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Abstract. Radar signals are time-varying signals
where the signal parameters change over time. For
these signals, Quadratic Time-Frequency Distribution
(QTFD) offers advantages over classical spectrum es-
timation in terms of frequency and time resolution
but it suffers heavily from cross-terms. In generat-
ing accurate Time-Frequency Representation (TFR),
a kernel function must be able to suppress cross-
terms while maintaining auto-terms energy especially
in a non-cooperative environment where the parameters
of the actual signal are unknown. Thus, a new signal-
dependent QTFD is proposed that adaptively estimates
the kernel parameters for a wide class of radar signals.
The adaptive procedure, Doppler-Lag Block Searching
(DLBS) kernel estimation was developed to serve this
purpose. Accurate TFRs produced for all simulated
radar signals with Instantaneous Frequency (IF) es-
timation performance are verified using Monte Carlo
simulation meeting the requirements of the Cramer-
Rao Lower Bound (CRLB) at SNR > 6 dB.
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1. Introduction

Radar is widely used both in military and non-military
applications such as tracking missiles, ships, land vehi-
cles and aircraft, flight control system, ocean surveil-
lance system and geological observations. By defini-
tion, Low Probability of Intercept (LPI) radars uti-
lize special emitted waveform that has been specifically

designed to avoid detection or interception by non-
cooperative intercept receiver [1]. This is achieved by
integrating additional properties such as ultra-low side-
lobe, Advanced Multifunction Radio Frequency Con-
cept (AMRFC), wideband frequency and minimum
transmitted energy. The idea of LPI radar is to see
and not be seen, meaning it must have the capability
to detect targets like any radar while staying invisible
to electronic reconnaissance equipment.

Intercepting LPI signals is not easy but is not totally
impossible. Some of the important properties required
in the modern intercept receivers in intercepting LPI
signals are channelized receiver, utilization of super-
heterodyne receiver and sidelobe detection capability
[2] and [3]. Signal processing algorithms are the im-
portant components of modern intercept receiver that
improve the detection and analysis of LPI radar sig-
nals. Example of methods used for detecting and an-
alyzing LPI radar signals are adaptive match filter-
ing, parallel filter arrays with higher order statistics,
Wigner-Ville Distribution (WVD), quadrature mirror
filter bank, and cyclostationary processing [3].

A time-varying signal such as LPI radar signals, the
spectral description of which depends on time is best
analyzed with Time-Frequency Distribution (TFD).
Among TFD classes, Quadratic TFD (QTFD) is ap-
propriately used because it provides high-resolution
representation both in time and frequency [4]. Cross-
terms are introduced in QTFD due to the quadratic
nature of the algorithm, which makes it difficult to
interpret the true signal characteristics and also ex-
aggerates the effect of noise [5]. Some of the tech-
niques proposed to produce accurate TFR are reduced
interference distribution, fractional Fourier transform,
Radon-Wigner distribution, adaptive cross WVD and
modified B-distribution [6] and [7].

c© 2018 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 318



INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 16 | NUMBER: 3 | 2018 | SEPTEMBER

The application of the Fractional Fourier Trans-
form (FrFT) is proven effective in representing and
preserving signal components in the Time-Frequency
(TF) plane such as Pulse Linear Frequency Modulation
(PLFM) [8]. Besides that, the echo of the moving tar-
get for airborne Synthetic Aperture Radar (SAR) can
also be considered as a LFM signal. Thus, the FrFT
can be used to represent and analyze such signals. In
the literature, it was mentioned that the FrFT is equiv-
alent to a rotation of the signal either in TF or ambi-
guity domain. The degree of the TF rotation depends
on the fractional power of FrFT [9]. The application of
FrFT can be further expanded from this definition for
signal parameters estimation and cross-term elimina-
tion [10] and [11]. A technique where a combination of
a rotated TF plane WVD with a suitable TF filtering
is compared with the DLBS-WVD.

The rest of the paper is organized as follows. Sec-
tion 2. presents the signal model and problem def-
inition. The signal characteristics in the time-lag and
Doppler-lag domain are discussed in Sec. 3. The
relationship between FrFT and TFR is also explained
in this section. The simulation result and discussion
are presented in Sec. 4. while the field trials results
are described in Sec. 5.

