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ABSTRACT

Arcing faults can cause substantial damage if they are not detected and
isolated promptly. Detection of arcing faults has always been a difficult issue.
Those faults tend to be of high fault resistance and hence the fault current is well
below maximum load limit and its detection is not possible through the use of
overcurrent relays. In the case of overhead lines, the gas generated through arcing is
dispersed rapidly. But in the case of underground cables, the generated gas could
travel along cable duct and could result in explosion at manhole location, which is
dangerous to personnel. The damage can be reduced if arcing faults are detected
before they develop into major faults. The general aim of this study is to develop an
arcing fault detection algorithm which can detect the presence of arcing fault in
underground distribution cable. Arcing faults data are collected through simulations
and experiments. The simulations involve the modelling of a simple underground
distribution system and two TNB underground distribution systems using Power
System Computer Aided Design / Electromagnetic Transient for Direct Current
(PSCAD/EMTDC) program. On the other hand, the experiments are conducted in
research laboratory. The data collected from the simple underground distribution
system are analysed in both time domain and frequency domain to identify the
characteristics of arcing fault. A Multi-layer Perceptron (MLP) with
Backpropagation (BP) learning is used to discriminate arcing faults from normal load

condition. The detection results revealed satisfactory performance in all test cases.
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ABSTRAK

Rosak pengarkaan boleh menyebabkan kemusnahan yang besar jika rosak
tersebut tidak dikesan dan diasingkan dengan secepat mungkin. Pengesanan rosak
pengarkaan selalunya merupakan satu isu yang sukar. Rosak tersebut cenderung
kepada rintangan kerosakan tinggi. Oleh yang demikian, arus rosak adalah di bawah
had beban maksimum dan rosak tersebut tidak mungkin dapat dikesan melalui
penggunaan geganti arus lebih. Dalam kes talian atas, gas yang terjana melalui
pengarkaan akan menyerak dengan cepat. Tetapi dalam kes kabel bawah tanah, gas
yang terjana akan mengembara di sepanjang saluran kabel dan boleh menyebabkan
letupan pada lokasi lurang yang boleh merbahayakan pekerja. Kemusnahan dapat
dikurangkan jika rosak pengarkaan dapat dikesan sebelum rosak tersebut berubah
menjadi rosak utama. Penyelidikan ini bertujuan untuk membangunkan satu
algoritma pengesanan rosak pengarkaan yang dapat mengesan kewujudan rosak
pengarkaan pada kabel pengagihan bawah tanah. Data rosak pengarkaan
dikumpulkan melalui simulasi dan ujikaji. Simulasi melibatkan pemodelan sebuah
sistem pengagihan bawah tanah ringkas dan dua sistem pengagihan bawah tanah
TNB dengan bantuan perisian “Power System Computer Aided Design /
Electromagnetic Transient for Direct Current (PSCAD/EMTDC)”. Sementara itu,
ujikaji dijalankan di makmal penyelidikan. Data yang diperolehi daripada sistem
pengagihan bawah tanah ringkas dianalisiskan dengan menggunakan domain masa
dan domain frekuensi untuk mengenalpasti ciri-ciri rosak pengarkaan. Sebuah
rangkai neural pelbagai-aras dengan perambatan-balik digunakan untuk membezakan
rosak pengarkaan daripada keadaan beban biasa. Keputusan pengesanan

menunjukkan prestasi yang memuaskan dalam kesemua kes yang diuji.
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CHAPTER 1

INTRODUCTION

1.1  Research Background

In the very early days of underground power distribution, failures of cable
and splice were common. Therefore the interest at that time was in arcproofing
practices and many researches were devoted to that problem. However, this interest
drooped since 1941 because of the paper insulated lead covered cable (PILC)
technology reached its maturity that year. The advent of crosslinked polyethylene
(XLPE) cables in the 1970s, which seemed to provide an attractive solution of cable
aging problem and progress in premoulded-splice technology drastically reduced the

number of failures. As a result, cable arcproofing problems were forgotten [1].

Recently, however, new problems such as errors due to inadequate splice
assembly, electrical and water treeing in XLPE insulation have started to appear as a
consequence of the growing number of arcing faults on underground distribution
systems. These faults can cause considerable damage if they are not detected and
isolated promptly. The techniques presently used in power systems for fault
detections are based on voltages and currents inspection. The changes usually do not
occur immediately after the establishment of an arcing fault. The consequence is that
the damage at the fault is usually substantial. The damage can be reduced if arcing

faults are detected before they develop into major faults [2].



