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ABSTRACT 

 

Photocatalytic reduction of CO2 into solar fuel such as methane and methanol, is an 

attractive approach to simultaneously solve the energy crisis and global warming 

problem. Herein, comparative photocatalytic activity of graphene oxide nanosheets have 

been investigated for photocatalytic reduction of CO2 into methane and methanol in 

continuous gas and liquid phase photoreactor system. The graphene oxide sheets were 

prepared according to Tour’s method. The chemical composition and optical properties 

was evaluated through XPS and UV-vis spectroscopy. Graphene oxide nanosheets 

exhibited maximum amount of 224.87 μmol/g.h methanol and 14.8 μmol/g.h methane in 

liquid and gas phase system, respectively. Higher yield of methanol in liquid phase 

compared to methane in gaseous system can be attributed to dispersion of graphene oxide 

sheets in water. Hence, graphene oxide nanosheets are efficient photocatalyst for CO2 

reduction into methanol. Nevertheless, further research is essential to improve the 

photostability of graphene oxide sheets for real application of photocatalytic CO2 

reduction.  
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INTRODUCTION 

 

Energy requirement of the world is increasing day by day due to growing population and 

advancements in scientific inventions. Fossil fuels are considered as primary source of 

energy and combustion of fossil fuel is polluting the environment particularly the global 

warming due to uncontrolled emission of carbon dioxide (CO2). Reduction of CO2 is 

essential to curb the global warming and save the environment [1-3]. Several processes 

have been used to reduce the level of CO2 such as carbon capture and storage, 

conventional absorption, biological, chemical and thermochemical reduction of CO2 [4-

8]. Although, all processes are under development stages, they suffer from the higher cost 

and environmental limitations. Photocatalytic reduction of CO2 is the most economical 

and environmental friendly process using renewable sunlight energy [9-12]. 

Photocatalytic reduction of CO2 was pioneered by Inoue and Fujishima in 1979 

[13]. Environmental friendly photocatalyst with novel properties that can enhance the 
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process efficiency, have been the interest of researchers. Several semiconductors such as 

zirconium oxide [14], gallium oxide [15], magnesium oxide [16], zinc sulfides [17], 

cadmium sulfides [18], bismuth sulfide [19], graphitic carbon nitride [20] and titanium 

oxide (TiO2) [21] have been employed as photocatalyst. Among all, TiO2 has been the 

widely reported photocatalyst because of its unique properties, high stability, availability 

and non-toxicity [22-25]. However, photocatalytic activity of TiO2 is limited due to large 

bandgap energy and electrons-holes recombination problem. Lot of efforts have been 

made to improve the activity of TiO2 via coupling/doping with metals and non-metals 

[26, 27]. However, photocatalytic efficiency of TiO2 is far from practical applications.  

Graphene is a two dimensional (2D) single layered atomic sheet with hexagonal 

structures and zero bandgap material [28]. Meanwhile, GO which is oxygenated graphene 

sheets, comprise of covalently and non-covalently bonded oxygen functional groups such 

as epoxy, phenolic and carboxylic group [29]. In past few years, graphene based 

photocatalytic semiconductors have widely reported for CO2 reduction due to their 

excellent activity [30]. Distinguish feature of graphene base materials is fast 

transportation of charge carriers and lower charge recombination across photocatalyst 

[31, 32]. The GO has wide bandgap energy and great potential to act as photocatalyst for 

CO2 reduction into useful product such as methane, methanol and formic acid.  

Generally, GO has been synthesized by Brodie [33], Staudenmaier [34] and 

hummer’s method [35]. Pros and cons of different methods has been enlisted by Lavin-

Lopez et al. [36]. Most commonly used hummer’s method involves oxidation of graphite 

using strong oxidizing agent such as H2SO4, KMnO4 and NaNO3 respectively. Incomplete 

oxidation and release of toxic gas are drawbacks of hummer’s method. Recently, Tour et 

al. [37] have developed the safest approach as compared to hummer’s method by 

replacing NaNO3 by H3PO4.  

In the present study, GO was synthesized according to Tour’s method as it gives 

higher yield and minimal basal defects in GO. According to our knowledge, there is 

limited study on direct use of GO in photocatalytic applications. Herein, comparative 

photocatalytic activity of GO has been investigated for liquid and gas phase CO2 reduction 

system. 

 

MATERIALS AND METHOD 

 

Materials 

 

Graphite flakes (< 45 µm, Sigma Aldrich), potassium permanganate, KMnO4 (≥ 99 %, 

Sigma Aldrich), sulfuric acid, H2SO4 (95-98 %, R&M chemicals), phosphoric acid, 

H3PO4 (85 %, R&M chemicals), hydrochloric acid, HCl (37 %, R&M chemicals), 

hydrogen peroxide, H2O2 (30%, Merck), and ethanol absolute, C2H5OH (99.99 %, 

Merck). All chemicals were analytical grade and used as received. Deionized water was 

used throughout the experiments. 

