
Journal of Chromatographic Science, 2018, Vol. 56, No. 2, 166–176
doi: 10.1093/chromsci/bmx092

Advance Access Publication Date: 23 October 2017
Article

Article

Rapid Determination of Non-steroidal Anti-

inflammatory Drugs in Aquatic Matrices by

Two-phase Micro-electrodriven Membrane

Extraction Combined with Liquid

Chromatography

Nor Suhaila Mohamad Hanapi1,2, Mohd Marsin Sanagi1,3,*,

Abd Khamim Ismail4, Nor’ashikin Saim3, Wan Nazihah Wan Ibrahim1,2,

Wan Aini Wan Ibrahim1,3, and Faridah Mohd Marsin1

1Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor,
Malaysia, 2Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, 3Centre
for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific & Industrial Research, Universiti Teknologi
Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia, and 4Department of Physics, Faculty of Science, Universiti
Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

*Author to whom correspondence should be addressed. Email: marsin@kimia.fs.utm.my

Received 26 September 2016; Revised 22 July 2017; Editorial Decision 26 September 2017

Abstract

Two-phase micro-electrodriven membrane extraction (EME) procedure for the pre-concentration

of selected non-steroidal anti-inflammatory drugs (NSAIDs) in aquatic matrices was investigated.

Agarose film was used as interface between donor and acceptor phase in EME which allowed for

selective extraction of the analytes prior to high performance liquid chromatography-ultraviolet

detection. Charged analytes were transported from basic aqueous sample solution through aga-

rose film into 1-octanol as an acceptor phase at 9 V potential. Response surface methodology in

conjunction with the central composite design showed good correlations between extraction time

and applied voltage (R2 > 0.9358). Under optimized extraction conditions, the method showed

good linearity in the concentration range of 0.5–500 μg L–1 with coefficients of determination, r2 ≥
0.9942 and good limits of detection (0.14–0.42 μg L–1) and limits of quantification (0.52–1.21 μg L–1).

The results also showed high enrichment factors (62–86) and good relative recoveries (72–114%)

with acceptable reproducibilities (RSDs ≤ 7.5% n = 3). The method was successfully applied to the

determination of NSAIDs from tap water and river water samples. The proposed method proved

to be rapid, simple and requires low voltage and minute amounts of organic solvent, thus environ-

mentally friendly.

Introduction

In recent years, pharmaceutical wastes have been recognized as a key
source of emerging contaminants and became a serious environmen-
tal health issue (1). These emerging contaminants enter the ecosystem
via a number of pathways such as disposal of unused drugs, patient

excretion, pharmaceutical factories and hospitals (2, 3). The effluent
of pharmaceutical waste is released into the environment either as
parent compounds or as active/inactive metabolites (4). The occur-
rence of pharmaceutical residues must be taken seriously as these
drugs are present at low concentrations in aqueous matrices (5).

© The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 166

D
ow

nloaded from
 https://academ

ic.oup.com
/chrom

sci/article-abstract/56/2/166/4561568 by U
niversiti Technoligi M

alaysia user on 07 January 2019

http://www.oxfordjournals.org


Non-steroidal anti-inflammatory drugs (NSAIDs) are among
pharmaceutical drug groups most widely used by humans for major
relief of inflammatory, chronic and acute pain (6). NSAIDs have
been commonly found in very low concentrations in water samples
such as wastewater (7) and also treated drinking water (8). Several
methods have been used for the determination NSAIDs including
dispersive liquid–liquid microextraction (DLLME) (9) and hollow-
fiber liquid phase microextraction (HF-LPME) (10). However,
DLLME is not suitable for complex matrices due to the high poten-
tial interferences (11) while HF-LPME suffered from longer extrac-
tion times (20–40min) that has been claimed as a drawback (12).

Electrodriven membrane extraction (EME) is a well-established
and promising membrane-based extraction technique based on the
application of electrical forces for driving analytes from sample solu-
tion across supported liquid membrane (SLM) into acceptor phase
(13, 14). It has been shown that EME provides fast and selective
sample clean-up with minute amount of organic solvent consump-
tion (15). Due to its desirable and excellent features, EME has been
employed in various sample preparations for many applications like
metals (16), peptides (17) water (18–20), organic acid compound
(21) and pharmaceutical compounds (22, 23). Recently, this tech-
nique was successfully combined with chromatographic analysis
(14) and capillary electrophoresis (CE) (15). The extraction tech-
nique provided a faster extraction time, acceptable recoveries and
low of limit detection were obtained (14, 24).