2. Signal Model and Problem
Definition

The four commonly used radar signal types utilized
to verify the accuracy of time-frequency representation
produced by the Doppler-Lag Block Searching Wigner-
Ville Distribution (DLBS-WVD) are: Simple Pulse sig-
nal (SP), 4 Costas Coded pulse (CC4) signals, PLFM,
and Continuous Wave Linear Frequency Modulation
(CW-LFM). The signal parameters are described in
Tab. 1. Except for the SP signal, all the other signals
can be categorized as LPI radar signal waveforms [1].
The signals are assumed that they have been downcon-
verted from radio frequency to intermediate frequency
where they are sampled at the Nyquist rate (sampling
frequency, fs = 40 MHz).

The use of short pulse repetition period, T between
5 to 20 µs is to simplify the development of the kernel
estimation procedure. However, the actual radar sig-
nals parameters may vary according to the applications
and the detection range [12], [13] and [14].

Typically, Electronic Support (ES) deals with a non-
cooperative environment where prior knowledge of the
true signal characteristics – pulse repetition period, fre-
quency agilities, modulation techniques, pulse width,
pulse amplitude – are unknown. Adaptive kernel im-
proves the TFR by estimating the kernel parameters
according to the pattern of cross-terms which vary ac-

Tab. 1: Signal Parameters. Pulse repetition period (T ), pulse
width (Tp), lowest frequency (fmin), highest frequency
(fmax), bandwidth (BW ).

Signal Frequency
Parameters

Time
Parameters

Simple Pulse
(SP) f = 10 MHz T = 5 µs

Tp = 1 µs

4 Costas Coded
pulse (CC4)

4 sub-pulse frequencies
fb1 = 4 MHz
fb2 = 8 MHz
fb3=16 MHz
fb4 = 12 MHz

T = 16 µs
Tp = 4 µs

Pulse Linear FM
(PLFM)

fmin = 2 MHz
fmax = 17 MHz
BW = 15 MHz

T = 9 µs
Tp = 4 µs

Continuous Wave
Linear FM
(CW-LFM)

fmin = 2 MHz
fmax = 10 MHz
BW = 8 MHz

T = 20 µs
Tp = 10 µs

cording to the signal. The QTFD with the adaptive
kernel ensures an accurate TFR for a broad class of
signals.

3. Quadratic Time-Frequency
Distribution

The QTFD produces an energy representation jointly
over the time-frequency plane. It is also considered as
a related class of filtered WVDs with a specific time–lag
kernel function [15]. When expressed with respect to
the time-frequency kernel and the WVD, the QTFD is
written as [5]

ρz (t, f) = γ (t, f) ∗t
∗
f Wz (t, f) , (1)

where γ (t, f) is a time-frequency kernel and Wz (t, f)
is the WVD. The WVD can be defined as

Wz (t, f) =

∞∫
−∞

Kz (t, τ) e−j2πfτdτ, (2)

where Kz (t, τ) is the bilinear product or Instantaneous
Autocorrelation Function (IAF). The bilinear product
can be written as

Kz (t, τ) = z
(
t+

τ

2

)
z∗
(
t− τ

2

)
, (3)

where z(t) is the analytical form of the signal.

The formulation of the QTFD with the time-lag ker-
nel is given as

ρz (t, f) =

∞∫
−∞

G (t, τ)
∗
t Kz (t, τ) e−j2πfτdτ, (4)

where G (t, τ) is the time-lag kernel.
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A separable kernel offers independent control of
time-smoothing and frequency-smoothing of TFD
which can be defined in time-lag function as

G (t, τ) = g1 (t) g2 (τ) , (5)

where g1(t) is the smoothing function in time and g2(τ)
is the smoothing function in lag. By using a separable
kernel, the QTFD in Eq. (1) can be described as

ρz (t, f) =

∞∫
−∞

g1 (t)
∗
(t)Kz (t, τ) g2 (τ) e−j2πfτdτ. (6)

3.1. General Signal Characteristics
in Time-Lag Domain

The IAF defined in Eq. (4) can be viewed as the cor-
relation of signal itself over successive time intervals.
Cross-terms are introduced due to the quadratic na-
ture of the IAF which can cause difficulty in the in-
terpretation of the true signal characteristics [16] and
[17]. Kernel function as shown in Eq. (4) solved this
problem.

