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Abstract 
 

The thermoelectric devices have the ability to convert heat energy into electrical energy without required moving components, having 

good reliability however their performance depends on material selections. The advances in the development of thermoelectric materials 

have highlighted to increase the technology’s energy efficiency and waste heat recovery potential at elevated temperatures. The fabrica-

tion of these thermoelectric materials depends on the type of these materials and the properties using to evaluate these kind of materials 

such as thermopower (Seebeck effect), electrical and thermal conductivities. Ceramic thermoelectric materials have attracted increased 

attention as an alternative approach to traditional thermoelectric materials.  From these important thermoelectric ceramic materials that 

can be a candidate for n-type is ZnO doping, which have excellent thermal and chemical stability, as they are promising for high temper-

ature power generator. This review is an effort to study the thermoelectric properties and elements doping related with zinc oxide nano-

ceramic materials. Effective ZnO dopants and doping strategies to achieve high electrical and thermal conductivities and high carrier 

concentration are highlighted in this review to enable the advanced zinc oxide applications in thermoelectric power generation. 
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1. Introduction 

Thermoelectric system is an environment friendly energy conver-

sion technology with advantages of small system size, no pollu-

tants, high reliability and permissibility in a wide range of temper-

atures. Thermoelectric materials have the ability to directly con-

vert the heat into electricity for power generation applications[8].  

The conversion efficiency of these thermoelectric materials was 

usually determined by the dimensionless figure of merit, ZT = 

σS2T/K, where σ, S, T, and K are the electrical conductivity; See-

beck coefficient, absolute temperature; and total thermal conduc-

tivity respectively. The term of S2σ is known as power factor [9-

11]. The main challenge to improve the thermoelectric perfor-

mance and separation of S, σ, and κ, which are strongly interrelat-

ed[12] 

The thermoelectric (TE) module consists of n- and p-type semi-

conducting materials connected thermally in parallel and electri-

cally in series. The electric potential (Voltage) of these materials 

generated by a temperature difference is called the Seebeck effect 

and the proportionality constant is known as Seebeck coefficient. 

Each thermoelectric materials contains two types of freely moving 

charges, more electrons (negative charges) and more holes (posi-

tive charges). Electrons are the more abundant carrier in n-type 

materials, holes being the less abundant carrier. In p-type materi-

als, however, holes are the majority carrier, and electrons the mi-

nority carrier. If the free charges are positive (p-type), the positive 

charge will accumulate on the cold which will have a positive 

potential. In the same way, the negative free charges (n-type) will 

produce a negative potential at the cold end.  

In spite of recent developments in thermoelectric materials re-

search, the potential impact of thermoelectric materials technology 

for power generations is handicapped by the heavy usage of toxic, 

expensive, and rare elements such as Te and Se and their low 

power output[13, 14]. For examples, there are only a few major 

thermoelectric material systems commercially available now in 

the world to change the temperature from low to high temperature 

limited generation including SiGe[15], Bi2Te3[16, 17]and 

PbTe[18]. The applications of these TE materials especially Te-

based materials are largely limited by the element resources, tox-

icity, and material degeneration at high temperatures. Thermoelec-

tric ceramic materials, on the other hand, are promising candidates 

to circumvent these challenges due to their earth abundance, non-

toxicity, cheaper, and high stability of thermal properties. In this 

review focuses on the thermoelectric properties, the electrical 

conductivity, seebeck coefficient, thermal conductivity and figure 

of merit of one important representative oxide, n-type ZnO, which 

exhibit the best ZT among oxide thermoelectric materials reported 

to date. 

2. N-type nanostructured Zinc oxide dopant  
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Fig. 1: A wurtzite crystal structure of ZnO. 

 

Zinc Oxide (ZnO) is one of the most important thermoelectric 

material for energy conversion applications at high temperature. 

Zinc oxide is an n-type semiconductor having a wide band gap 

semiconductor between 3.2-3.5 eV with high electron mobility 

and thermal conductivity. It crystallizes in wurtzite lattice struc-

ture at normal conditions. According to this coordination structure, 

the orbitals of valence electrons of Zn in this kind of oxide can be 

regarded as sp3 hybrid similar to that of carbon in organic com-

pounds, suggesting a large covalence in the chemical bonding of 

this kind of component. The lattice constants of zinc oxide crystal 

are 5.2098Å and 3.2539Å along c-axis and a-axis respectively. In 

this oxide, O2- and Zn2+ ions form hexagonal close packed type 

sub lattice (Fig. 1). This strange coordination structure as oxide 

also restricts the elements and their solubility limits for substitu-

tion at the Zn positions in ZnO. 

Zinc oxide is very stable in wide temperature ranges, cost-

effective, non-toxic, and have relatively low environmental impact. 