Lee and co-workers described the EME of organic compounds
from wastewater. With this method, low limits of detection (LODs)
(>0.005 μg/L), good linearity and acceptable relative recoveries (74%)
were achieved (25). The group of Alhooshani et al. proposed EME for
the extraction of organic compounds from wastewater using toluene as
SLM with 200V driving force and the recovery values obtained were
higher compared to those of solid phase extraction (SPE) (26).

Several reported studies proposed the use of three-phase EME
prior to liquid chromatography (LC) (22, 27) and capillary electro-
phoresis (CE) (28). Three-phase EME combined with high perfor-
mance liquid chromatography-ultraviolet (HPLC-UV) has been
proposed for the determination of acidic compounds from several
complex matrices. With this approach, acceptable recovery and
good linearities and LODs were obtained (29). Nevertheless, in
three-phase EME, the final concentration is in aqueous acceptor
phase that leads to limited applicability of the methods of detection.

A challenge to broaden the applicability of EME in many instru-
mental analyses is that the final extraction phase must in organic sol-
vent. Davarani and co-workers have demonstrated two-phase EME
using gas chromatography–mass spectrometry (GC-MS) for basic
pharmaceutical compounds determination. In this method, organic
solvent was used as final extraction phase which can broaden the
applicability of EME in combination with many instruments. In addi-
tion, two-phase EME has proved that the extraction was simple by
skipping the SLM-acceptor phase interface (30).

In our laboratory, two-phase EME has proven to be a technique
for extraction of tricyclic antidepressants (TCAs) in aquatic samples
using HPLC-UV (31). More recently, we have developed an innovative
method based on fast kinetic two-phase micro-EME in utilizing aga-
rose film (AF) impregnated with nitrophenyl octyl ether (NPOE) as
SLM for basic drugs extraction (32). Agarose exhibits a number of
desirable properties including flexibility, solubity, thermal stability and
high mechanical strength which leads for commercial application (33).

To the best of our knowledge, no work has been reported on
two-phase EME combined HPLC-UV for the determination of acidic
compounds from the aqueous matrices. Therefore, this work was set
out to develop and apply two-phase EME that is a simple, fast and
green chemistry extraction combined with HPLC-UV for the pre-
concentration and determination of four selected NSAIDs (ketopro-
fen, diclofenac, ibuprofen and mefenamic acid) in aquatic matrices.
Additionally, this method applied an experimental design using
response surface methodology (RSM) in conjunction with the cen-
tral composite design (CCD) approach for the optimization and
evaluation of the interactive effects of extraction time and applied
voltage. From the RSM-CCD results, the most significant EME
parameter was successfully identified.

Experimental

Chemicals and reagents

Ibuprofen (IBU), diclofenac sodium salt (DIC), ketoprofen (KET) and
mefenamic acid (MEF) standards were purchased from Sigma-Aldrich
(St. Louis, USA). HPLC grade organic solvents (acetonitrile, methanol,
heptanol and 1-octanol) were obtained from J.T. Baker (Pennsylvania,
USA). Reagent grade sodium hydroxide (NaOH) and hydrochloric
acid (HCl) were obtained from Merck (Darmstadt, Germany). Sodium

Figure 1. Schematic of the two-phase agarose film EME (AF-EME).

Figure 2. Effect of organic solvent of μ-EME of selected NSAIDs drugs from

spiked distilled water. Legends: KET = ketoprofen; DIC = diclofenac; IBU =
ibuprofen; MEF = mefenamic acid. AF-EME conditions: 500 μg L−1 of spiked

solution; extraction time, 10min; applied voltage, 10 V; stirring speed,

600 rpm. (Error bars represent standard deviations of results, n = 3).
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acetate anhydrous (CH3COONa), were obtained from HmbG
Chemicals. Agarose (Analytical Grade) was obtained from Promega
(Madison, USA). Double-distilled deionized water of 18.2MΩ was
purified using Nano ultrapure water system (Barnstead, USA).