Various kernel functions gave rise to a range of dif-
ferent TFDs [6] and [15]. The general IAF definition
is produced by multiplying the signal with its conju-
gate as shown in Eq. (7). Each type of input signal,
z(t) results in different IAF definition. For example,
two pulses of SP signal produce two auto-terms and
two cross-terms while two pulses of CW-LFM produce
four auto-terms and twelve cross-terms. The IAF ob-
tained by substituting the signal definition in Tab. 1
into Eq. (4) can be expressed in the following form:

Kz (t, τ) =
[
z1

(
t+

τ

2

)
+ z2

(
t+

τ

2
− T

)]
·

·
[
z∗1

(
t− τ

2

)
+ z∗2

(
t− τ

2
− T

)]
= Kz,11 (t, τ) +Kz,22 (t− T, τ)︸ ︷︷ ︸

auto−terms

+

Kz,12

(
t− T

2
, τ + T

)
+Kz,21

(
t− T

2
, τ − T

)
︸ ︷︷ ︸

cross−terms

,

(7)

where z1(t) is the first pulse and z2(t) is the second
pulse of the signal. The accuracy of TFR depends on
the capability of the algorithm to preserve the auto-
terms energy. Cross-terms can be divided into two
categories: intra-pulse and inter-pulses. Intra-pulse
cross-terms occur as a result of the correlation of signal
between the sub-pulse of the signal while inter-pulse
cross-terms are the product of the correlation between
different pulses of the signal.

Figure 1 shows the time-lag domain of CW-LFM sig-
nal and produced by replacing z1(t) and z2(t) in Eq. (7)
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Fig. 1: The time-lag domain two pulses of CW-LFM signal.

with two pulses of triangular CW-LFM signal where Tb
is the sub-pulse duration. For triangular CW-LFM, the
Tb is exactly half of the signal pulse. The dotted dia-
mond shapes represent the intra-pulse cross-terms and
the shaded diamond shapes represent the inter-pulse
cross-terms. The remaining diamond shapes represent
the auto-terms of the signal.

Generally, a kernel that is able to suppress the cross-
terms at |τ | > Tb is acceptable except for CW-LFM
signal. Figure 1 shows that there are some cross-terms
located between 0 ≤ τ ≤ Tb which could lead to in-
accurate TFR of the signal. For complete cross-terms
suppression, the applied window or kernel must match
perfectly with the auto-terms. To completely separate
the auto-terms from the cross-terms in the time-lag
domain, alternative cross-terms suppression techniques
are proposed in the Doppler-lag domain [18].

3.2. Radar Signal Characteristics in
Ambiguity Domain

The AF is related to the IAF by the Fourier transform
with respect to time as shown in the following equation:

Az (v, τ) = FT
t→v

[Kz (t, τ)] =

∞∫
−∞

Kz (t, τ) e−j2πvtdt. (8)

The complete signal equations for SP, CC4, PLFM
and CW-LFM signals in the ambiguity domain can be
found in [19]. The AF for the CW-LFM signal is illus-
trated in Fig. 2.

The AF represents two pulses CW-LFM signal where
the auto-term are represented by the grey shaded
shapes, inter-pulse cross-terms by the blue shaded
shapes and intra-pulse cross-terms by the orange
shaded shapes. Similar color codes are used in Fig. 3,
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Fig. 2: The AF for two pulses of CW-LFM.

Fig. 4 and Fig. 5. From Fig. 1, the auto-terms are
located at τ ≤ |Tp| while most of the intra-pulse cross-
terms are positioned very close to the auto-terms. On
the other hand, the inter-pulse cross-terms are located
between T − Tp ≤ τ ≤ T + Tp. It is worth mentioning
here that the energy of the intra-pulse cross-terms for
CW-LFM is significantly lower compared to its auto-
terms. Thus, a small portion of the intra-pulse cross-
terms in the AF does not cause a major degradation
in the TFR.

