E-5 0.07356 0.09012  0.1088 501 150000
T, 0.2593 0.01372 3.658E-5 0.2327 0.2591 0.2866 501 150000
Ty 0.1945 0.01238 3.078E-5 0.1708 0.1943 0.2193 501 150000
Ty 0.1297 0.01053 2.718E-5 0.1098 0.1294 0.151 501 150000
o 0.08255  0.008611 2.247E-5 0.06646 0.08226 0.1002 501 150000
Ty 0.04125  0.006233 1.621E-5 0.02987 0.04096 0.05433 501 150000
M, 33.73 0.5143 0.001466 32.72 33.73 34.74 501 150000
H; 4337 0.374 9.542E-4 42.63 43.37 4411 501 150000
H; 51.75 0.2213 5.475E-4 51.31 51.75 52.19 501 150000
H, 59.29 0.2298 5.945E-4 58.83 59.29 59.74 501 150000
Hs 64.04 0.1606 4.145E-4 63.72 64.04 64.35 501 150000
He 67.44 0.1117 3.01E-4 67.23 67.44 67.66 501 150000
Hq 71.89 0.07132 1.775E-4 71.75 71.89 72.03 501 150000
Hg 76.48 0.08646 2.315E4 76.31 76.48 76.65 501 150000
Hq 80.54 0.0997 2.724E-4 80.34 80.54 80.73 501 150000
Hio 84.32 0.151 3.633E-4 84.02 84.32 84.61 501 150000
My 92.55 0.5138 0.00135 91.54 92.55 93.56 501 150000
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Table 5: Minimum and Maximum Score for Each Letter Grade, Percent of Students and Probability of
Raw Score Receiving that Grade for GB

GB Number of Percentage ; 3 ahogy T]
Grade Studeit % Cumulative Percentage % Probability :
From To s
A 91 100 13 26 2.6 0.04125
A- 84 90 32 6.4 9.0 0.08255
B+ 80 83 64 12.9 21.9 0.1297
B 76 89 84 16.9 38.8 0.1945
B- 3 R 143 28.7 67.5 0289 4‘,1
C+ 67 70 53 10.6 78.1 0.09038
C 63 66 32 6.4 84.5 0.05497
C- 58 62 23 4.6 89.2 0.04322
D+ 51 57 16 3.2 92.4 0.0334
D 42 50 18 3.6 96.0 0.03927
E 0 41 20 4.0 100.0 0.03145
Table 6: Straight Scale and Standard Deviation Methods
Straight Scale Standard Deviation : |
Letter : g
Number of Cumulative ] ok ;
Grades Number of T R
Score  Students Perc;::tsge Scare Shitieats " 4 Wﬁy
A 85-100 34 6.8 93.46-100 9 1.81
A- 80-84 75 219 89.01-93.46 6 3.01
B+ 75-79 115 45.0 84.44-89.01 19 6.83
B 70-74 131 71.3 79.86-84.44 60 18.88
B- 65-79 60 833 75.29-79.86 99 38.76
C+ 60-64 24 88.2 70.71-75.29 112 61.24
C 55-59 9 90.0 66.14-70.71 84 78.11
C- 50-54 16 93.2 61.56-66.14 32 84.54
D+ 45-49 6 94.4 56.99-61.56 23 89.16
D 40-44 12 97.0 52.54-56.99 9 90.96
E 0-39 15 100.0 0-52.54 45 100.00

75



STATISTICAL APPROACH ON GRADING THE STUDENT ACHIEVEMENT VIA MIXTURE MODELLING

Figure 2 shows the plots of grade cumulative density function for Small Case and Large Case. The
dotted line represents the cumulative distribution of Straight Scale and Standard Deviation
methods and the smooth line is for grade according to GB grading. Whereas Figure 3 demonstrate
the cumulative density plots for each letter grades along with its histograms.
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Figure 2: Cumulative Distribution Plots for Straight Scale (dotted line) and GB Method
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Performance Measures

In measuring the performance, there are two measures to determining how well grading

1 n
methods executed. We introduce the class loss (CC) as CC = — z G

i=]

Another method in evaluating grading plan performance is by the raw coefficient of determination.
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Table 7: Performance of GB, Straight Scale and Standard Deviation Methods

Neutral CC Lenient CC R? (%)
Straight Scale 0.7903 1.2677 98.98
Standard Deviation 1.4839 1.4839 93.71
GB 0.1935 0.3097 99.66

From Table7, we have that the Rf for GB is higher than Straight Scale and Standard Deviation.

Therefore, a GB method is gets closer to the grades actually assigned by the instructor as
compared to Straight Scale and Standard Deviation method. However, the GB is no significant
difference to Straight Scale since the percentage of different is low but we can say GB and

Standard Deviation method has significance difference for the high different in Rf value. In

addition, this is sustainable since the CC values for both lenient and neutral of GB are lower than
Straight Scale and Standard Deviation methods.

CONCLUSION

The conditional Bayesian method is the method that allow for screening students accordingly to
their performance relative to their peers and is useful for competitive circumstances where the
feedback allow the students to compare their performance to their peers. Moreover, it is requires
no fixed percentages in advance. Basically this method removes the subjectivity from Distribution
Gap, making it more applicable. The conditional Bayesian grading reflects the common belief that
a class is composed of several subgroups, each of which should be assigned a different grade. In
this study, we have showed that conditional Bayesian grading successfully separates the letter
grades. In applying conditional Bayesian method, the instructor needs to determine their own
Leniency Factor. This is a spontaneous measure that reflects how leniently the instructor wants in
assigning letter grade.
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