Non-doped bulk ZnO is an n-type semiconductor showing increas-

ing electrical conductivity with increasing temperature. However, 

a small amount of doping with element like Al for example in-

creases electrical conductivity more than three orders of magni-

tude at room temperature, and changes the conduction behavior 

from semiconducting to metallic. The major factor limiting of the 

practical usage of ZnO as a thermoelectric materials is its high 

value of thermal conductivity K. Therefore, some of the strategies 

proposed in order to lower the K value is by increasing phonon 

scattering along grain boundaries or reducing the oxide particle 

size.  

In technological and engineering perspectives, nanostructuring has 

been proven to provide an effective way to improve thermoelectric 

efficiency for these kind of oxides and it has already been applied 

to ZnO-based materials. The first successful research done in 1996 

by Ohtaki et al.[4] for the polycrystalline aluminum doped ZnO of 

the composition (Zn0.98Al0.02O) with high temperature thermoelec-

tric properties. They evaluated the thermal conductivity, electrical 

conductivity, and Seebeck coefficient at 1000°C. The results of 

that investigation got the ZT value around 0.65 at 1000°C [5]. 

During the last decades, several studies of the thermoelectric 

properties of ZnO doped with either elements such as Al, Ni, Sm, 

Ce, Dy, Ga and Sb have been reported[1, 2, 19, 20]. Figure 2 

shows the number of articles already published between 2009 and 

2017. 

 
Fig. 2: Number of articles published concerning of zinc oxide dopant 

based materials. 

 

3. Thermoelectric Properties related with 

ZnO dopant based materials 

In order to obtain a high figure of merit ZT, the thermoelectric 

materials should possess high Seebeck coefficients and electrical 

conductivity with low thermal conductivity. A high electrical con-

ductivity is necessary to minimize Joule heating, while a low 

thermal conductivity helps to retain heat at the junctions and main-

tain a high temperature gradient [21]. These are the irreconcilable 

requirements and there are very few materials, which satisfy the 

above conditions. Among the thermoelectric materials, zinc oxide 

displays a good seebeck coefficient value, a high thermal stable 

temperature ranges and low environmental impact [22, 23]. The 

different investigations on ZnO materials present that their ther-

moelectric properties can be improved by substitution with differ-

ent element such as Aluminum[1-4, 24-28], Cerium and Dyspro-

sium[29], Gallium [6, 30-32], Indium[33], praseodymium[34], 

Antimony[20] and Nickel[7, 19]. Therefore, ZnO as thermoelec-

tric materials is slowly developing, but surely gaining attention as 

one of the candidates for thermoelectric applications.   

Figures 4-7 depicture the temperature dependence of the electrical 

conductivity, Seebeck coefficient, thermal conductivity and figure 

of merit for the ZnO materials before and after doping respectively. 

Figure 4 presents the effect of electrical conductivity percentage 

changing before and after ZnO doped with Al, Ni, Sm, Ce, Dy, Ga 

and Sb elements. The results showed that ZnO doped with Al and 

Ga elements have higher electrical conductivities compared with 

other elements.   
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Fig. 4 The effect of electrical conductivity percentage changing with dif-
ferent ZnO doped elements [1-7] 

 

 
Fig. 5: The effect of Seebeck coefficient percentage changing with differ-

ent ZnO doped elements [1-7] 

 

The influence of Seebeck coefficient percentage changing before 

and after ZnO doped with Al, Ni, Sm, Ce, Dy, Ga and Sb elements 

are shown in Figure 5. From this figure, it was present that ZnO 

doped with Dy and Ce has higher seebeck coefficient compared 

with other elements according to different references.   
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Fig. 6: The effect of thermal conductivity percentage changing with dif-

ferent ZnO doped elements [1-7]. 

 
Fig. 7: The effect of figure of merit percentage changing with different 
ZnO doped elements[1-7] 

 

Figure 6 shows the effect of thermal conductivity percentage 

changing on the ZnO undoped and doped with different elements 

such as Al, Ni, Sm, Ce, Dy, Ga and Sb. According to obtain high 

figure of merit, the thermal conductivity must be lower values. 

The Figure 6 presents the thermal conductivity of ZnO before and 

after doping with different elements. From this figure, the lowest 

thermal conductivity can be obtained from Ga compared to other 

elements. 
 

Figure 7 shows the figure of merit comparisons between the num-

bers of references. From this figure, the higher value of that factor 

can be obtained from Al and Ni elements. According to previous 

explanations, there are differences in the results obtained from 

these references. This depends on several factors including bulk 

density, carrier concentration and grain size ZnO[19]. 

