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Abstract Reciprocating compressors are one of the most used types of compressors with wide

applications in industry. The most common failure in reciprocating compressors is always related

to the valves. Therefore, a reliable condition monitoring method is required to avoid the unplanned

shutdown in this category of machines. Acoustic emission (AE) technique is one of the effective

recent methods in the field of valve condition monitoring. However, a major challenge is related

to the analysis of AE signal which perhaps only depends on the experience and knowledge of tech-

nicians. This paper proposes automated fault detection method using support vector machine

(SVM) and AE parameters in an attempt to reduce human intervention in the process. Experiments

were conducted on a single stage reciprocating air compressor by combining healthy and faulty

valve conditions to acquire the AE signals. Valve functioning was identified through AE waveform

analysis. SVM faults detection model was subsequently devised and validated based on training and

testing samples respectively. The results demonstrated automatic valve fault detection model with

accuracy exceeding 98%. It is believed that valve faults can be detected efficiently without human

intervention by employing the proposed model for a single stage reciprocating compressor.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Reciprocating compressors are often one of the most critical
machines in gas transmission, petrochemical plants, refineries
and many other industries which deserve special attention.

The efficiency and the reliability of a particular reciprocating
compressor highly depend on the performance of its valves.
Therefore, valve design optimization and improving valve

materials have been studied and proposed to extend valves life-
time [1]. Valve failures had been recognized as the most fre-

quent malfunction in reciprocating compressor with high
maintenance costs [2,3]. According to an industrial survey by
Prognost Systems, 29% of unplanned shutdowns for recipro-

cating compressors were related to valve faults [4]. This issue
drives the consideration of effective and accurate valves’ fault
diagnostic methodologies to ensure maximum productivity

and minimize maintenance costs for reciprocating compressor.
Over the last past decade, various condition monitoring

methods have been proposed to diagnose reciprocating com-
pressor valves. For instance, Elhaj et al. [5,6] proposed a

method based on the dynamic cylinder pressure and crankshaft
instantaneous angular speed (IAS) to detect valve faults in
reciprocating compressor. Zhenggang and Fengtao [7]
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proposed a method to monitor the valve condition using the
variation of cylinder pressure. Pichler et al. [8] and Wang
et al. [9] proposed pressure-volume (PV) measurements for

valve condition monitoring in a reciprocating compressor.
Then they used support vector machine (SVM) to classify
the valve faults. However, the pressure curve is not the most

direct way to show valve conditions [10]. Besides, intrusiveness
into machine operation and required to fix the sensor into the
compressor cylinder in a permanent way. Therefore, pressure

measurement is not preferred in industry.
Vibration and acoustic emission based condition monitor-

ing is often considered practical because both measurements
are non-intrusive to machine operation. However, many schol-

ars reported the effectiveness of the AE signal measurement
compared to the conventional vibration signal analysis method
for early fault detection in machinery condition monitoring

[11–13]. In addition, AE signal could clearly describe the valve
function when it employs for reciprocating compressor condi-
tion monitoring. Subsequently, many experimental studies

have been carried out to investigate the use of AE for recipro-
cating compressor valve condition monitoring. For instance,
Gill et al. [14] revealed the advantage of using the AE tech-

nique for valve faults detection in a reciprocating compressor.
They further concluded that vibration analysis is less sensitive
to the higher-frequency noise emitted by fluid-mechanical
motion. El-Ghamry et al. [15] developed a technique based

on AE statistical feature isolation to diagnose several recipro-
cating machinery faults. Wang et al. [10,16] proposed a diag-
nosis method for reciprocating compressor valve faults by

comparing the AE waveforms for normal and faulty valves
in simulated valve motion. Unfortunately, limited operational
conditions have been used, and some faults could not be iden-

tified. Compared with the AE full waveform analysis, param-
eter analysis using simplified waveform parameters is a
powerful method in the AE signal processing field [17,18].

However, few efforts have been published using AE parame-
ters for reciprocating compressor valve fault detection. For
example, Sim et al. [19] proposed a valve fault detection
method by analysing the AE signal. The authors employed

wavelet packet transform (WPT) to decompose the acquired
AE signals to different frequency ranges. Then they used statis-
tical analysis to detect the valve fault based on RMS value.

