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ABSTRACT

The boundary-layer flow over a moving continuous solid surface is
important in several engineering processes. For example, materials manufactured by
extrusion processes and heat-treated materials travelling between a feed roll and a
wind-up roll or on conveyor belt possess the characteristics of a moving continuous
surface. In this study, the mathematical model for a boundary layer flow due to a
moving flat plate in micropolar fluid is discussed. The plate is moving continuously
in the positive x -direction with a constant velocity. The governing boundary layer
equations are solved numerically using an implicit finite difference scheme.
Numerical results presented include the reduced velocity profiles, gyration
component profiles and the development of wall shear stress or skin friction for a
wide range of material parameter K takes the values, X =0,0.1,0.3,0.5,1,3,5
and 10. The results obtained, when the material parameter K = 0 (Newtonian fluid),
are in excellence agreement with those obtained for viscous fluids. Further, the wall
shear stress increases with increasing K. For fixed K, the wall shear stress decreases
and the gyration component increases with increasing values of #n, in the range

0<n<1 where n is aratio of the gyration vector component and the fluid shear

stress at the wall,
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ABSTRAK

Aliran lapisan sempadan terhadap permukaan pejal bergerak sangat penting
dalam proses-proses kejuruteraan. Sebagai contoh, ciri-ciri bagi pergerakan suatu
permukaan secara berterusan dapat dilihat dalam proses penyemperitan dalam
pembuatan bahan-bahan, aliran bahan yang dipanaskan melalui dua pengelek yang
diapit atau pergerakan diatas penyampai/penghantar tali sawat. Dalam kajian ini,
model matematik bagi aliran lapisan sempadan terhadap plat rata bergerak telah
dibincangkan. Satu plat bergerak berterusan dalam arah positif paksi-x dengan
halaju tetap. Persamaan lapisan sempadan yang dihasilkan telah diselesaikan secara
berangka dengan menggunakan skema beza terhingga tersirat. Keputusan berangka
telah diberikan, ini termasuk profil halaju, profile komponen legaran dan perubahan
tegasan ricih permukaan dengan mengambil nilai-nilai parameter bahan X =0, 0.1,
0.3,0.5,1, 3, 5 and 10. Kajian ini menunjukkan bahawa keputusan bagi masalah
dalam bendalir micropolar, keputusan perbandingan dengan bendalir likat adalah
sangat memuaskan apabila parameter bahan X =0 (bendalir Newtonan). Seterusnya
tegasan ricih permukaan meningkat dengan peningkatan nilai K. Untuk nilai K
yang ditetapkan, didapati tegasan ricih permukaan menyusut dan kompenan legaran
meningkat dengan peningkatan nilai n, dalam selang 0 <» <1, di mana n adalah

nisbah kompenan vektor legaran dengan tegasan ricih bendalir pada permukaan.
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CHAPTERI

INTRODUCTION

1.1 Introduction

The boundary-layer flow over a moving continuous solid surface is important
in many engineering processes. For example, materials manufactured by extrusion
processes and heat-treated materials traveling between a feed roll and a wind-up roll
or on conveyor belt possess the characteristics of a moving continuous surface. Drag,
heat and mass transfer are governed by the structure of the layer, so a detailed »
knowledge of this structure is necessary to deal with its engineering applications
(Fan, 1999). Other examples may be found in continuous casting, glass fiber
production, metal extrusion, hot rolling, the cooling and/or drying of paper and
textiles, and wire drawing (Altan et al, 1979). The study of heat transfer and the flow
field is necessary for determining the quality of the final product of these processes
as explained by Karwe and Jaluria (1988). They carried out a numerical simulation

of thermal transport associated with a moving flat sheet in material processes.