The procedure for suppressing inter-pulse cross-
terms is much simpler in the Doppler-lag domain com-
pared to the time-lag domain because the location be-
tween the inter-pulse cross-terms and auto-terms are
well separated. Thus, setting a lag window, g1(τ) at
Tp is sufficient for separating the auto-terms from the
inter-pulse cross-terms.

Figure 3 shows the AF for two pulses of PLFM sig-
nal. The position of the auto-terms is at τ ≤ |Tp| and
the inter-pulse cross-terms are located at T −Tp ≤ τ ≤
T + Tp. The characteristics of PLFM at the AF are
similar with the CW-LFM except there are no intra-
pulse cross-terms for PLFM signal. Due to this, the
same cross-terms suppression procedure in CW-LFM
signal is applicable for PLFM signal.

Figure 4 shows the AF for two pulses of SP signal.
Note that the auto-term and inter-pulse cross-terms
location are similar with the PLFM and CW-LFM sig-
nals which are at τ ≤ |Tp| and T − Tp ≤ τ ≤ T + Tp
respectively. The only difference is the shape of the
auto-terms and the cross-terms. Thus, a similar proce-
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Fig. 3: The AF for two pulses of PLFM signal.
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Fig. 4: The AF for two pulses of SP signal.

dure to attenuate the cross-terms of the PLFM signal
can be applied to the SP signal.

The AF for one pulse of the CC4 signal is shown in
Fig. 5 where the auto-terms of the signal are located at
τ ≤ |Tb| while the intra-pulse cross-terms are scattered
on the ambiguity plane at −4Tb ≤ τ ≤ 4Tb. Setting
a lag window at τ ≤ |Tb| is enough to extract the auto-
terms from the cross-terms in the ambiguity domain.
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Fig. 5: The AF for one pulse of the CC4 signal.

3.3. Estimation of Kernel
Parameters

Many studies were conducted to estimate the suitable
kernel parameters for reducing the interference in the
TFR. Adaptive optimal kernel TFR (AOK-TFR) [20] is
one of the earliest techniques that incorporates window
in the AF and is able to produce accurate TFR even at
SNR of 0 dB. However, the capability of the method is
limited to multi-component LFM signals.

Adaptive Optimal Kernel Smooth-Windowed
Wigner-Ville Distribution (AOK-SWWVD) [17] and
Adaptive Smoothed Windowed cross WVD (ASW-
WVD) [15] are also able to produce accurate TFR at
a low SNR but these solutions are limited to digitally
modulated signals such as FSK and PSK signals. All
the methods mentioned above despite proven reliable
for signal representation, they lacked the capability to
cover a broader class of signals. Thus, the Doppler-Lag
Block Searching (DLBS) procedure is introduced in
this section to produce an accurate TFR at low SNR
while covering a wide class of signals.

Before describing the adaptive procedures, it is cru-
cial to first discuss the four ambiguity function quad-
rants as shown in Fig. 6. In the DLBS approach, it is
sufficient to estimate the kernel parameters only in the
Q1 quadrant due to the symmetrical properties of the
ambiguity domain. One of the AF properties exploited
is the maximum energy that occurs at the origin of the
ambiguity domain.

As defined in [21], the AF is highest at the origin in
comparison to the other parts of the ambiguity domain
according to the following inequality:

|Az (v, τ)| ≤ |Az (0, 0)| . (9)

Thus, the DLBS initiates the search at the origin and
checks for a significant drop in energy in Doppler and
lag. This is performed by matching the reference block,

0
v

τ

Q1Q2

Q3Q4

Fig. 6: The quadrant division in the ambiguity domain.

Az(0, 0) and the analyzed blocks, Az(λ1, λ2) in the AF
domain to obtain the kernel parameters.

The DLBS algorithm can be expressed as follows:

∆Az = |Az (0, 0)−Az (λ1, λ2)| , (10)

where ∆Az is the energy difference between Az(0, 0)
and Az(λ1, λ2) which can be defined as

Az (0, 0) =

∞∫
−∞

∞∫
−∞

wa (v, τ)Az (v, τ) dvdτ.

