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ABSTRACT

Group theory is a branch of mathematics which concerns with the study
of groups. It has wide applications in other fields too including chemistry. This
research focuses on groups of order 8 and their irreducible representations. There
are five groups of order 8, namely Dy, @, Cs, Cy x Cy and Cy x Cy x Cy. For
any group, the number of possible representative sets of matrices is infinite,
but they can all be reduced to a single fundamental set, called the irreducible
representations of the group. Burnside method and Great Orthogonality Theorem
method are both used to obtain irreducible representations of all groups of order
8. Then, comparisons of both methods are made. Irreducible representation is
actually the nucleus of a character table and is of great importance in chemistry.
Groups of order 8 are isomorphic to certain point groups. Point groups are
symmetry groups which leave at least one point in space fixed under all operations.
In this research, isomorphisms from four out of five groups of order 8, namely
Dy, Cs, Cy x Cy and Cp x Cy x Cy, and isomorphisms from proper subgroups of

Q) to certain point groups are determined.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Group theory is a branch of mathematics which concerns with the study
of groups. It is also the study of symmetry since the collection of symmetries of
some object preserving some of its structure forms a group. An important class of
groups is the set of permutation groups, where the elements are permutations of
some set, and the group operation is composition. A second large class of groups
is the linear groups. Furthermore, another important class of groups is the set
of Abelian groups, those whose elements commute. There are internal features
which can be examined in group theory, for instance, subgroups, abelianization,
subgroup lattice and mapping between groups. With all these unique features,
group theory can be used in various fields, for example, in physics, chemistry and

biology.

This research discusses the irreducible representations of all groups of
order 8. Individual atoms, bonds, atomic orbitals and any other piece of an
overall molecule respond to symmetry operations in different ways. There is a
classification system associated with each point group to classify the behavior of

a molecule. A set of irreducible representations represents the ways a particular



bond, atom or sets of atoms may respond to a given set of symmetry operations.
Irreducible representation is actually the nucleus of the character table of a group.
A character table is a table where the characters of each of the classes are
tabulated. Obtaining the irreducible representations associated with a given
bond, atoms or sets of atoms is a convenient way of labelling orbitals for
reference. Besides, irreducible representations determines which sets of atomic
orbitals can combine with each other to form molecular orbitals. Lastly, an
irreducible representation of a molecule determines the number and nature of
vibrational motions for the molecule by removing the irreducible representations

that correspond to the translation and rotation of the molecule.

In this dissertation, two methods to obtain the irreducible representations
of a group are discussed, namely Burnside method and Great Orthogonality
Theorem method. For Burnside method, three formulas are used to obtain the
class multiplication coefficients, characters of the irreducible representations in
terms of dx, where dj is the dimension of the kth irreducible representation,
and the numerical values for di. Great Orthogonality Theorem method mainly
uses the Great Orthogonality Theorem and five important rules. However, for
different types of groups, for instance, cyclic groups and direct product groups,
a little different approach is needed when Great Orthogonality Theorem method

is used. Both methods are then discussed for their efficiency.

For this dissertation, only all groups of order 8 are discussed. There are
five groups of order 8 which consist of two non-Abelian groups and three Abelian
groups. The groups are all written in group presentation form, that is the form
of a group with a set of generators and certain relations for the generators to

satisfy.

The first non-Abelian group of order 8 is the dihedral group, D,, with
group presentation (a,bla* = b* = 1,a® = a7!). The second non-Abelian group
of order 8 is the quaternion group, @, with group presentation (a,bla* = 1,b% =

a?,a® =a™1).



The first Abelian group of order 8 is the cyclic group, Cs, with group
presentation (ala® = 1). The second Abelian group of order 8 is the direct
product of the groups C; with Cy, which is Cy x Cy, with group presentation
(a,bla* = b* = 1,ab = ba). The third Abelian group of order 8 is the direct
product of three copies of Cy, which is Cy x Cy x Cy, with group presentation

{a,b,cla® = b? = %, ab = ba, ac = ca, bc = cb).