Preparation of standard and sample solutions

Standard solutions of KET, DIC, IBU and MEF (1,000 μgmL−1) were
prepared separately in HPLC grade methanol. Water samples were
prepared by spiking analytes at a known concentration (0.5 μgmL−1).
Tap water and river water samples were collected from Department
of Chemistry, Faculty of Science, Universiti Teknologi Malaysia Johor
Bahru and Skudai river, Johor Bahru, respectively. The samples were
filtered through a Whatman™ nylon membrane filter 0.45 μm
(Gelman Sciences, Ann Arbor, MI, USA). All the standard and sample
solutions were stored in a refrigerator at 4°C until use.

Chromatographic conditions

HPLC separations were performed using a Zorbax Eclipse plus C18

column (2.1 × 100mm, 3.5 μm) using an Agilent Technology 1220
LC system (California, USA) equipped with ultraviolet detector and
a 20-μL sample loop. Analytes peaks were detected at 230 nm and
processed using Agilent Chemstation software. Acetonitrile-acetate
buffer (pH 3.2, 25mM) (60:40) (v/v) was used as eluent and the
flow rate was set at 0.2 mLmin−1.

Preparation of AF

The AF was prepared according to the procedure reported by
Sanagi and co-workers (32). In the procedure, a solution of 0.8%
(w/v) agarose gel was dehydrated to form a thin nano-pore film
(12–18 nm pores and 0.02–0.04mm film thickness).

AF-EME procedure

The experimental setup used for the extraction procedure is shown in
Figure 1. A basic aquatic sample (10mL) with adjusted pH of 7.5 was
introduced into a 12-mL sample vial. In this study, the anode (positive
electrode) was placed in acceptor phase solution and the cathode

(negative electrode) was dipped directly into the sample solution. Next,
1-octanol was immobilized in the pores of porous AF to serve as SLM
by dipping the film into the solvent for 5 s. The film was cut into small
pieces (ca. 2.5 cm × 2. 5 cm) and attached at the lower end of the glass
tube. A minute amount of 1-octanol (20 μL) as an acceptor phase was
introduced using a micro-syringe into the glass tube attached with AF
and the assembly was directly dipped into the sample solution. The
surface area of the AF exposed to the aquatic sample was approxi-
mately 0.15 cm2. The sample solution was agitated at 600 rpm using a
magnetic stirrer. Applied voltage (9V) was applied and the extraction
was performed for a certain length of time (e.g., 10min 36 s). After
completion of extraction, 2 μL of extract was withdrawn for LC sepa-
ration and quantification. The AF was discarded after single use in
order to eliminate carry-over effect.

Experimental design

The experimental design was generated using Design-Expert version
6.0.4 (Stat Ease Software) for regression analysis of the experimental
data to fit the equations.

Table I. Chemical Structure of the Studied NSAIDs

Analytes Chemical structure pKa Log P

Ibuprofen
OH

O

4.60 3.79

Diclofenac Cl

NH
Cl OH

O

4.15 1.56

Ketoprofen O CH3
OH

O

4.0 3.00

Mefenamic acid

N
H

OHO

4.2 5.28

Source: ‘The Drugbank Database’ http://www.drugnbank.ca (Accessed on
15 Jun 2015).

Figure 3. Effect of sample pH on AF-EME of NSAIDs of selected NSAIDs from

spiked distilled water. Legends, AF-EME and HPLC-UV conditions are as in

Figure 2 with 1-octanol as organic liquid membrane. (Error bars represent

standard deviations of results, n = 3).

Figure 4. Effect of stirring speed on AF-EME of selected NSAIDs from spiked

distilled water. Legends, AF-EME and HPLC-UV conditions are as in Figure 2

with sample pH 7.5. (Error bars represent standard deviations of results, n = 3).
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Validation of AF-EME

The validation of AF-EME was carried out in terms of linearity,
limit of detection (LOD), limit of quantification (LOQ), enrichment
factor (EF), precision and recovery. LOD was calculated based on
three times the signal-to-noise ratio (S/N = 3) while LOQ was calcu-
lated based on 10 times the signal-to-noise ratio (S/N = 10).
Precisions were expressed in relative standard deviation (RSD) for
inter-day precision. Inter-day precision was assessed by performing
three replicates (n = 3) analyses at two different concentrations of
spiked tap water and river water samples at three different days (n = 3).
Relative recovery was calculated as the percentage of mean concentra-
tion of target analytes found after extraction (derived from the plotted
matrix-match calibration curve) against the concentration spiked in the
sample. The EF of the proposed method was calculated according to
the following equation:

C CEF / , 1final initial= ( )

where Cfinal is the final concentration of analyte and Cinitial is the ini-
tial concentration of analyte in samples solution,

Data and statistical analysis

In order to obtain the optimum conditions for the simultaneous
extraction of NSAIDs, RSM and CCD were used to optimize two
independent variables (applied voltage and extraction time). The
experimental design was generated using Design-Expert version
6.0.4 (Stat Ease Software) for regression analysis of the experimental
data to fit the equations. The quality of the developed method can
be determined from the value of correlation coefficient (R2).

