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A polybutylene terephthalate (c-PBT) coating for enhancing the temperature sensitivity of a fiber Bragg grating- (FBG-) based
sensor is proposed and demonstrated. The coating is seen to increase the sensitivity of the proposed sensor by a factor of
approximately 11 times as compared to a bare FBG, giving a Bragg wavelength shift of 0.11 nm/°C with an operating
temperature ranging from 30°C to 87°C. The proposed sensor is also easy to fabricate as compared to other similarly coated
FBG sensors, giving it a significant advantage for field applications with the added advantage of being easily reformed to fit

various housings, making it highly desirable for multiple real-world applications.

1. Introduction

Fiber Bragg gratings (FBGs) optical fiber components that
have a number of highly promising sensor applications,
particular those pertaining to the detection of strain and
temperature [1, 2]. The principles of fiber Bragg gratings
has been discussed in great length by Othonos and Kalli
[3] and a good reading has been given by Kashyap [4],
and the application of FBG-based sensors have have been
thoroughly discussed due to their substantial advantages
over conventional mechanical and electronic sensors. This
is primarily due to their robust and compact form factors
and easy fabrication process as well as the ability to be
multiplexed, saving tremendous cost when multiple sen-
sors are required [5, 6]. Furthermore FBG sensors, unlike
other optical sensors, are inherently immune to electro-
magnetic interference at large and are also spark safe,
allowing them to be used in hazardous environments
such as in the oil and gas industry [7, 8]. There are also

cases where optical sensors can be made to interact with
electromagnetic waves based on the polarization rotation
effect when the light travels within the core of the optical
fiber, thus enabling new applications to be realized.
Among the most popular uses for FBGs is as a tem-
perature sensor, which has been demonstrated successfully
in numerous works [9-14]. However, most bare FBGs
have a limited temperature response, due to the low ther-
mal expansion coeflicient of silica against temperature
[15-17] in which most commercial FBGs are fabricated
on. As such, research efforts have turned towards improv-
ing the performance of FBG-based temperature sensors by
using temperature-sensitive materials as a coating to the
FBG [18]. Among the techniques explored for this purpose
include depositing or coating the FBG with metal or poly-
mer layers [19-22], such as that reported by Chenari et al.
[23] which coated the FBG with polydimethylsiloxane
(PDMS) layers of different cross-sectional areas. While sig-
nificantly increasing the sensitivity of the FBG, this method
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FIGURE 1: Ring expansion polymerization of CBT using stannoxane [26].

required many preparatory steps including pretreating the
FBG cladding surface with oxygen plasma, thus making this
approach commercially impractical. Similarly, Park et al.
[24] reported the deposition of nickel on an FBG by electro-
less plating which again required substantially complex steps
for fabrication. However, the improvement realized by the
intermediate material was significant; the nickel-coated
FBG recorded a temperature sensitivity of 25.86 pm/°C, and
proved the sensing capabilities of the FBG.

In this work, a cyclic polybutylene terephthalate (c-PBT)
polymer is proposed as a coating for an FBG-based tempera-
ture sensor. The proposed c-PBT polymer is easy to fabricate
and provides a highly temperature-sensitive intermediate
material for the FBG. The proposed sensor would have sig-
nificant applications where temperature sensing in hazard-
ous or dangerous environments is required.

2. Fabrication of the Cyclic Polybutylene
Terephthalate (c-PBT) Polymer Coating

Polybutylene terephthalate (PBT) is an engineered thermo-
plastic and vastly used in many industrial and consumer
applications. Macrocyclic PBT, also known as ¢-PBT, is pro-
duced from the ring expansion polymerization of CBT oligo-
mers [25] as given in Figure 1. This process can be completed
within a time frame of a few minutes over a relatively low
temperature range of 140°C to 200°C [26] as compared to
other similar polymers. The c-PBT produced by ring expan-
sion polymerization with stannoxane initiators has a higher
molecular weight, greater crystallinity, and better crystalline
morphology than linear PBT, thus making it more sensitive
to temperature changes [25, 27].

FIGURE 2: The ¢-PBT polymer after the heating process.