 

Method 

 

The GO was synthesized according to Tour’s method [37] with modified parameters. In 

simple, 3 g of graphite powder was slowly added to 400 ml of mixed acid 

(H2SO4/H3PO4:9/1) in an ice bath to maintain the temperature at 10 oC along with 

mechanically stirring at 300 rpm. In addition, 18 g of KMnO4 was added slowly and 
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mixture was shifted into oil bath at the temperature of 50 oC and stirred for 24 h. Then, 

400 mL (Deionized water) ice was gradually poured into mixture at room temperature 

followed by dropwise addition of 5 mL of H2O2. The color of mixture was turned to 

yellow indicating the complete oxidation of graphite to graphite oxide. The obtained 

suspension was then pass through polyester fiber and further centrifuged. Graphite oxide 

was washed with 10 % HCl (1 litre) and absolute ethanol (500 ml) followed by washing 

with deionized water. Washing with deionized water continued until pH became neutral 

(7). Then, recovered graphite oxide was oven-dried at 35 oC for two days followed by 

grinding. Dried graphite oxide was again dispersed into deionized water and sonicated 

for 1 h to exfoliate it to GO sheets and centrifuged at 1000 rpm (20 min) to remove 

unoxidized graphite particles. The GO sheets were separated from suspension at high 

centrifugation speed of 4000 rpm (for 4 h) followed by drying at 35 oC. 

 

Characterization 

 

X-ray photoelectron spectroscopy was performed to investigate the surface chemical 

composition. It was equipped with Al K-α radiations with corrected calibration binding 

energies against the C1 of carbon fixed at 284.6 eV. XPS spectra was recorded on pass 

energy of 50-200 eV. UV-visible spectroscopy was used to measure the absorption profile 

of synthesized photocatalyst. The spectrum measurements were performed using Agilent 

Cary technologies 100 UV-vis spectrometer Model G9821A with wavelength range of 

200-800 nm. The band gap energies of the photocatalyst was measured from the Kubelka–

Munk (KM) function. 
 

Photocatalytic Reduction of CO2 

 

Photocatalytic reduction of CO2 was carried out in liquid and gas phase continuous flow 

photoreactor. The gas phase photoreactor was comprise of cylindrical stainless-steel 

chamber with quartz window on top and 500 W Xenon (Xe) lamp as source of light. 

Typically, 0.1 g of photocatalyst was uniformly dispersed in photoreactor. Helium (He) 

gas was passed through reactor for certain time to purge the gaseous impurities from 

system. Then, CO2 was bubbled through water bubbler to have mixture of CO2 and H2O 

vapours and passed through reactor for half hour to establish equilibrium in system. 

Photoreactor was fully covered with aluminium foil to avoid the interference of light from 

surrounding. The CO2 flowrate was set at 20 mL/min and lamp was switched on to start 

the photoreaction. Product was analysed through online GC-TCD&FID. Moreover, FID 

was coupled with a HP-PLOT Q capillary column (Agilent, length 30 m, ID 0.53 mm, 

film 40 µm) for the segregation of C1-C6 paraffin and olefin hydrocarbon, alcohols and 

other oxygenated compounds. TCD was attached to UCW982, DC-200, Porapak Q and 

Mol Sieve 13X columns. In addition, liquid phase photoreactor was comprising of quartz 

glass vessel with 500W Xe lamp as source of light. Typically, 0.1 g of photocatalyst was 

suspended in 100 mL H2O with continuous stirring. The sodium hydroxide (NaOH) was 

added into 100 mL H2O to ensure the higher absorption of CO2. Prior to start, system was 

purged with CO2 for half hour and then CO2 flow rate was adjusted to 20 mL/min. System 

was fully covered with aluminium foil to stop the interference of light from surrounding. 

Lamp was switched on after 30 min so that system should be at steady state and 

equilibrium condition. Samples were collected after every 30 min and analysed through 

GC-FID to measure quantity of photoproduct. 
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RESULTS AND DISCUSSION 

 

XPS Analysis 

 

XPS analysis indicated the chemical structure of prepared GO and nature of surface 

moieties. Figure 1(a) and (b) show the XPS spectrum of C1s and O1s along with 

deconvoluted peaks. In XPS spectra of C1s, there are four deconvoluted peaks at 284.28, 

285.48, 287.48 and 289.48 eV reflecting the bonding of carbon and oxygen corresponding 

to C=C, C-O, C=O and -COOH groups. Peak at 284.28 is attributed to C=C bond which 

represent the sp2 character of graphene structure. Other peaks can be assigned to C-O 

(285.48 eV), C=O (287.48 eV) and -COOH (289.48). Furthermore, C-O bond represent 

the C-O-C (epoxy) bonding and C-OH (phenolic) functional groups attached to the basal 

planes of graphene sheets [38-40]. In O1s spectra, major peak at 533.48 eV is attributed 

to aromatic group (C-O) [41]. Percentage area of peak for C=O (287.48 eV) is 38.17 % 

of total C1s spectra which indicates that most of GO sheets are crowded with carbonyl 

groups. In addition, O1s spectra exhibited higher percentage of phenolic groups, C-O 

(40.36 %), at 533.48 eV. Peaks of oxygen functional group along with carbon indicate 

the oxidation of graphite into GO and would enhance adsorption and photocatalytic 

reduction of CO2 [42]. 