Az (λ1, λ2) =

∞∫
−∞

∞∫
−∞

wa (v − λ1, τ − λ2)Az (v, τ) dvdτ,

(11)

0 ≤ λ1 <∞, 0 ≤ λ2 <∞,

where wa(v, τ) is the analysis window, λ1 is the instant
Doppler and λ2 is the instant lag. The analysis window
can be described as [16]

wa (v, τ) =
va
τa
, (12)

0 ≤ v ≤ va <
1

Tp
, 0 ≤ τ ≤ τa < Tp,

where τa and va are the analysis window size in terms
of lag and Doppler respectively, Tp is the signal pulse
width. In order for DLBS to accurately estimate the
signal pulse width, the analysis window must be set
smaller than the expected signal pulse width.

All the analyzed blocks that have energy difference,
∆z above the threshold value, Az,thd are considered as
a block with a minimum number of auto-terms and can
be excluded from the generation of the TFR. Figure 7
shows the Q1 quadrant for PLFM signal and used as
an example for DLBS procedure. The DLBS search
procedures are as follows:
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Fig. 7: The Q1 of PLFM in DLBS method.

• Form the Doppler-lag function, Az(v, τ) for the Q1

quadrant using Eq. (8).

• Compute the total energy for block 1 as a reference
block, Az(0, 0) and set a threshold value, Az,thd.

• Compute the energy difference for block 2,
Az(1/0.5Tp, 1/4Tp). Since the energy difference
is below the threshold value continue to the next
block on the right.

• The energy difference for block 3,
Az(1/0.75Tp, 1/4Tp) is found to be above the
threshold value which means at this particular
block the auto-terms energy is low. Hence, the
evaluation for row (1/4)Tp is stopped and the
evaluation moves to the next row, (1/2)Tp.

• The evaluation for new row always starts at one
column before the last evaluated column because
it will ensure the evaluation start where the auto-
terms energy is higher. At the row (1/2)Tp the
evaluation starts at block 7.

• The evaluation for row (1/2)Tp starts from block
7 to the right direction until it reaches block 9.
Since the energy difference for block 9 is above
the threshold value, the search block moves to the
next row, (3/4)Tp and start at block 13.

• Steps from 3 to 5 are repeated for the other rows
until reached row (5/4)Tp. The energy difference
for all the blocks in this row are found to be above
the threshold value and indicate that the evalua-
tion for PLFM signal is completed.

• The kernel parameter is estimated by choosing the
location of last evaluated block that has energy

difference below the threshold value. For this ex-
ample, the last evaluated block is block 19 and its
location represent the Doppler and lag parameters
which is 1/Tp and Tp respectively.

The same procedure is applicable for the other sig-
nals as their properties in the AF are similar with the
PLFM signal. The threshold value of 0.3 is chosen
because it provides the best Doppler and lag window
width for most of the signal [19].

3.4. Fractional Fourier Transform in
Cross-Terms Reduction

The FrFT is actually a generalized form of Fourier
Transform (FT) with the α-th order of fractional power
[22] and is best expressed with the help of transforma-
tion kernel. If x(t) is the signal, then the FrFT of x(t)
is given as [9]

Xα (u) =

∞∫
−∞

x (t)Kα (t, u) dt, (13)

where Kα(t, u) is the transformation kernel and can be
expressed as

Kα (t, u)=

√
1− j cotα

2π
exp

(
j
t2 + u2

2
cotα− tu cscα

)
. (14)

Equation (14) is valid if α is not multiple of π. How-
ever, if α is a multiple of 2π, the kernel becomes δ(t−u).
For (α+π) a multiple of 2π, the kernel becomes δ(t+u).
The extension of the FrFT to the TFR of the signal is
the rotated version of the WVD of the original signal
by the angle θ which is given as

ρxα
(t, f) = R−θ {ρx (t, f)} , (15)

where Rθ{} is the operator which rotates the TF plane
clockwise. If the time-varying signal is linearly sepa-
rable in the time-frequency plane, the cross-terms can
be separated with the appropriate rotation angle and
suitable TF filtering technique [5].