Prior to the grating inscription process, single mode
(SMF-28) fibers were soaked in a highly pressurized cham-
ber for two weeks to achieve hydrogenation and the pho-
tosensitization of the fibers. During the FBG fabrication
process, 10 mm Bragg gratings were inscribed on SMF-28
fibers using a 193nm argon fluoride (ArF) excimer laser
with a phase mask. A laser pulse duration and pulse energy
of ~10ns and 8 mJ, respectively were used in the grating
inscription process to achieve the desired grating reflectivity
for each fiber. The transmission spectrum of the FBG was
monitored using a Yokogawa AQ6370B optical spectrum
analyzer (OSA) during the laser irradiation process. Subse-
quently, the fabricated FBGs were placed in an oven at
80°C for a period of 8 hours to out-diffuse any residual H,
inside the FBG and to stabilize the spectral properties of
the grating. This process produces an FBG with a reflectivity
of 99%, a 3dB bandwidth of approximately 0.3nm, and a
center wavelength of 1542.31 nm at 30°C.

The c-PBT is deposited on the fabricated adiabatic
tapered FBG using the hydrofluoric (HF) acid etching pro-
cess. The tapered FBG is adiabatic as it forms a gradual
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FIGURE 3: The experimental setup for the c-PBT-coated FBG temperature sensor.
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FiGure 4: The wavelength shift of the c-PBT-coated FBG
temperature sensor and bare-FBG temperature sensor.

taper, leading to a thin waist before returning to its original
diameter. This confines most of the light travelling in the
core of the optical fiber. Generally, in an adiabatic tapered
fiber, the light modes remain primarily in the core as it
propagates along the tapered region. In the case of a non-
adiabatic tapered fiber, some high-order modes will travel
in the cladding and then couple with the core mode as they
propagate along the tapered region. The grating area of the
SME-28 fiber is cleaned with isopropyl alcohol before it is
dipped into a 48% HF acid for 15 minutes [23]. During this
process, no change in the Bragg wavelength has been
observed. The estimated diameter of the adiabatic FBG is
around 75pm, below which the fiber may break during
the polymer coating process. The thickness of the coating
is roughly estimated to be about 300 ym. As explained in
the Introduction, the powder form of c¢-PBT is spread on
top of the adiabatic FBG before it is heated to its melting
temperature of 140°C. The image of the c-PBT polymer
after the heating process is shown in Figure 2. The FBG
is tapered so as to enhance its temperature sensitivity, as
the FBG’s polymer cladding has a low thermal expansion
coeflicient. Tapering the FBG allows for a better interaction
of the surface area of the FBG to the heat source due to the
reduced cladding diameter, thus increasing the sensitivity of
the fiber. This is due to a larger portion of the evanescent
wave being able to interact with the heat source.

3. Experimental Setup of c-PBT-Coated FBG as
a Temperature Sensor

Figure 3 shows the experimental setup of the c-PBT-coated
FBG temperature sensor. A C-band amplified spontaneous
emission (ASE) spectrum is generated by a 3 m long Fiber-
core Ltd. M12 erbium-doped fiber (EDF) pumped at
100 mW by a 980 nm laser diode. The ASE is used as the sig-
nal source for the proposed sensor, and is connected to port 1
of a 3-port optical circulator (OC). The OC is used to create a
bidirectional optical path so that the reflection of the c-PBT-
coated FBG, which changes as the FBG expands or contracts,
can be captured by the Yokogawa AQ6370B OSA that is con-
nected to port 3 of the OC.

The c-PBT-coated FBG is placed on a Thermo Fisher
Scientific SP131 hotplate that serves as the source of heat
for the experiment. The hotplate is capable of generating
a temperature of between 30°C and 65°C. One end of
the FBG is connected to port 2 of the OC, while the other
end of the FBG is left unconnected. A Fluke 714 thermo-
couple calibrator is also placed on the hotplate to provide
a reference measurement for temperature. For comparison
purposes, the c-PBT-coated FBG is replaced with a con-
ventional bare FBG, and the experiment repeated. The
resulting responses from both FBGs are discussed in the
Experimental Results.

4. Experimental Results

Figure 4 shows the wavelength shift of the c-PBT-coated
FBG as well as a the bare FBG over an increasing temper-
ature range of 30°C to 65°C. It can be seen from the figure
that as the temperature increases, the Bragg wavelength of
the c-PBT-coated FBG shifts by approximately 0.11nm
against a temperature rise of 10°C, with the highest shift
of 4.13nm obtained at the maximum temperature of 65°C.
This gives a Bragg wavelength shift rate of about
0.11 nm/°C. On the other hand, the bare FBG is significantly
less responsive towards the rising temperature, resulting in a
Bragg wavelength shift rate of only 0.0178 nm/°C. From this,
it can be seen that the c-PBT-coated FBG has a Bragg wave-
length shift per °C response approximately 11 times larger
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FiGure 5: Reflection spectra of the (a) bare FBG and (b) c-PBT-coated FBG against a temperature range of 40°C to 87°C.

than that of the bare FBG. It can also be seen from Figure 4
that the c-PBT-coated FBG has an almost linear response
against the rising temperature, with only a slight drop being
seen at higher temperatures. This is attributed to the c-PBT
film reaching its thermal expansion limit, and thus further
increases in temperature would result in a smaller increase
in the FBG wavelength.