Analysis of variance (ANOVA) was used to evaluate the significance
of the equations developed.

Results

Optimization of AF-EME extraction

In a preliminary investigation, two parameters (Sample pH, and stir-
ring speed) were evaluated and optimized separately using traditional
optimization procedure (one variable at-a-time). Subsequently, the
effects of two other independent main parameters in AF-EME (volt-
age and extraction time) were investigated and evaluated using the
RSM and CCD. The optimization was carried out by using deionized
water samples spiked with each selected NSAID at a concentration of
0.5 μgmL−1.

Variation in the organic liquid membrane (organic

solvent)

Organic liquid membrane is one of the most important factors in
AF-μ-EME. In this work, two solvents (1-octanol and heptanol)
were evaluated as organic liquid membrane (Figure 2). The results
showed that 1-octanol gave the highest extraction efficiencies com-
pared to heptanol. 1-octanol has proved to be a very efficient
organic solvent for extraction of acidic substances (34). Therefore,
1-octanol was chosen for subsequent experiments.

Sample pH

Suitable pH value of sample solution can help improve the extrac-
tion efficiency and reduce matrix interferences. Since the pKa values
of the acidic drugs studied (IBU, KET, DIC and MEF) are in the
range of 4.0–4.6 (Table I), these compounds mainly exist as electri-
cally neutral molecules at low pH and ionized species at high pH. In
EME, the ionization is more efficient if the pH of the acceptor solu-
tion is higher than the pKa of the analyte (26) and thus, extraction
of the analyte is more efficient under alkaline condition (35). In this
study, the effect of sample pH was evaluated by varying the pH in
the range 6.5–9.5 and the results are presented in Figure 3. From the
results, it was evident that the best extraction efficiency was
achieved at pH 7.5. A further increase of sample pH to 8.5 resulted
in gradual decrease of the peak areas as the analytes were trans-
formed into molecular forms. At lower pH, the ionization is hin-
dered and poorer extraction efficiency is obtained (26). Therefore,
pH 7.5 was selected and used in subsequent experiments.

Stirring speed

Different stirring speeds in the range of 450–900 rpm on the extrac-
tion efficiency were investigated. In general, higher stirring speed en-
hances the diffusion of the analytes into the acceptor phase (36).
Results showed that the highest extraction efficiency was obtained
at 600 rpm and the peak areas slightly decreased at stirring speeds
of 600 rpm and beyond (Figure 4). This might be due to the possibil-
ity of the increase of organic solvent loss at higher stirring speeds
(37). Thus, 600 rpm was selected as the optimum stirring speed and
used in subsequent experiments.

Experimental design using RSM with CCD

RSM is a useful method for studying the effects of several variables
influencing the responses by varying them simultaneously (38). In
general, the CCD is an effective design used to reduce the number of
experimental trials needed, maximize efficiencies and to investigate

Table II. Independent Variables and their Coded Level for the CCD

Design

Parameters (factors) Code Code variable levels

−α −1 0 +1 +α

Applied voltage A 1.51 4 10 16 18.49
Extraction time B 4.34 6 10 14 15.66

Table III. CCD Consisting of Experiments for the Study of Two

Experimental Factors in Coded Level and Experimental Results

Run order Coded level value of variable Sum of peak areas

Extraction time Applied voltage

1 0 0 239.83
2 +1 +α 29.06
3 0 0 200.16
4 −1 +α 79.86
5 −1 −1 52.38
6 +1 −1 34.79
7 0 0 233.48
8 −1 0 74.83
9 +α 0 101.13
10 0 0 223.42
11 0 +α 22.02
12 0 −α 28.28
13 0 0 230.34
14 0 0 269.82
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the relationship between variables (39). The equation below reveals
the number of experiments that should be run:

N n n2 2 , 2n
c= + + ( )

where n is the factor number and (nc) is the replicate number of the
central point.