Detection of arcing faults has always been a difficult issue. Those faults tend
to be of high fault resistance and hence the fault current is well below maximum load
limit and its detection is not possible through the use of overload relays. In the case
of overhead line the gas generated through arcing is dispersed rapidly. But in the
case of underground cable the generated gas could travel along cable duct and could

result in explosion at manhole location, which is dangerous to personnel [3-4].

As far as it is concerned, the Tenaga Nasional Berhad (TNB) does not have
specific tools for arcing fault detection and location. Most of the time, they only
carry out breakdown repair. Recently, they have embarked on Very Low Frequency
(VLF) testing of cable whereby potential weak spot can be detected. Therefore, fault

can be prevented during service condition.

1.2 Literature Reviews

In the past many investigations have been performed and methodologies have
been suggested in arcing faults detection. They are based on examining different
characteristics of currents and voltages in time, frequency, and time-frequency

domains.

The time domain method utilized the random behaviour of the fault current
by comparing the positive and negative current peaks in one cycle to those in the
next cycle to measure the flicker in the current signal [5]. By comparing the positive
peak to the negative peak, the asymmetry of the current was calculated for each
cycle. Referring to reference [6], the time domain analysis involved comparing
changes in currents and voltages over a period of one or a few cycles during the
arcing faults stage against the normal conditions. From the analysis, a most reliable

indicator of an arcing fault was a surge in the absolute increments in the effective

values of the synthesized neutral current.

The frequency domain method was used to monitor the harmonic contents of

phase currents or some coefficients measuring waveform distortion [7-8]. Referring



to reference [6], the frequency domain analysis compared the harmonic contents of
the phase and neutral currents during normal and arcing fault conditions. The Fast
Fourier Transform (FFT) was used to calculate the harmonic contents for the
analysis. Besides that, a general measure of the current waveform distortion, a
distortion coefficient, was used for analysis. From the analysis, the most
characteristic features of arcing faults were appearance of the direct current (DC)
‘component in the phase currents and an increased level of the second harmonic of the

phase and neutral currents.

For the time-frequency domain method, wavelet transforms was used to
analyse the transient behaviour of arcing faults in both time and frequency domain.
Reference [9] proposed an application of Morlet wavelets in high impedance fault
detection. The advantage of wavelet transform approach is more efficient than FFT
in monitoring fault signals as time varies. Besides that, Lazkano, A. et al [10]
proposed an arcing fault detection method and evaluated the detection rate and the
security level based on Wavelet Packet Analysis. The method involved analysis of
three-phase unbalance current using decomposition of the signal by means of
Wavelet Transform technique. Apart from that, reference [6] applied time-frequency
analysis to determine how the frequency behaviour of a signal changes over time.
The analysis was carried out by decomposing a signal into a set of components using
a wavelet transformation. The effectiveness of this method is strongly affected by

the choice of a wavelet family, decomposition level, sampling rate and arcing fault

behaviour.

On the other hand, artificial neural networks (ANNs) were also used to
discriminate the arcing faults from the normal currents. Sultan, A. F. ef al [11]
proposed a high impedance arcing faults detection algorithm through a feed forward
three layer ANN structure using the Backpropagation (BP) training algorithm. Phase
currents were entered as input variables of the ANN. The algorithm performed well
in identifying faults disrupted by arc noise as well as good discrimination between
faults and fault-like loads. Reference [12] proposed a fast and efficient ANN-based
fault diagnostic system (FDS) for distribution feeders. The main functions of this

diagnostic system were detection of fault occurrence, identification of faulted

sections and classification of faults into types. The FDS has been achieved through a



cascaded, multiplayer ANN structure using the BP training algorithm. The
substation current and voltage phasors in addition to the unbalanced feeder current
and voltage sequence phasors were entered as input variables of the ANN. Apart
from that, reference [13] suggested a high impedance fault detection method that
uses a BP ANN as a fault detector. One cycle fault current was divided into equal
spanned four windows according to voltage phase and applied FFT to current
waveform in each window. FFT magnitudes of the harmonic current were entered as

input variables of the ANN.

Comprehensive expert systems were implemented that combine some of the
above methods to increase sensitivity and eliminate false tripping. Reference [14]
suggested a fault detection system for high impedance faults with specific
descriptions of the detection algorithms and the “intelligent” fault decision element.
Besides that, reference [15] proposed the use of multiple algorithms to detect various
types of faults. The faults detector included an expert decision maker to decipher

incoming data, to determine the status and health of a distribution feeder.