Figure 5 shows the spectral response of the c-PBT-coated
FBG against the rising temperature. A noteworthy observa-
tion is the narrowing of the bandwidth of the reflection from
the FBG as the temperature increases. This arises due to the
uneven stress in the polymer during the coating and curing
process, and as a result of this, the stress in the polymer
relaxes and the reflection curve of the FBG slowly changes
to its original bandwidth as the temperature increases.
Decreasing the temperature increases the stress, resulting in
the bandwidth broadening again as the polymer is cooled to
room temperature. The conversion of the CBT oligomers to
a ¢-PBT polymer via heating will produce a significant
change in the molecular weight (MW) of these polyesters,
shifting it from low MW to higher MW material. This is
because the molecular contents are denser and more com-
pact, giving the higher MW in the resulting polymer. This
gives more restriction and distraction to the grating upon
penetrating the polymer coating. The side lobes of the FBG
spectrum are also observed to change due to the uniformity
of the gratings within the FBG changing during the heating
process. The error of the wavelength reading is given by the
manufacturer to be £0.02 nm.

Figure 6 provides the 3 plots of the 3dB bandwidth
against the temperature range, and it can be seen that as the
temperature increases from 40°C to 87°C the 3 dB bandwidth
reduces from 0.4 nm to 0.13 nm. Figure 7 shows the response
of the sensor during the heating and cooling cycles from 30°C
to 65°C and vice versa. The response of the sensor to the heat-
ing and cooling process shows the same sensitivity, and these
results are repeatable.

Table 1 provides a performance comparison of the c-
PBT-coated FBG sensor of this work against other coated
FBG-based temperature sensors.

From the table, it is immediately clear that the perfor-
mance of the c-PBT-coated FBG is far from that of the
PDMS- or nickel-coated FBGs, which have temperature
resolutions of 0.042nm/°C and 0.025nm/°C. This means
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FIGURE 7: Heating and cooling cycles of the c-PBT-coated FBG
sensor.

that the aforementioned sensors are almost 4 times more
sensitive as compared to the c-PBT-coated FBG sensor.
However, compared to the other proposed FBG-based sen-
sors in Table 1, the c-PBT-coated FBG of this work is
remarkably easy to fabricate, and can be done so in a time
period of a few minutes. This means that the c-PBT-based
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TaBLE 1: Comparison of coated FBG temperature sensors with sensitivity and temperature range.

Type of coating

Sensitivity

Temperature range tested

PDMS coated [24] 0.042 nm/°C (with a cross section of 400 mm?) 30°C-120°C
Nickel coated [25] 0.025nm/°C (with a thickness of 337.5 ym) 20°C-300°C
Polymer-coated fiber Bragg grating [28] 0.048 nm/°C 25°C-180°C
This work 0.11nm/°C 30°C-85°C
FBG can even be fabricated in the field if needed, as com- References

pared to other coated FBG sensors which would require
more stringent conditions, such as the use of a clean room
or other similarly regulated environments. The c-PBT also
has the added advantage of being easily remolded, allow-
ing the coating to be changed to fit different housings.
Furthermore, while the melting point of the ¢-PBT poly-
mer coating is 140°C, the glass fiber itself does not show
any significant expansion above a temperature of 87°C.
This is effectively the maximum temperature that the sen-
sor can measure. Taking these two factors into account
makes the proposed sensor highly viable for real-world
applications.

5. Conclusion

An FBG temperature sensor with a c-PBT polymer coating
for enhancing sensitivity is proposed and demonstrated.
The proposed sensor has a sensitivity approximately 11 times
larger than that of a bare FBG with a Bragg wavelength shift
of 0.11 nm/°C. The optimum operating temperature for the
c-PBT-coated FBG spans from 30°C to 87°C, with the Bragg
wavelength shifting linearly towards the longer wavelength
region as the temperature is increased. At the same time,
the 3 dB bandwidth of the reflected spectra decreases from
0.4nm to 0.13 nm over the same temperature range. The pro-
posed sensor has significant real-world applications, owing to
its substantial ease of fabrication as well as the ability to
reform the c-PBT polymer, allowing it to be adapted to mul-
tiple housings.
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