Although the AE could detect the valve faults, the analysis
was complicated and not practical to be used in the industry.
Besides, wavelet transform (WT) has no standard rules for

function selection with constant multi-resolution and adding
more complexity.

Many analysis methods have been employed for machinery
condition monitoring based on AE signals [20,21]. These meth-

ods have shown special advances in rapid signal processing due
to the development of computers. For example, Phillips et al.
[22] developed a condition classification model for heavy min-

ing truck engines based on oil samples and binary logistic
regression (LR). The study provides a comparison of the meth-
ods used with the SVM and ANN methods. The authors con-

cluded that logistic regression performs better than other
classification methods regarding prediction for healthy/not
healthy engines. However, the analysis required additional

effort to interpret the results of the LR model. Widodo et al.
[23] used relevance vector machine (RVM) and SVM for low
speed machine fault diagnosis. Despite the analysis revealed
promising results and potential for use SVM in automated
machinery fault diagnosis, no published work can be found
employing this method to analyse AE parameters for recipro-
cating compressor valve condition monitoring. This paper will

investigate the performance of support vector machine to
detect valve condition in reciprocating compressor based on
acoustic emission signal parameters. It should be noted that

this work doesn’t aim to generate an interface for valve fault
detection but to employ the SVM for AE parameters analysis
in an attempt to reduce human intervention in the analysis

process. The paper structure is presented as follows. Section 1
reviews the state of the art methods used in valve fault detec-
tion. Section 2 briefly describes the theoretical background,
including AE parameters and SVM. Section 3 explains the

research methodology, including the research test rig, instru-
mentation and experimental procedure. Section 4 illustrates
modelling results and validation. Section 5 concludes the

paper.
2. Theoretical background

2.1. AE signal parameters

Acoustic emission refers to the generation of transient elastic
waves produced by a rapid release of energy from a localized
source within the surface of material, as reported by the Amer-

ican Society for Testing and Materials (ASTM) [24]. In this
paper, AE is defined as transient elastic waves produced by
the impact of one surface on another in a reciprocating

motion. In other words, the transient elastic waves are pro-
duced by the impingement of the plates inside the valve with
the upper and lower plate housing during the reciprocating
compressor operation. AE hit has specific parameters related

to the signal event. The interpretations of AE parameters are
often related to the machine condition [25]. In this study, AE
parameters have been extracted from the acquired AE hits

include amplitude, counts, duration, energy, absolute energy,
ASL and signal strength. See Fig. 1 and Table 1.
2.2. Support vector machine

Support vector machine is a supervised machine learning
method that relies on statistical learning theory with an ability
to handle high input features. This learning technique uses

input vectors for pattern classification. During the training
process, SVM creates a hyperplane that allocates the majority
points of the same class in the same side, while maximizing the

distance between the two classes to this hyperplane [2]. See
Fig. 2. This hyperplane could be either linear or nonlinear,
which is also relevant to the kernel function [23]. SVM training

seeks a globally optimized solution and avoids over-fitting so
that it can deal with a large number of features. A comprehen-
sive description, limitations and drawbacks of SVM method

are available in [26,27]. In the linearly separable case, there
exists a separating hyperplane whose functions are:

w � xþ b ¼ 0 ð1Þ
where

w: weight

x: input factor
b: bias



Table 1 AE signal parameters according to ASTM E1316-05

standard.

AE signal

parameters

Description Units

Amplitude The greatest measured voltage in a

waveform

Volt

Counts The number of times the AE signal

exceeds a preset threshold during an

event

Counts

Duration The time between AE signal start and

AE signal end

lsec

Energy The mean area under the rectified signal

envelope

MARSE

Absolute

energy

The real amounts of AE signal energy Attojoule

(aJ)

ASL The average signal level of the AE

amplitude

db

Signal

strength

The integral of the rectified voltage

signal over the duration of the AE

waveform packet
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Figure 2 SVM’s decision boundary.