In this study, two selected variables (extraction time and
applied voltage) were investigated. According to Equation 1, 14 ex-
periments were generated with the design matrix consisting of five
levels of two factors. The coded level of selected factors (−α, −1, 0,
+α, +1). The coded/actual values and the result of experiments are
summarized in Table II. CCD consisting of experiments for the
study of two experimental factors in coded levels and experimental
results are shown in Table III.

For an experimental design with two factors, the quadratic
model can be expressed by the following equation:

Y a a A a B a A a B a A B , 3o 1 1 2 1 3
2

4
2

5 1 1= + + + + + ( )

where Y is the predicted percentage value of peak area/response; A,
extraction time; B, applied voltage; a ao 5− are the coefficient values
obtained through multiple linear regression using Design-Expert
software. The predicted response (Y) for each four analyse was ob-
tained using Equation 4–7:

For ketoprofen (KET) recovery,

Y A B A B A B62.40 2.52 3.89 17.18 26.16 8.47 .
4

1
2 2 2= + − − − − ·

( )

For ibuprofen (IBU) recovery,

Y A B A B A B36.22 1.42 2.34 10.23 15.21 6.87 .
5

1
2 2 2= + − − − − ·

( )

For mefinamic acid (MEF) recovery,

Y A B A B A B30.09 1.50 1.54 9.39 13.05 5.73 .
6

1
2 2 2= + − − − − ·

( )
For diclofenac (DIC) recovery,

Table IV. ANOVA Regression Model for Response Quadratic Model for Four Selected of NSAIDs Analytes

Model Source of variation DF Sum of squares Mean square F-value P-value Comment

KET Regression 5 7219.10 1443.82 45.99 <0.0001 Significance
A 1 50.61 50.61 1.61 0.2448
B 1 120.92 120.92 3.85 0.0905
AA 1 2178.79 2178.79 69.40 <0.0001
BB 1 5052.42 5052.42 160.94 <0.0001
AB 1 286.79 286.79 9.14 0.0193
Residual 7 219.75 31.39
Lack of fit 3 127.91 42.64 1.86 0.2775
Pure error 4 91.84 22.96 Significance

DIC Regression 5 21489.05 4297.81 31.19 0.0001 Significance
A 1 80.35 80.35 0.58 0.4700
B 1 77.85 77.85 0.57 0.0002
AA 1 7219.33 7219.33 52.40 <0.0001
BB 1 14990.01 599.27 108.80 0.0755
AB 1 599.27 137.77 4.35
Residual 7 964.42
Lack of fit 3 189.12 63.04 0.33 0.8084
Pure error 4 775.30 193.82 Significance

IBU Regression 5 2568.16 513.63 20.37 0.0005 Significance
A 1 16.08 16.08 0.64 0.4508
B 1 43.90 43.90 1.74 0.2285
AA 1 773.42 773.42 30.68 0.0009
BB 1 1709.28 1709.28 67.80 <0.0001
AB 1 188.65 188.65 7.48 0.0291
Residual 7 176.46 25.21
Lack of fit 3 119.27 39.76 2.78 0.1742
Pure error 4 57.19 14.30 Significance

MEF Regression 5 1948.84 389.77 22.16 0.0004 Significance
A 1 17.97 17.97 1.02 0.3458
B 1 18.88 18.88 1.07 0.3347
AA 1 651.0 651.03 37.01 0.0005
BB 1 1258.46 1258.46 71.54 <0.0001
AB 1 131.22 131.22 7.46 0.0293
Residual 7 123.13 17.59
Lack of fit 3 38.08 12.69 0.60 0.6498
Pure error 4 85.05 21.26 Significance

F-value: Variance of the group means/mean of the within group variances.
P-value: The probability of obtaining a result at least as extreme as the one that was actually observed, given that the null hypothesis is true.
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Y A B A B A B104.14 3.17 3.124 31.27 45.05 12.24 .
7

1
2 2 2= + − − − − ·

( )

Analysis of variance

ANOVA and regression analysis was used to assess significance of
variables which presented P-value, sum of squares, mean square,
F-value and degree of freedom (DF). As shown in Table IV, the statis-
tical significance of the second-order equation revealed that the
regression was statistically significant (P < 0.0005). The result re-
vealed that the statistical significance of the second-order equation re-
vealed that the regression was statistically significant (P < 0.0005)
for all NSAIDs drugs. The quality of fit of the quadratic polynomial
model was expressed by the coefficient of determination, R2. The

value of R2 presented whether there is an acceptable relationship
between the predicted and actual values (40).