3.5. IF Estimate

Instantaneous Frequency (IF) estimation can be used
to describe the frequency characteristics of the signal.
Normally, a good estimator has to be consistent while
statistically and computationally efficient [23]. Rao
and Taylor proved that WVD peak based IF estimation
is optimal for linear FM signals for moderate and high
SNR although the estimator performance degrades sig-
nificantly at low SNR [24]. Peak based IF estimator
can be expressed as

arg

[
max
f

ρ (t, f)

]
, (16)
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where fi(t) is the IF and ρ(t, f) is the TFR. Peak based
IF estimator is able to produce a decent estimation as
its capability to localize energy along the IF law [23].
For the purpose of measuring the performance of any
unbiased parameter estimator, the Cramer–Rao Lower
Bound (CRLB) is frequently used because it can pro-
vide the theoretical limit to the variance of the estima-
tor. The most efficient estimator is the one that can
achieve the lower bound on the variance [25].

The general formulation of CRLB for IF estimate is
[15]

var
(
f̂l

)
≥ 24

(2π)
2
γN (N2 − 1)

, (17)

where N is the average window width, and γ is the
SNR. With the assumption that the actual IF of the
signal is known, and the signal is in discrete form, the
variance of the IF estimated from measurement can be
expressed as [15]

var
(
f̂i

)
=

1

N

N−1∑
n=0

(
f̂i (n)− fi (n)

)2
, (18)

where N is the total number of samples, f̂i(n) is the
actual IF and fi(n) is the actual IF.

4. Results and Discussion

This section describes the TFRs and IF estimates for
SP, CC4, LFM and CW-LFM signals using the DLBS-
WVD and FrFT followed by the performance of the
IF estimator benchmarked with the CRLB. The per-
formance of DLBS-WVD is presented at SNR of 5 dB.
This value is chosen because SNR above 10 dB is con-
sidered as high SNR from previous work on IF estima-
tion [15].

4.1. TFR and IF Estimate
Performance

By using the DLBS-WVD, the TFR plot and IF esti-
mate for the signals using the parameters presented in
Tab. 1 is produced. The energy of auto-terms compo-
nents is highest at the origin and decrease positioned
away from the origin. Due to this, DLBS-WVD has
a difficulty to preserve the entire energy of the signal
components especially when the auto-terms are located
far from the origin. This problem becomes obvious for
PLFM and CW-LFM signals compared to SP and CC4
signals as discussed in [19]. A small portion of the
auto-terms components are suppressed for PLFM and
CW-LFM signals which produced minor errors in the
TFR and IF estimate.
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Fig. 8: TFR plot and IF estimate for two pulses SP signal.

Figure 8 shows the TFR plot and IF estimate for
a two pulses SP signal. The IF of the signal is accu-
rately estimated at 10 MHz. This is contributed from
a clean TFR of the signal due to the successful sup-
pression of the cross-terms in the AF domain.

The TFR and IF estimate for a two pulses CC4 signal
is shown in Fig. 9. The frequency components of the
signal are correctly estimated given that the Costas
sequence of the signal is [1 2 4 3]. In this paper, the
CC4 signal is used to illustrate the functionality of the
DLBS-WVD on the Costas coded class of signals.

Figure 10 shows the analysis results for a two pulses
PLFM signal. The frequency component of the signal
is estimated from 2.27–16.75 MHz while T and Tp are
13 ms and 4 ms respectively. The time components of
the signal are accurately estimated but the frequency
component of the signal is estimated with 1.6 % er-
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Fig. 9: TFR plot and IF estimate for two pulses CC4 signal.

ror. This error is due to inevitable suppression of the
small part of signal auto-terms in the ambiguity do-
main. However, the estimation error is too small and
can be considered insignificant.

The TFR and IF estimate is shown in Fig. 11 for
a two pulses CW-LFM signal. The minimum and max-
imum frequency of the signal is estimated at 2.19 MHz
and 5.83 MHz respectively. There is about 4.2 % error
in the frequency component estimation which is slightly
higher than the LFM signal. This is due to the intra-
pulse cross-terms in the CW-LFM signal which reduces
the energy concentration of the signal components and
produce errors in the IF estimation.
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Fig. 10: TFR plot and IF estimate for two pulses PLFM signal.