Figure 1 AE signal parameters.
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which implies

yiðw � xþ b ¼ 0Þ P 1; i ¼ 1; . . . ;N ð2Þ
where

yi: the labels of the training samples

N: number of samples

The SVM algorithm tries to determine a distinctive separat-
ing hyperplane with minimizing kwk which represents the
Euclidean norm of w: the distance between the hyperplane,
by adjusting the data points of each category using 2=kwk.
When Lagrange multipliers ai introduced, the SVM training
process is to solve a convex quadratic problem (QP). The solu-
tion employs the following equation:

w ¼
XN
i

aiyixi ð3Þ
where
ai: Lagrange multipliers

Only if corresponding ai > 0, this xi is known as support
vectors. During the model training process, the decision func-

tion is representing by the following:

fðxÞ ¼ sign
XN
i¼1

aiyiðx � xiÞ þ b

 !
ð4Þ

In this study, the SVM tries to place a margin between the
faulty-healthy data and adjusts it in a way to keep the distance

between the data points and the margin as maximal in each
group. The nearest data points are used to define the margin
and are known as support vectors. However, in most cases
the patterns are not linearly separable; therefore, a kernel func-

tion is used to perform the transformation. Hsu et al. [28] pro-
posed RBF kernel function to be the first try kernel function
for an SVM model. Chen et al. [29] found that RBF kernel
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gives a better test accuracy compared to the polynomial kernel.
Therefore, SVM with RBF kernel function was deployed in
this study.
3. Experimental study

3.1. Test rig and instrumentation

The test rig employed in this study consists of a single-stage,

two-cylinder air-cooled reciprocating compressor with a
1.5 kW/2 hp motor that can provide a maximum speed of
820 rpm. The compressor consists of two plate valves mounted

over each cylinder. The valve consists of two parts, suction and
discharge. Each part includes one plate, and both plates are
moving up and down opposite to each other during the com-

pressor cycle for the suction and discharge process. During
the opposite movement of the valve plates (up and down),
the plates will impact the upper and lower valve housing. This
impact is a rapid release of energy that generates a transient

elastic wave, which moves through the valve up into the valve/-
cylinder cover and is detected by the AE sensor. See Fig. 3.

A digital laser tachometer was used to show the compressor

speed and to record the compressor cycle. The tachometer was
installed near to the compressor flywheel to receive a pulse
from a reflective tape attached to the flywheel. An AE sensor

(model: PKWDI) with operating frequency range of 200–
850 kHz was used to acquire the signal in this research. The
sensor was placed at the centre of the valve/cylinder cover

(the left cylinder of the reciprocating compressor) and fixed
firmly to the surface by super glue. A single channel AE data
acquisition (DAQ) system (model: USB AE Node) with 18-
bit resolution providing a full AE hit and time-based features

was used for AE signal collection. AEwinTM software was used
for recording AE hits and extracting AE parameters. The AE
signals were acquired at a sampling rate of 500 kHz, for a total

of 2048 data points per acquisition (data file). The signal was
recognized perfectly at a threshold level of 55 dB. The AE sig-
nals were digitized and conditioned by the DAQ device before

transmission to a computer for further analysis.
Figure 3 Test rig and d
3.2. Experimental procedure

The experiment began by acquiring the AE signal (baseline sig-
nals) from the compressor with the valve in a healthy condi-
tion. The experiments were conducted in various operational

conditions regarding speed and airflow rate. Thirteen opera-
tional speeds ranging from 200 to 800 rpm (with incremental
increasing by 50 rpm) and three flow rates (0%, 50% and
100%) were employed. Speeds were controlled by the speed

controller, while the flow rates were controlled using a flow
metre at the compressor outlet. Next, the experiment was
repeated with the same operational conditions but emulating

two types of real faults, corrosion and clogged, individually
at the compressor valve (including both the suction and dis-
charge parts). Corrosion was introduced into the valve plates,

while clogged was introduced into the valve body. The simula-
tion of the corrosion defect involved making a hole with an
oval shape at the centre of the plate by using a drilling

machine. On the other hand the clogged defect was simulated
by sealing some of the valve outlet holes using welding to emu-
late the condition of a valve clogged due to excessive dirt. Each
fault was simulated with different severity levels to simulate

progressive fault deterioration. Table 2 illustrates the types
of defects with their severities.