4. Conclusion 

From the detailed literature survey and from the analysis based on 

this survey, it is found that effective ZnO dopants and kind of 

doping elements to achieve higher electrical conductivity, lower 

thermal conductivity and higher carrier concentration of these 

elements. Therefore, in this paper, a brief research paper on ther-

moelectric parameters such as electrical conductivity, Seebeck 

coefficient, thermal conductivity and figure of merit for the ZnO 

materials before and after doping and their relation with these 

parameters changing. The effects of certain parameters on the 

thermoelectric properties of ZnO, have been summarized and 

presented with short interpretations. 

Acknowledgement 

The authors would like to thank the Ministry of Education Malay-

sia (MOE), Universiti Teknologi Malaysia (UTM), Faculty of 

Mechanical Engineering, Institute for Vehicle Systems and Engi-

neering and UTM Centre for Low Carbon Transport in coopera-

tion with Imperial College London for providing the research 

facilities. This research work has been supported by Ministry of 

Education Malaysia (MOE) for the FRGS Grant 

(R.J130000.7824.4F723). 

References 

[1] S. Jantrasee, P. Moontragoon, and S. Pinitsoontorn, 

"Thermoelectric properties of Al-doped ZnO: experiment and 
simulation," Journal of Semiconductors, vol. 37, no. 9, p. 092002, 

2016. 

[2] H. Yamaguchi, Y. Chonan, M. Oda, T. Komiyama, T. Aoyama, and 
S. Sugiyama, "Thermoelectric properties of ZnO ceramics co-doped 

with Al and transition metals," Journal of electronic materials, vol. 

40, no. 5, pp. 723-727, 2011. 
[3] K. Cai, E. Müller, C. Drašar, and A. Mrotzek, "Preparation and 

thermoelectric properties of Al-doped ZnO ceramics," Materials 

Science and Engineering: B, vol. 104, no. 1, pp. 45-48, 2003. 

[4] T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, "Thermoelectric 

properties of Al-doped ZnO as a promising oxidematerial for high-

temperature thermoelectric conversion," Journal of Materials 
Chemistry, vol. 7, no. 1, pp. 85-90, 1997. 

[5] M. Ohtaki, K. Araki, and K. Yamamoto, "High thermoelectric 

performance of dually doped ZnO ceramics," Journal of Electronic 
Materials, vol. 38, no. 7, pp. 1234-1238, 2009. 

[6] X. Liang, "Thermoelectric transport properties of naturally 

nanostructured Ga–ZnO ceramics: Effect of point defect and 
interfaces," Journal of the European Ceramic Society, vol. 36, no. 

7, pp. 1643-1650, 2016. 

[7] H. Colder, E. Guilmeau, C. Harnois, S. Marinel, R. Retoux, and E. 
Savary, "Preparation of Ni-doped ZnO ceramics for thermoelectric 

applications," Journal of the European Ceramic Society, vol. 31, no. 

15, pp. 2957-2963, 2011. 
[8] D. M. Rowe, CRC handbook of thermoelectrics. CRC press, 1995. 

[9] W. Li et al., "Promoting SnTe as an Eco‐Friendly Solution for 

p‐PbTe Thermoelectric via Band Convergence and Interstitial 

Defects," Advanced Materials, 2017. 

[10] E. Combe et al., "Microwave sintering of Ge-doped In2O3 

thermoelectric ceramics prepared by slip casting process," Journal 
of the European Ceramic Society, vol. 35, no. 1, pp. 145-151, 2015. 

[11] C. Zeng, S. Butt, Y.-H. Lin, M. Li, C.-W. Nan, and X. D. Zhou, 

"Enhanced Thermoelectric Performance of SmBaCuFeO5+δ/Ag 
Composite Ceramics," Journal of the American Ceramic Society, 

vol. 99, no. 4, pp. 1266-1270, 2016. 

[12] I. M. Abdel-Motaleb and S. M. Qadri, "Thermoelectric Devices: 
Principles and Future Trends," arXiv preprint arXiv:1704.07742, 

2017. 

[13] M. Zhou, J. F. Li, H. Wang, T. Kita, L. Li, and Z. Chen, 
"Nanostructure and high thermoelectric performance in 

nonstoichiometric AgPbSbTe compounds: The role of Ag," Journal 
of Electronic Materials, Conference Paper vol. 40, no. 5, pp. 862-

866, 2011. 

[14] S. Ballikaya, H. Chi, J. R. Salvador, and C. Uher, "Thermoelectric 
properties of Ag-doped Cu 2 Se and Cu 2 Te," Journal of Materials 

Chemistry A, vol. 1, no. 40, pp. 12478-12484, 2013. 

[15] X. Wang et al., "Enhanced thermoelectric figure of merit in 
nanostructured n-type silicon germanium bulk alloy," Applied 

Physics Letters, vol. 93, no. 19, p. 193121, 2008. 

[16] G. Tang, K. Cai, J. Cui, J. Yin, and S. Shen, "Preparation and 
thermoelectric properties of MoS2/Bi2Te3 nanocomposites," 

Ceramics International, 2016. 