As shown in Figure 5, the coefficient of determination, R2 was
found to be 0.9358 for IBU, 0.9705 for KET, 0.9408 for MEF and
0.9571 for DIC. These results showed that all of the values were
close to 1.0, which advocates a high correlation between predicted
and observed values. The results indicate that the regression model
provides excellent relationship between two variables and the peak
area response. The model is considered a good fit model if the value
of the coefficient of determination, R2 is ≥0.80 (41).

The main effects of variables were visualized by the use of Pareto
chart (Figure 6). According to this figure, applied voltage, BB has
the largest influence on the normalized peak area which affect the
extraction efficiencies of NSAIDs in EME. In EME, applied voltage
was an important parameter for the efficient extraction of analytes
(42, 43). Nevertheless, the peak area decreased when higher voltages
were applied. The maximum normalized peak area would be at
10min 36 s and 9 V.

Response contour plot

The results of a CCD experiments visualized in the form of a
response through three-dimensional (3D) surface and contour plots
were constructed. RSM was used to investigate the integrated effect
of extraction time and applied voltage in the form 3D plots. As illus-
trated in Figure 7, the extraction time and applied voltage variables
were acted on parallel ways which have considerable influence in
the response or peak area. The peak area increased with increasing
extraction time and applied voltage where the maximum point is
located inside the experimental region.

Extraction time could affect the flux of target analytes in the
electrokinetic across SLM into acceptor phase (44). From the re-
sults, it is apparent that the peak area of all analytes increased

Figure 5. Relationship between predicted and actual (experimental) values for (A) ketoprofen, (B) diclofenac, (C) ibuprofen and (D) mefenamic acid.

Figure 6. Pareto chart of the main effects in AF-EME.
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with extraction time up to a point and decreased thereafter. It
should be noted that EME was a non-exhaustive process and over-
saturation of analytes in the acceptor phase might occur which
lead to back-diffusion into sample solution (45, 46).

In μEME, the number of ions crossing the membrane can be
increased by increasing the applied voltage. The application of the
higher potential leads the system further from equilibrium and
thus creates a strong force for target compounds to migrate from

sample solution across membrane into acceptor phase (47). Again, as
EME is a non-exhaustive process, the duration of membrane stability is
reduced by increasing the voltage. Electrolysis occured at cathode and
anode where bubbles were formed at the cathode according to the H2

formation via the following reactions (Equations 7 and 8):

Donor solution negative electrode : 2H 2e H . 82( ) + → ( )+ −

Figure 7. RSM obtained by plotting voltage vs. the extraction time for NSAIDs: (A) KET, (B) DIC, (C) IBU and (D) MEF using CCD on AF-EME extraction.
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HAcceptor solution positive electrode : O 2H 1/2O 2e.
9

2 2( ) → + +
( )

+

As a summary, the optimized EME conditions were as follows: aga-
rose concentration, 1.0% (w/v); organic liquid membrane, 1-octanol;
sample pH, 7.5; stirring speed, 600 rpm; extraction time, 10min 36 s
and applied voltage, 9V.

Discussion

Experiments were carried to validate the applicability of two-phase
AF-EME by using optimum extraction conditions (1-octanol as an
organic solvent, sample solution at pH 7.5, 600 rpm as stirring
speed, extraction time of 10min 36 s and applied voltage of 9 V). In
this study, the method was validated in terms of its linearity, LODs,
EFs, accuracy and precision under the above-mentioned optimum
extraction condition. The calibration curves were constructed by
plotting the peak area of analytes vs. the concentration, and every
concentration was performed in triplicate. The linearity of the
method was evaluated using water samples spiked with the four
selected of NSAIDs. Good linearity of response (peak area) for each
analyte was observed (Table V) in the concentration range of
0.5–500 μg L−1 with coefficients of determination, r2 ≥ 0.9942. The
proposed method showed good LODs and LOQs for the targeted
anaytes in the range of 0.14–0.42 μg L−1 and 0.52–1.21 μg L−1,
respectively. The results also showed high EFs in the range of
62–86. Method accuracy (or RR %) and precisions (expressed as
RSD %) were evaluated on spiked water samples at two different

concentration levels: 10 and 100 μg L−1. The results (Table VI)
showed excellent relative recoveries in the range of 72–114% and
good reproducibility with RSDs of <7.5%. Figure 8 shows that
AF-EME coupled with HPLC-UV is suitable for the determination
of NSAIDS in water samples.