Our présent study will investigate the boundary layer flow due to a moving
| flat plate in both viscous and micropolar fluids. A micropolar fluid is one which
contains suspensions of rigid particles such as blood, liquid crystals, dirty oil and
certain colloidal fluids, which exhibits microstructure. The theory of such fluids was
first formulated by Eringen (1966). The equations governing the flow of a micropolar
fluid involve a microrotation vector and a gyration parameter in addition to the

classical velocity vector field. This theory includes the effects of local rotary inertia



and couple stresses and is expected to provide a mathematical model for the non-
Newtonian behavior observed in certain man-made liquids such as polymeric fluids
and in naturally occurring liquids such as animal blood. The theory of
thermomicropolar fluids was also developed by Eringen (1972) by extending the
theory of micropolar fluids. A comprehensive review of micropolar fluid mechanics
was given by Ariman et al (1973), they studied the inadequacy of the classical
Navier-Stokes theory to describe rheologically complex fluids such as liquid crystals,
animal blood, etc., has led to the development of microcontinuum fluid mechanics as
an extension of the classical theory. Many models have been proposed to take into

account the mechanically significant microstructure of such fluids.

In our present study, it will also consider the problems of the boundary-layer
flow. We derive and solve the full boundary layer equations and the analysis include
the pseudo-similarity transformation of the governing equations and the resulting
nonlinear equations are then solved using an implicit finite difference scheme, the
Keller-box method. The reduced velocity, reduced gyration component and

development of wall shear stress or skin friction are shown on graph.

In the next section, we present the research background for the project
followed by the objectives and scope and an introduction to the content of this

dissertation.

1.2  Research Background

Sakiadis (1961) first investigated the boundary-layer flow on a continuous
solid surface moving at constant speed. Due to the entrainment of the ambient fluid,
this boundary-layer flow is quite different from the Blasius flow past a flat plate.
Sakiadis’ theoretical predictions for Newtonian fluids were later corroborated
experimentally by Tsou et al. (1967). Lee and Davis (1972) investigated the laminar
boundary layers on moving continuous surfaces while the turbulent boundary layer

on a moving continuous plate was studied by Noor Afzal (1996). Revankar (1989)



discussed the problem of heat transfer due to a continuous moving flat surface with

variable wall temperature.

Chen and Char (1988) investigated the heat transfer over a continuous
stretching surface with suction and blowing. Chiam (1993) studied
magnetohydrodynamic boundary layer flow due to a continuous moving flat plate.
Gupta et al. (1997) analyzed the heat and mass transfer corresponding to the
similarity solution for the boundary layer over a stretching sheet subject to suction or
blowing. The problem of viscous variation for a moving flat plate in an

incompressible fluid have been investigated by Pop et al. (1992).

Later, Allan (1997) presented the similarity solution of a boundary layer
problem over moving surfaces and discussed the idea of nonclassical similarity
transformation, which takes into account the effect of the ratio of wall velocity to the
free stream velocity. They applied the transformation to the fluid flow over a moving
flat plate due to Blasius profile. Recently, Fang (2003) studied the similarity solution
for a moving-flat plate thermal boundary layer and Kayvan and Mehdi (2004)
considered the local similarity solution for the flow of a “second-grade” viscoelastic

fluid above a moving plate.

Peddiesen and McNitt (1970) applied the micropolar boundary layer theory to
the problems of steady stagnation point flow, steady flow over a semi-infinite flat
plate, and impulsively flow past an infinite flat plate. Numerical results through a
finite difference scheme were obtained by them for the first two problems. A
similarity solution for boundary layer flow near stagnation point was presented by
Ebert (1973). A study of the boundary layer flow of micropolar fluids past a semi-
infinite plate was studied by Ahmadi (1976). Gorla (1983) investigated the steady
boundary layer flow of a micropolar fluid at a two-dimensional, stagnation point on a
moving wall and claimed that the micropolar fluid model is capable of predicting

results which exhibit turbulent flow characteristics.