All defects in the experimental specimens (spare valves)

were simulated in advance. Thus, the first defective valve was
configured inside the reciprocating compressor. The first AE
signal was acquired when the test rig was operated at the first

speed and flow rate. The test was repeated for the other speeds
and flow rate conditions until the signal was acquired for all
the operational conditions. Then, the test rig was shutdown,
and the valve was replaced with the second specimen with

another fault severity. The procedure was repeated, and
another set of AE signals was recorded.

To acquire the AE signal, the test-rig was operated with 39

different operational conditions (13 speeds � 3 flow
rates = 39) and sixteen valve conditions (8 valve condi-
tions � 2 fault locations = 16) with a total of 624 tests. Each

test was conducted for 30 s and repeated three times, and the
average was calculated. All experiments were conducted at
ata acquisition setup.



Table 2 Types of defects and defects severities.

Valve condition Defect type Defect severity Defect symbol Defect size

Healthy condition No defect No defect ND No defect

Faulty condition Corrosion defect Very small corrosion VSC 37.07 mm2

Small corrosion SC 56.57 mm2

Medium corrosion MC 79.63 mm2

Large corrosion LC 106.27 mm2

Very large corrosion VLC 136.48 mm2

Clogged defect Moderate clogged MCL 40%

Intense clogged ICL 80%
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laboratory temperature range between 25 and 30 �C and stan-
dard atmospheric pressure. Thus, a total of 142,035 data sam-

ples for AE signal statistical parameters were obtained from
the experimental tests. According to hold and train method
[30], the data were divided randomly into two groups: 85%

as the training set, including 120,823 data samples, and 15%
as the validation set, including 21,212 data samples. Training
samples were used to develop the model, while the validation

samples were held out and then applied to the developed model
to evaluate the model performance.

4. Results and discussions

4.1. AE waveform analysis

The main purpose of waveform analysis was to investigate the

AE source. For this reason, a pre-test was performed with the
valve in a healthy condition. The test consists of acquiring the
AE signal simultaneously with the compressor cycle, using a

digital laser tachometer at a speed of 820 rpm and without a
100% flow rate. The compressor valve must both open and
close within one cycle. It was envisioned that the AE bursts
would be detected along the waveform with a rate equivalent

to the plate movement frequency per cycle, representing the
valve open-close function. Therefore, the acquired AE wave-
form signal was drafted with the reciprocating compressor

cycles. See Fig. 4.
The AE waveform contains a sequence of intermittent

spikes dominant along the acquired signal. Besides, these

spikes are in a sequence of differentiated amplitudes during
the same period. By comparing these spikes with the compres-
sor cycle signal, which is represented by the pulse waveform
signal with each two pulses equal to 1 cycle, there appear to

be two AE spikes in each compressor cycle. Consequently,
the period between any identical amplitude is found to be
the same time as one compressor cycle, which is 0.07 s when

the speed is 820 rpm. See Fig. 4.
As a result, the spikes in the AE waveform are directly asso-

ciated with the compressor valve and indicate the valve open-

close function. However, the reason for the divergence in the
spikes amplitude is the difference in air pressure inside and
outside the compressor. In other words, when the valve is

opening, the air is sucked from low pressure (atmosphere pres-
sure), and thus the impact of the valve plates with the plates
housing will release a slight elastic energy. In contrast, when
the valve is closing, the air will compress under higher pres-

sure; therefore, the impact of the valve plate with the plate
housing will release a higher elastic energy. Indeed, this result
is similar to the observations of AE waveforms produced by
reciprocating compressors in previous studies [6,10]. The tran-

sient waveform of AE activity associated with the valve move-
ment has been reported.

4.2. Support vector machine model

SVM algorithms namely (svmtrain) and (svmclassify) were
used to train and classify the AE data. In this method, the

SVM model was generated by mapping the inputs data nonlin-
early according to the input features. Next, the model will seek
for optimized margin division for these features that construct
a hyperplane to split the features into faulty and healthy.

Table 3 illustrates the summary of SVM model based on
85% training samples.