 

 
(a)     (b) 

 

Figure 1. XPS spectrum of (a) C1s (A) and (b) O1s (B). 

 

UV-vis Spectroscopy 

 

Optical response of GO was evaluated through UV-vis spectrometer as shown in Figure 

2(a). GO exhibited strong light absorption spectra in visible light region and light 

absorption start to decrease at wavelength (λ) < 400 nm. Higher absorption of visible light 

compared to UV light indicate that GO is more active under visible light irradiations. 

Response of GO in λ > 400 nm can be attributed to n→π* transition of C=O [29]. Optical 

band gap of GO calculated by Kubelka-Munk function using Tauc plot was 1.3 eV as 

shown in Figure 2(b). Bandgap energy of GO depends on oxygen function groups density 
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and high oxygen density will generate larger bandgap [43]. Low bandgap of 1.3 eV 

suggest that GO should produce high yield of solar fuel. Huang et al. reported that 

bandgap energy of GO can be tuned from 2.7 to 1.15 eV depending on density of oxygen 

functional groups [44]. Thus, Low bandgap energy GO could be efficient photocatalyst 

for CO2 reduction to solar fuel under visible light irradiation. 

 

 
(a)      (b) 

 

Figure 2. UV-vis spectrum (a) and Tauc plot for GO (b) 

 

Photocatalytic Activity 

 

To investigate the photocatalytic performance of GO, CO2 reduction experiments were 

carried out in continuous liquid and gas phase photoreactors. Figure 3(a) and (b) show 

the yield of solar fuels produced in gas and liquid phase, respectively. In gas phase 

system, CH4 was detected as main product with maximum yield of 14.8 µmol/g.h. 

Initially, yield of CH4 increased till 90 min and then started to decrease. It could be due 

to instability of photocatalyst caused by accumulation of holes on the surface of GO [30]. 

In addition, there was no CO in our system, which indicate that GO photocatalyst promote 

the conversion of CO2 into CH4. Formation of CH4 needs 8 electrons which required high 

surface electron density and GO exhibited the multielectron reduction process [45]. 

Quantity of methane was higher as compared to reported value by Tan et al. [46]. 

Although, significant amount of CH4 was produced by GO, it suffered from photo stability 

problem as activity decreased with time [30].  

In liquid phase photocatalytic CO2 reduction, CH3OH was detected as main 

product. Significantly, large quantity of 224.87 µmol/g.h of CH3OH was observed at 60 

min but yield decreased sharply with time like gas phase system. According to literature, 

most of graphene base photocatalyst exhibited the higher production of CH3OH in liquid 

phase and CH4 in gas phase CO2 reduction system [30]. Decrease in activity of GO in 

both liquid and gas phase system reflects the photostability problem of material [47]. 

However, activity was almost similar and constant for 90 min and 120 min which indicate 

that GO sustained the activity with little decrease of yield in liquid phase system. Most 

of graphene base photocatalyst produced CH4 and CH3OH in gas phase and liquid phase 

photocatalytic CO2 reduction [48]. Production of CH4 and CH3OH suggest that reduction 

took place through multielectrons reduction path rather single electron reduction path. 
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Higher yield of CH3OH could be attributed to efficient dispersion of GO in water. 

Moreover, conduction band potential of GO is -0.79 V (vs. Normal Hydrogen Electrode 

(NHE)) which is more negative than reduction potential of CO2/CH4 (-0.24 V) and 

CO2/CH3OH (-0.38 V), respectively. Valence band potential of GO is 4 V (vs. NHE) 

which is higher than oxidation potential of H2O/O2, H
+ (-0.82) [29]. Although, GO can 

be potential photocatalyst for the CO2 reduction into CH4 and CH3OH, stability of 

photocatalyst is to be improved.  

 

 
(a)        (b) 

 

Figure 3. Photocatalytic reduction of CO2 in gas phase (a) and liquid phase (b) 

 

CONCLUSION 

 

GO nanosheets were successfully synthesized according to Tour’s method through acid 

oxidation of graphite flakes. Photocatalytic activity of GO nanosheets was evaluated for 

the reduction of CO2 into CH4 and CH3OH using gas and liquid phase photoreactor 

system, respectively. Activity of GO nanosheets was higher in liquid phase system with 

maximum production 224.87 µmol/g.h of CH3OH compared to 14.8 µmol/g.h of CH4 in 

gas phase system. However, GO sheets were instable due to oxygen groups, and their 

activity decreased with time in both liquid and gas phase CO2 reduction system. Further 

study need to be conducted to improve the photostability and photoactivity of GO 

nanosheets. 
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