Next, the relation between groups of order 8 with various point groups is

found.

In chemistry, there are various point groups. Point groups are symmetry
groups which leave at least one point in space fixed under all operations [1].
Among all point groups, those of order 8 are point groups Dy, Cyy, Dag, Cs, Ss,
Cap, and Day,.

Mappings, called isomorphisms, are found between groups of order 8 and
certain point groups. Isomorphism is also known as mathematical equivalence
between two or more groups. Isomorphic groups possess the same structure in

the character table, but differ in symmetry operations.

Practical importance of isomorphism is in reducing to a minimum the
number of groups that need to be studied. As for theoretical importance, it is
to emphasize the fact that group theory is concerned with the structure of its
multiplication table, since if two groups are isomorphic, there is some way of re-
labeling the elements so that the multiplication table becomes identical despite

the difference in elements of the groups [2].

In order to visualize the symmetry operations in groups, stereographic
projection is used. Stereographic projection is a way of mapping points on the
surface of a sphere onto a two-dimensional figure. It can be used to represent
a symmetry operation in three dimensions because both a starting point and
any points generated from it by a symmetry operation can be shown on a two-

dimensional figure.



1.2 Objectives

The objectives of this research are

(i) to obtain the irreducible representations of all groups of order 8 using

Burnside method and Great Orthogonality Theorem method,

(ii) to make comparisons of the two methods in obtaining the irreducible

representations,

(iii) to find the isomorphisms of all groups of order 8 (except the quaternion)

with certain point groups,

(iv) to find the isomorphisms of the proper subgroups of quaternion group of

order 8, (), with certain point groups.

1.3 Scope of Study

This report mainly focuses on obtaining the irreducible representations of
all groups of order 8 using Burnside method and Great Orthogonality Theorem
method. Besides, isomorphisms of all groups of order 8 with certain point groups
are determined. In the case where a particular group is not isomorphic to any
point group, isomorphism of its proper subgroups with certain point groups are

discussed.

1.4 Introduction to Each Chapter

Chapter 1 is the introduction chapter which gives the general idea of the
whole research. It states the objectives and scope of study. Besides, introduction

to each chapter are mentioned.



Chapter 2 introduces some basic definitions and concepts related to this
research. Some definitions discussed are group, subgroup, order of a group, order
of an element, Abelian group, cyclic group, point group, class and isomorphism.
Besides, all groups of order 8, reducible and irreducible representations and
multiplication table are mentioned. Moreover, some concepts in chemistry are

also included, among them are symmetry operations and character table.

Chapter 3 describes Burnside method to obtain the irreducible
representations of all groups of order 8. In this method, three formulas are
used to obtain the class multiplication coefficients, characters of the irreducible
representation in terms of di, where di is the dimension of the kth irreducible
representation, and the numerical values for d;. Then, the advantages and

disadvantages of this method are discussed.

Next, Great Orthogonality Theorem method is used to obtain the
irreducible representations of all groups of order 8 in Chapter 4. This method
mainly uses the Great Orthogonality Theorem and five important rules. But for
groups such as cyclic groups and direct product groups, there are specific rules
to be followed. Lastly, the advantages and disadvantages of this method are also

discussed.

In Chapter 5, isomorphisms of all groups of order 8 with certain point
groups are obtained. The point groups mentioned are Dy, Cy,, Daq, Cs, Ss, Can
and Day. In the case of the quaternion group of order 8, Q, where there is no point
group isomorphic to it, isomorphism of its proper subgroups with certain point
groups are discussed. In order to visualize the order of each symmetry operation
for the point groups, stereographic projection is used. Using this projection,

points on the surface of a sphere can be mapped onto a two-dimensional figure.

Finally, Chapter 6 is the summary for this report. It summarizes what
have been discussed in the previous chapters and also includes some suggestions

for further research that can be done.