4.2. TFR of WVD Using FrFT

Using the same signal as in the previous section, the
performance of FrFT in producing an accurate TFR is
evaluated. The IF estimate of the signal using FrFT
is similar to the result from the previous section given
that the cross-terms are successfully removed. It is im-
portant to perform a TF rotation in such a way that
the fractional frequency spectrum is most compact be-
fore applying any TF filtering procedure. The tech-
nique used in determining the correct order of FrFT is
searching scheme [26]. This method determines the op-
timal fractional power by evaluating the compactness
of the fractional frequency spectrum. The fractional
power that provides the most compact fractional spec-
trum will be used for TF filtering.
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Fig. 11: TFR plot and IF estimate for two pulses CW-LFM
signal.

The SP signal does not require any TF rotation since
the frequency spectrum is most compact at fractional
power zero. The cross-terms that are located between
the signal components can be easily removed by apply-
ing a TF filtering as shown in Fig. 12(a) with a red
dotted line resulting in as shown in Fig. 12(b) a cross-
terms free TFR of the SP signal.

Figure 13 shows a TFR plot for two pulses of CC4
signal which is heavily corrupted by cross-terms. For
every pulse of CC4 signal, there are four signal com-
ponents representing four different frequencies as indi-
cated by red dotted boxes. The localization of cross-
terms that are very close to the auto-terms result in
strong degradation of signal power. There is no suit-
able rotation angle that can be used to completely re-
move all the cross-terms. Furthermore, the smearing
effect from the cross-terms further reduce the quality
of the signal components especially at a frequency of
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Fig. 12: TFR plot for two pulses SP signal.

TFR of Original Signal

F
re

qu
en

cy
 (

H
z)

Time (ms)
0 0.005 0.01 0.015 0.02 0.025 0.03

0

2

4

6

8

10

12

14

16

18

x 10
6

Fig. 13: TFR plot for two pulses CC4 signal.
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8 MHz. In short, the combination of FrFT and TF fil-
tering is insufficient to provide accurate TFR for CC4
signal.
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Fig. 14: TFR plot for two pulses CW-LFM.

Figure 14(a) shows a PLFM signal that is corrupted
with cross-terms. The first step in preserving the signal
components is by rotating the TF plane until the frac-
tional frequency spectrum achieved the highest com-
pactness. In this case, the highest compactness is
obtained at the fractional power of 0.8 as shown in
Fig. 14(a). The next step is to apply a TF filter be-
tween the fractional frequency of 250 and 300 in sam-
ples. By applying a filter at this location, the entire
cross-terms can be completely removed as described in
Fig. 14(b).

Next, a reverse TF rotation with the fractional power
of −0.8 needs to be performed to obtain an actual rep-
resentation of signal since the current representation
is in the fractional domain. The resulting cross-term
free representation after the TF filter is applied for the
PLFM signal is shown in Fig. 14(c).
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Fig. 15: TFR plot for two pulses CW-LFM.
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The TFR for the CW-LFM signal is shown in Fig. 15.
The cross-terms are located between the positive chirp
and negative chirp of the signal. Removing the cross-
terms for CW-LFM signal appear to be difficult. For
example, at a fractional power of 0.15, if a TF filter
is placed around samples of 350 the first positive chirp
of the signal could be extracted but with the cost of
removing the rest of the signal. The effect of the cross-
terms is more noticeable at lower SNR because the en-
ergy of the signal components is much lower.

As a conclusion, it is shown in this section that the
combination of FrFT and TF filtering could only pro-
duce accurate TFR for SP and PLFM signals. The
DLBS-WVD is able to cover a wide class of signal in-
cluding CW-LFM and CC4 signals. Besides that, in
the DLBS-WVD there is no requirement for finding the
correct rotation angle of the TF plane before filtering
which translates as reduced computational cost.

4.3. IF Estimate Variance
Comparison

The IF estimate variance is used to evaluate the per-
formance of the DLBS-WVD in the presence of noise.
Monte Carlo simulations based on 100 realizations for
SNR range from −7 dB to 17 dB were performed to
verify the performance of the DLBS-WVD at both low
and high SNRs. Figure 16, Fig. 17, Fig. 18 and Fig. 19
show the IF estimate variance for SP, CC4, PLFM and
CW-LFM signals at SNR range from −7 dB to 16 dB.
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Fig. 16: IF estimate variance comparison for SP signal.