Comparison of AF-EME with other reported EME

methods

The comparison of analytical method between two-phase AF-EME
and other reported EME methods is tabulated in Table VII. A few
EME methods have been applied in the analysis of NSAIDs. In gen-
eral, each method has its own advantages and disadvantages.
Apparently, most of the EME is based on a three-phase system.
Three-phase EME combined with HPLC resulted in good sensitivity
with short extraction time for the quantification of six NSAIDs in
wastewater samples (48). However, the EFs were not satisfactory.
Very short extraction times were achieved in three-phase EME com-
bined with HPLC-UV detection (29) but the EF and low sensitivity
recoveries were not satisfactory as compared to the rest of the meth-
ods. Three-phase EME method assisted by carbon nanotubes
(CNTs) provided excellent pre-concentration factor and high recov-
eries due to high adsorption capacity offered by the CNTs (49).
However, this method utilized hollow fiber made of polypropylene
impregnated with 1-octanol as SLM which might leak into the sam-
ple under high agitation speed and application of electrical field. As
compared to other methods, the proposed two-phase AF-EME
method revealed good performance in terms of extraction efficiency
and showed excellent LODs, high EFs and high relative recoveries.
A two-phase mode system is simple as it reduces the extraction pro-
cedure and is compatible into wider range of instrumental analysis.
In addition, this proposed method provides short extraction time,
minute amounts of organic solvent consumption and utilizes bio-
polymer AF impregnated with organic solvent as SLM thus support-
ing the green chemistry concept.

Conclusion

A two-phase AF-EME combined with LC has been successfully
applied for rapid, sensitive and efficient determination of four
selected NSAIDs in water samples. Agarose films impregnated with
1-octanol have been used as SLM for EME procedure using a low
voltage system. The application of two-phase system on this pro-
posed method would reduce the extraction procedure and it is com-
patible with many analytical instruments. Under the optimized
conditions, good correlations were obtained for the two dependent
variables (extraction time and applied voltage) in which the applied

Table V. Validation Data of Two-phase AF-μ-EME of NSAIDs from Spiked Tap and River Water Samples

Sample Analyte Linear range,
(μg L−1)

Coefficient of
determination, r2

LOD,
(μg L−1)

LOQ
(μg L−1)

EF Precision (RSD, %)
(n = 3)

Tap water KET 0.5–500 0.9984 0.21 0.63 71 7.5
DIC 0.5–500 0.9979 0.18 0.58 82 8.8
IBU 0.5–500 0.9953 0.30 0.89 73 9.2
MEF 0.5–500 0.9989 0.14 0.52 86 6.5

River water KET 0.5–500 0.9954 0.28 0.84 62 4.1
DIC 0.5–500 0.9942 0.22 0.65 74 6.6
IBU 0.5–500 0.9976 0.42 1.21 65 9.4
MEF 0.5–500 0.9991 0.15 0.52 81 3.6

Analytes: KET = ketoprofen, DIC = diclofenac, IBU = Ibuprofen, MEF = mefenamic acid.

Table VI. Relative Recoveries (%) and Method Precisions (RSD %,

n = 3) at Two Different Concentrations for Two-phase AF-μ-EME in

Tap Water and River Water Samples

Sample Analyte Average relative recovery, %
(RSD, %)
Spiking level (n = 3)

10 μg L−1 100 μg L−1

Tap water KET 86 (4.1) 108 (2.7)
DIC 91 (3.7) 114 (3.2)
IBU 79 (4.1) 102 (7.4)
MEF 95 (3.2) 106 (4.4)

River water KET 78 (5.6) 88 (2.9)
DIC 82 (3.8) 97 (4.7)
IBU 72 (7.1) 91 (3.8)
MEF 92 (2.5) 101 (3.2)
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voltage gave highest influence in AF-EME. The optimized extraction
conditions obtained were 10 min 36 s of operation with 9 V driv-
ing force, this method providing excellent performance extraction
in terms of sensitivity and selectivity. The new support biopoly-
mer material (agarose film) utilized in two-phase EME showed
excellent extraction efficiencies and is advantageous as it is biode-
gradable and found abundant from natural sources. This devel-
oped method provides rapid extraction, simple and utilizes
biopolymer as interface to support the liquid membrane, thus
meets the green chemistry concept.
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