Table 3 shows the output arguments for SVM model. The

support vectors are the range of data points with each row
after normalization has been applied. Alpha is the weight val-
ues for the support vectors. The sign of the weight is positive

for support vectors belonging to the first group (healthy) while
negative for the second group (faulty). Bias refers to the inter-
cept of the hyperplane that are separated into two groups.

RBF kernel has been used as a kernel function. Group names
refer to the total data samples. Support vector indices refer to
the training data that were selected as support vectors after the
data were normalized. Shift refers to the negative of the mean

across an observation in training while scale factor refers to 1
divided by the standard deviation of observation in training.
Based on the training data, the overall accuracy for SVM

model was 99.4%.

4.3. SVM model validation

The SVM models were validated using validation samples
which were separated randomly from the original acquired
data set. This method allows the fitted models to predict the
valve condition from validation samples. The process was per-

formed many times to check the predictive performance of the
SVM model. Thus, when the model classifies the data cor-
rectly, the usability of the model in other contexts can be

assured. A lack of fit is possible if the model is unable to clas-
sify the data. Therefore, receiver operating characteristic
curves (ROC) was employed to determine model’s classifica-

tion ability [31]. The ROC curve usually sketched in a two-
dimensional diagram by plotting the sensitivity (the data that
are originally healthy and predicted healthy by the model) ver-

sus the one minus specificity (the data that are originally
healthy and predicted faulty by the model). When the curve



Table 3 SVM model structure based on training samples.

Output arguments Value

Support vectors Range: �7.69 to 7.47 for 3511 samples

Alpha Range: �0.74 to 1.53

Bias 0.0829

Kernel function RBF Kernel

Group names 120,823 samples

Support vector indices Range: 5–120,492

Scale shift Range: �4.07 to �0.22

Scale factor Range: 1.76–6.42

Figure 4 AE waveform versus the reciprocating compressor cycles.

Figure 5 ROC curve based on validation samples for SVM

Model.
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appeared close to the upper left corner that is mean the model
has a maximum sensitivity and maximum specificity for classi-
fying the data. Moreover, model discrimination can be further

checked by calculating the area under the curve (AUC) (If
AUC = 0.5 means the model cannot discriminate between
the two classes of data while if AUC > 0.8 means the model

has an excellent discrimination ability) [32]. Table 4 illustrates
the classification accuracy for SVM model and Fig. 5 shows
the ROC curve for SVM model.

By using the measure of percentage in the validation data

that were predicted correctly, Table 4 clearly shows that the
SVM model could classify 98.60% from the healthy as healthy
and 99.90% from the faulty data as faulty. The overall predic-
Table 4 SVM model classification based on validation samples.

Observed Predicted

Healthy Faulty

Healthy 6842 97

Faulty 20 14,253

Total
tion accuracy of SVM was 99.4%. Moreover, ROC curve

shows that SVM was able to discriminate between healthy
and faulty valve condition with AUC of 0.99. That indicates
a maximum sensitivity and specificity of SVM model. The
SVM model performance was found to be reliable and accu-

rate for automated diagnosis of the valve condition in a single
stage reciprocating compressor. See Table 5.
Total Predicted correctly (%)

6939 98.60

14,273 99.90

21,212 99.4



Table 5 SVM model accuracy details.

SVM

AUC 0.99

Sensitivity 98.6%

Specificity 99.9%

Overall accuracy 99.4%
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5. Conclusion

This study proposed automated diagnosis the valve condition
using support vector machine based on AE parameters. An

experimental procedure was conducted on a single stage indus-
trial reciprocating air compressor and consisted of inducing
two typical valve faults in the compressor with different sever-
ity. Data were tabulated according to the valve condition and

then SVM model was developed based on training samples of
the AE signal parameters. The model was validated by using
other validation samples never train the model. Based on pre-

dictive accuracy and the ROC curve, the results demonstrated
that the SVM model could classify 99.4% of valve condition
correctly. Moreover, ROC curves illustrate maximum sensitiv-

ity and specificity by the SVM model. It is concluded that the
proposed SVM model can be used with utmost accuracy to
diagnosis valve condition in a single stage reciprocating

compressor.
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