A similarity analysis of the flow and heat transfer past a continuously moving
semi-infinite plane in micropolar fluid has been presented by Soundalgekar and

Takhar (1983). They consider a steady, two-dimensional flow of a micropolar fluid



past a continuously moving flat plate, with a constant velocity in a micropolar fluid
medium at rest. Rees and Bassom (1996) have considered the Blasius boundary layer
flow of a micropolar fluid over a flat plate. They used the Keller-box method to
solve the resulting nonsimilar equations and presented solution for a range of
parameters. Perdikis and Raptis (1996) studied the heat transfer of a micropolar fluid
in the presence of radiation. Na and Pop (1997) studied the laminar boundary-layer
flow of a micropolar fluid over a continuously moving surface through an otherwise
quiescent micropolar. The transformed boundary-layer equations are solved

numerically for a power-law surface velocity using the Keller-box method.

Raptis (1998) studied numerically the case of a steady two dimensional flow
of a micropolar fluid past a continuously moving plate with a constant velocity in the
presence of thermal radiation. Kim (2000) studied the unsteady two-dimensional
laminar flow of a viscous incompressible electrically conducting fluid in the vicinity
of a semi-infinite vertical porous moving plate in the presence of a transverse
magnetic field. On the other hand, Chakraborty and Borkakati (2002) studied of the
flow of a viscous incompressible electrically conducting fluid on a continuous
moving flat plate in the presence of uniform transverse magnetic field. In this study,
numerical solutions were obtained using the Runge-Kutta and Shooting Method.
Recently, Hassan (2003) analyzed the problem of the effect of suction/injection on

the flow of a micropolar fluid past a continuously moving plate in the presence of

radiation.

13 Objectives and Scope

The objectives of this project are:
1. to solve the boundary-layer flow due to a moving flat plate in viscous

fluid.

2. to solve the boundary-layer flow due to a moving flat plate in micropolar
fluid.



The methodology involved will be:

= carry out the mathematical formulation of the governing equations,

» carry out the finite difference formula,

» develop numerical algorithm and solved numerically using the Keller-box

method.

14 Outline of Dissertation

This thesis is divided into five chapters including this introductory chapter.
Section 1.2 presents the research background on the development of research in this

area and we present the objectives and scope of this project in Section 1.3.

In Chapter II, we discuss the first problem in viscous fluid. The problem is
boundary layer flow due to a moving flat plate in viscous fluid. This chapter will be
divided into eight main sections where the first section is the introduction of the
problem. A next section contains a discussion on the derivation of the governing
equations of the boundary layer flow and details of the numerical method, known as
the Keller-box method. One of the basic ideas of the box method, proposed by
Keller, is to write the governing system of equations in the form of a first order
system. Then Newton’s method is used to linearize the resulting nonlinear equations
and lastly, the solutions are obtained using the block-elimination method. The Keller-
box method used in this study is programmed in Matlab. The complete program is
given in Appendix A and the list of the notation of the symbols or variables used in
the Matlab is given in Appendix B. The comparison of the present results that
obtained by Keller-box method with other results that obtained by other methods are
given in Section 2.8. Generally we compare the methodology, once this confirm,
then we used the Keller-box method to solve problem in micropolar fluid. The next
following chapters of this thesis are Chapter III and IV, which discuss the second

problem in micropolar fluid.

Chapter III will be divided into three main sections where the first seetion is

the introduction of the problem. In Section 3.2 contains a discussion on the



derivation of the mathematical formulation of the boundary layer flow due to a
moving flat plate in micropolar fluid. In Section 3.3 we discuss the transformation of

the boundary layer equations.

In Chapter IV, we discuss the details of the numerical solution of the
boundary layer flow due to a moving flat plate in micropolar fluid. This chapter will
be divided into six main sections where the first section is the introduction of the
problem. There is a similarity in Section 2 to 5 in both Chapters II and IV where it
describes the sequence of numerical method. The final section contains the results
and discussion. Our results for material parameter K =0 (Newtonian fluid) are
compared with existing results from the literature for similar problem in viscous fluid
and the agreement are found to be very good, and thus, we proceed to get the new
results for other values of K(K # 0) which are the resulté in micropolar fluid. The
Keller-box method used in this study is programmed in FORTRAN f77. The

complete program is given in Appendices C.

The final chapter, namely Chapter VI, which is the concluding chapter,

contains the findings of this study and recommendations for future research.