[17] Y. Dou et al., "Enhanced performance of dye-sensitized solar cell 
using Bi2Te3 nanotube/ZnO nanoparticle composite photoanode by 

the synergistic effect of photovoltaic and thermoelectric 

conversion," Journal of Power Sources, vol. 307, pp. 181-189, 
2016. 

[18] J. Q. Li, S. P. Li, Q. B. Wang, L. Wang, F. S. Liu, and W. Q. Ao, 

"Effect of Ce-doping on thermoelectric properties in PbTe alloys 
prepared by spark plasma sintering," Journal of Electronic 

Materials, Article vol. 40, no. 10, pp. 2063-2068, 2011. 

[19] I. Koresh and Y. Amouyal, "Effects of microstructure evolution on 
transport properties of thermoelectric nickel-doped zinc oxide," 

Journal of the European Ceramic Society, vol. 37, no. 11, pp. 3541-

3550, 2017. 
[20] K. Park, J. Seong, and S. Nahm, "Improvement of thermoelectric 

properties with the addition of Sb to ZnO," Journal of Alloys and 

Compounds, vol. 455, no. 1, pp. 331-335, 2008. 



30 International Journal of Engineering & Technology 

 
[21] M. Mohammed, I. Sudin, A. M. Noor, S. Rajoo, and U. M. Basheer, 

"A review of thermoelectric p-type Ca3Co4O9 nanostructured 

ceramics for exhaust energy recovery." 

[22] N. K. Devaraj, T. Han, P. Low, B. H. Ong, and Y. Sin, "Synthesis 

and characterisation of zinc oxide nanoparticles for thermoelectric 
application," Materials Research Innovations, vol. 18, no. sup6, pp. 

S6-350-S6-353, 2014. 

[23] M. Ohtaki, "Recent aspects of oxide thermoelectric materials for 
power generation from mid-to-high temperature heat source," 

Journal of the Ceramic Society of Japan, vol. 119, no. 1395, pp. 
770-775, 2011. 

[24] Y. Park, K. Cho, and S. Kim, "Thermoelectric characteristics of 

glass fibers coated with ZnO and Al-doped ZnO," Materials 
Research Bulletin, 2017. 

[25] L. Han et al., "The Influence of α-and γ-Al 2 O 3 Phases on the 

Thermoelectric Properties of Al-doped ZnO," Journal of Alloys and 
Compounds, vol. 555, pp. 291-296, 2013. 

[26] W. H. Nam, Y. S. Lim, S.-M. Choi, W.-S. Seo, and J. Y. Lee, 

"High-temperature charge transport and thermoelectric properties of 
a degenerately Al-doped ZnO nanocomposite," Journal of Materials 

Chemistry, vol. 22, no. 29, pp. 14633-14638, 2012. 

[27] P. Jood et al., "Al-doped zinc oxide nanocomposites with enhanced 
thermoelectric properties," Nano Lett, vol. 11, no. 10, pp. 4337-42, 

Oct 12 2011. 

[28] L. Zhang, T. Tosho, N. Okinaka, and T. Akiyama, "Thermoelectric 

properties of solution combustion synthesized Al-doped ZnO," 

Materials transactions, vol. 49, no. 12, pp. 2868-2874, 2008. 

[29] K. Park, H. Hwang, J. Seo, and W.-S. Seo, "Enhanced high-

temperature thermoelectric properties of Ce-and Dy-doped ZnO for 
power generation," Energy, vol. 54, pp. 139-145, 2013. 

[30] P. Jood, G. Peleckis, X. Wang, and S. X. Dou, "Effect of gallium 

doping and ball milling process on the thermoelectric performance 
of n-type ZnO," Journal of Materials Research, vol. 27, no. 17, pp. 

2278-2285, 2012. 
[31] H. l. n. Serier, A. Demourgues, and M. Gaudon, "Investigation of 

Ga substitution in ZnO powder and opto-electronic properties," 

Inorganic chemistry, vol. 49, no. 15, pp. 6853-6858, 2010. 
[32] R. Wang, A. W. Sleight, and D. Cleary, "High conductivity in 

gallium-doped zinc oxide powders," Chemistry of materials, vol. 8, 

no. 2, pp. 433-439, 1996. 
[33] H. Ohta, W. S. Seo, and K. Koumoto, "Thermoelectric properties of 

homologous compounds in the ZnO–In2O3 system," Journal of the 

American Ceramic Society, vol. 79, no. 8, pp. 2193-2196, 1996. 
[34] Y. Inoue, Y. Okamoto, and J. Morimoto, "Thermoelectric 

properties of porous zinc oxide ceramics doped with 

praseodymium," Journal of materials science, vol. 43, no. 1, pp. 
368-377, 2008. 

 

 
 