For the SP signal, the IF estimate variance meets the
CRLB down to the cut-off SNR ≥ −1 dB. Similar re-
sults are also obtained for the CC4 and PLFM signals.
There is a significant drop in the IF estimate variance
in the CRLB below the cut-off SNR due to the fact
that the cross-terms energy is relatively higher com-
pared to the auto-terms energy. For CW-LFM signal,

the cut-off SNR is at 4 dB as shown in Fig. 19. The
slight increase in the cut-off SNR in CW-LFM signal
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Fig. 17: IF estimate variance comparison for the CC4 signal.
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Fig. 18: IF estimate variance comparison for PLFM signal.
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Fig. 19: IF estimate variance comparison for CW-LFM signal.
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because the intra-pulse cross-terms in the ambiguity
domain reduce the effectiveness of DLBS-WVD in es-
timating accurate kernel parameters.

5. Field Trials

To validate the DLBS-WVD in a practical environ-
ment, an actual radar signal is captured and ana-
lyzed. The signal was captured from an interrogator
of the Secondary Surveillance (SSR) at the Senai In-
ternational Airport, Johor Bahru, Malaysia, in August
2016. An Ettus N210 Software Defined Radio (SDR)
was used to capture the signal and detail analysis was
conducted in Matlab software.

The signal at a carrier frequency of 1030 MHz was
then down-converted to an intermediate frequency of
2 MHz. A sampling frequency of 20 MHz was used to
convert the intermediate frequency signal to discrete-
time for analysis in Matlab. Figure 20 shows the time
representation of the signal and the pulse repetition
period is estimated at 3.6 ms.
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Fig. 20: The time representation of the captured radar signal.

The TFR for one pulse of the signal is shown in
Fig. 21. The signal consists of three sub-pulses where
the separation between first and second sub-pulse is
2 µs while the separation between first and third sub-
pulse is 21 µs. Based on the estimated time separa-
tion, the signal exhibits the characteristics of a Mode
C interrogation format [27] with an estimated SNR of
about 32.7 dB. Such high energy signal is obtained due
to the close proximity between the SSR and the receiv-
ing equipment.

Figure 22 shows the IF estimate for one pulse of the
captured SSR signal. The estimated frequency of the
recorded radar signal is 1.2 MHz. A better TFR and
IF estimate of the signal can be obtained by increasing

Time-Frequency Representation

Fr
eq

ue
nc

y 
(H

z)

0.02 
Time (ms)

0.01 0.015 0.025 0.03

0.5

1

1.5

2

2.5

x 106

Fig. 21: The TFR for one pulse of the recorded SSR signal.

0.01 0.015 0.025 0.03 0.035

2

4

6

8

10

12

14

16

18

x 105

0.02
Time (ms)

Fr
eq

ue
nc

y 
(H

z)
2 µs

21 µs

Fig. 22: The IF estimate for one pulse of the captured SSR
signal.

the sampling frequency to produce a bigger separation
between the auto-terms and the cross-terms in the am-
biguity domain.

Although the DLBS-WVD is able to provide accu-
rate time-frequency representation, there is a limita-
tion to the method. The effectiveness and accuracy of
DLBS-WVD hold true if the separation between two
pulses is greater than the pulse width of the signal.

6. Conclusion

This research accomplished the objective to achieve ac-
curate time-frequency representation of radar signals
(SP, CC4, PLFM, and CW-LFM) using the DLBS-
WVD. The estimated IF met the CRLB at SNR of
−1 dB for SP, CC4, and PLFM signals, and at SNR
of 4 dB for CW-LFM signal. In comparison, DLBS-
WVD performs better than the combination of FrFT
and TF filtering in terms of representing a wide number
of signal classes. DLBS-WVD is able to accurately rep-
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resent all four signal classes while FrFT is only capable
of representing LFM and SP signals. The practicality
of the DLBS-WVD was demonstrated using actual sig-
nal captured from an SSR radar site. Both time and
frequency parameters such as pulse repetition period,
pulse width and frequency components were success-
fully estimated.
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