There was another alternative approach to detect the presence of arcing fault
and determines it’s location by analysing acoustic, thermal (infra-red) and
electromagnetic radiation generated by the arcing fault [2]. The technique was

implemented by using a variety of sensors and a microprocessor based system, and

tested in the laboratory.

Apart from that, Kim and Russell [16] developed an algorithm to analyse the
transient behaviour of various events on distribution feeders by quantifying wave
distortion with the crest factor. The identification method discriminated arcing faults
from most normal system events and provided an alternative method for improving

the security of the fault or no fault decision.

Most of the studies mentioned above were based on the field tests data, which
are limited to specific conditions and circumstances. Some of them are complicated
and time-consuming. Some few methods are simpler and faster in computation, but

have difficulty in giving the reasonably accurate results.



Therefore, the aim of this research is to develop an arcing fault detection
algorithm using Artificial Neural Network (ANN). The developed algorithm
integrates the time domain method with the frequency domain method and applying
the ANN for arcing fault pattern recognition. Phase currents, DC component and
fundamental frequency ratio (/z/I;), second harmonic and fundamental frequency
ratio (//I;) were entered as input variables of the proposed ANN. This ANN based
detection algorithm offers the best alternative as it provides the potential for online
field training and customisation using actual field arcing faults data. Early detection
.of arcing fault in underground distribution cable before it reaches a catastrophic state

could allow TNB to schedule corrective action to minimise customer inconvenience.

The main contribution of this research is the development of ANN based
arcing fault detection algorithm. The modellings of the TNB 11 kV underground
distribution system in Taman Rinting, Masai, Johor (PPU Taman Rinting 11 kV) and
TNB 6.6 kV underground distribution system in Pasir Gudang, Johor (PMU PGIE
6.6 kV) into the PSCAD/EMTDC program are also a part of the research
contribution. Besides, an experiment conducted in research laboratory to gather

arcing fault data is another contribution to this research.

1.3 Research Objectives

‘The general aim of this project is to develop a detection algorithm which can
detect the presence of arcing fault in underground distribution cable. The particular

aims of the research work are outlined as follows:

i) To study the existing established methods for detection of arcing fault in

underground distribution cable.

i1) To study and identify the characteristics of arcing fault that occurs in

underground distribution cable.



iii) ~ To model and simulate the underground distribution system for arcing
fault’s data collection.

iv) To set up an experiment for arcing fault’s data collection.

V) To develop an arcing fault detection algorithm using Artificial Neural
Network (ANN).

1.4 Structure of Thesis

All the work done in this research is presented systematically in seven

chapters.

Chapter 2 introduces the underground power cables and their components,
which include the types of conductor, insulator and external protection of cables. In
addition, this chapter also presents the most usual types of faults that occur in

underground distribution cable.

Chapter 3 describes the Artificial Neural Networks (ANNs), which is used for
arcing fault pattern recognition. The arcing fault pattern recognition technique

discussed here is the Multi-layer Perceptron (MLP) with the learning algorithm of
Backpropagation (BP).

Chapter 4 explains the arcing fault data collection approach and
methodology. Arcing fault data are collected through simulations and experiments.
The simulation involves the modelling of underground distribution systems and is
performed using Power System Computer Aided Design / Electromagnetic Transient
for Direct Current (PSCAD/EMTDC) program. Meanwhile the experiment is

conducted in research laboratory.

Chapter 5 discusses the development of arcing fault detection algorithm. The
data collected are analysed in both time domain and frequency domain to identify the

characteristics of arcing fault. The network architecture, training patterns and



learning algorithm are described. In this chapter also, the flowchart of the arcing

fault detection algorithm with step-by-step explanation is presented.

Chapter 6 compares the performance between the two pattern recognition
networks. The network with better performance is selected and used in the proposed
arcing fault detection algorithm. Furthermore, this chapter presents the evaluation
and discussion on the results of arcing fault detection algorithm. The developed
algorithm is tested with the two TNB distribution systems simulations database and

the experimental database.

Chapter 7 presents the conclusions of the research as well as some
constructive suggestions for the future development of the algorithm. This chapter
will conclude the effectiveness of utilizing the ANN in arcing fault pattern
recognition. As for future development, some suggestions are made based on the

limitations of the developed algorithm in this research.





