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Abstract: This paper described the development of a spatial downscaling algorithm to produce finer 
grid resolution for satellite precipitation data (0.05°) in humid tropics. The grid resolution provided 
by satellite precipitation data (>0.25°) was unsuitable for practical hydrology and meteorology 
applications in the high hydrometeorological dynamics of Southeast Asia. Many downscaling 
algorithms have been developed based on significant seasonal relationships, without vegetation and 
climate conditions, which were inapplicable in humid, equatorial, and tropical regions. Therefore, 
we exploited the potential of the low variability of rainfall and monsoon characteristics (period, 
location, and intensity) on a local scale, as a proxy to downscale the satellite precipitation grid and 
its corresponding rainfall estimates. This study hypothesized that the ratio between the satellite 
precipitation and ground rainfall in the low-variance spatial rainfall pattern and seasonality region 
of humid tropics can be used as a coefficient (constant value) to spatially downscale future satellite 
precipitation datasets. The spatial downscaling process has two major phases: the first is the 
derivation of the high-resolution coefficient (0.05°), and the second is applying the coefficient to 
produce the high-resolution precipitation map. The first phase utilized the long-term bias records 
(1998-2008) between the high-resolution areal precipitation (0.05°) that was derived from dense 
network of ground precipitation data and re-gridded satellite precipitation data (0.05°) from the 
Tropical Rainfall Measuring Mission (TRMM) to produce the site-specific coefficient (SSC) for each 
individual pixel. The outcome of the spatial downscaling process managed to produce a higher 
resolution of the TRMM data from 0.25° to 0.05° with a lower bias (average: 18%). The trade-off for 
the process was a small decline in the correlation between TRMM and ground rainfall. Our results 
indicate that the SSC downscaled method can be used to spatially downscale satellite precipitation 
data in humid, tropical regions, where the seasonal rainfall is consistent.

Keywords: rainfall; monsoon; high resolution; TRMM

1. Introduction

Precise information on spatiotemporal rainfall is critical for accurate hydrology predictions
and simulations in humid tropical regions. Satellite precipitation data are useful for supporting
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in-situ measurements, because they provide wide coverage, are publicly available, and are grid-based. 
However, their suitability for small basins is hindered by their coarse grid size [1,2]. This is conspicuous 
for most humid tropical catchments in Southeast Asia, where the region comprises of small land-sea 
ration area—especially islands and peninsula. Hence, the spatial variability of tropical rainfall variation 
is rather high [3], and is expected to increase [4]. Although the new satellite precipitation data product 
from Global Precipitation Mission and GsMAP has higher resolution (0.1°) than its predecessor, 
the Tropical Rainfall Measuring Mission (TRMM), it is only available from 2015 onwards. Effective 
climate-hydrologic analysis requires continuous data, especially historical, and therefore it is important 
to improve those datasets. Due to that conflict, numerous efforts have been made to improve the 
coarse grids by spatial downscaling.

However, spatial-downscaling algorithms for satellite precipitation data for humid, tropical 
environments have rarely been reported. Currently, advances in spatial downscaling of satellite 
precipitation data are centered on using rainfall-related environmental parameters at higher spatial 
resolutions as predictors. Based on the strong relationship between the rainfall and its site-specific 
explanatory proxy variables, the rainfall values for a smaller grid were estimated through the regression 
coefficient. Often, multiple regression analyses are used to assess the relationships between rainfall, 
vegetation, and elevation [5- 10]. Those variables were selected due to their significant relationship 
at a specific temporal period. In the temperate region, the relationship between seasonal rainfall and 
vegetation was strong, particularly during late spring and summer, where the photosynthetic rate 
increased. Meanwhile, topographic variations have significantly influenced regional or local rainfall 
patterns and distribution, especially in the hilly areas. These orographic effects can be relatively 
stronger if that region received air masses from the significant seasonal wind flows (e.g., monsoon).

Employing these variables for robust downscaling in humid tropical regions might be less suitable 
because of the weaker relationships between rainfall, vegetation, and elevation compared to temperate 
regions. Although applying multivariate regression could be effective in statistically increasing the 
predictive power of the model, the approach is constrained by several doubts: first is the possibility 
of a declining relationship between predictors and rainfall from low to finer resolution scales, and 
second is whether the high predictive power agreed with the physics of the rainfall-environmental 
perspectives [11- 13]. Merging the rain gauge data to downscale the satellite precipitation in the 
tropics is useful, such as the process done by [14]. However, their method did not improved the 
spatial resolution of the precipitation. Efforts by [15] in applying the fractal downscaling is effective, 
but limited by the real-time support of wind and other meteorological data through complex processes. 
Therefore, an alternative initiative for an effective, operational, and less complex transformation of the 
satellite spatial downscaling in humid tropics is required.

The proxy variable in humid tropics should be one that influences rainfall patterns and, most 
importantly, one for which the surrogate data is available at a higher resolution than the satellite 
precipitation (<0.1°). Anders and Nesbitt [16] highlighted significant variables that influenced the 
satellite precipitation gradient in the tropics. On a local scale, precipitation was influenced by 
hydro-meteorological variables, namely prevailing winds, atmospheric moisture, and convective 
mode. Another important criteria for the spatial downscaling method is the operational aspect. 
Most of the satellite precipitation spatial downscaling models were developed based on the single 
or multivariate relationship over specific times and conditions; therefore, downscaling of the future 
satellite data requires the recalibration or redevelopment of the model, because either the predictor or 
the rainfall itself might change and influence the predictive power of the regression model (e.g., [8,15]).

Rainfall distribution in the tropics is closely associated with water vapor [17] and monsoons [18]. 
However, the high resolution data for water vapor is not available regularly, and therefore not suitable 
to be used as proxy downscaling variable. The Asian monsoon season contributed significantly to 
the variation in local rainfall in many tropical regions of Southeast Asia [19- 21]. The seasonal rainfall 
pattern is found to be less variable on a local scale, and exhibits specific local zoning [21- 23]. Using 
the ratio product between the satellite precipitation and the corresponding rain gauge to calibrate the
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satellite precipitation is a well-developed approach in quantitative downscaling, and widely used in 
merging algorithms [24]. Theoretically, if the rainfall pattern was historically consistent over space and 
time, the ratio between the satellite and the rain gauge should follow a similar trend. We could expand 
this concept to developing a spatial downscaling method that is suitable for the humid tropics.

It is our aim to produce high-resolution satellite precipitation data by two process: first, by 
re-gridding the raw satellite precipitation data; and second, by recalculating the values of each pixel 
using the historical satellite-rain gauge ratio value. The appropriately high resolution would depend 
on two main factors: the density of rain gauges and the desired scale. For humid tropics, the challenge 
is to model atmospheric and hydro-meteorological variables at a mesoscale resolution (2-20 km) or 
lower [25,26]. We hypothesized that in humid tropical regions of low seasonal rainfall variability, 
the bias ratio between the previous satellite and ground measurements is consistent, and therefore 
can be used as a coefficient to estimate the accurate rainfall values of the future satellite precipitation 
datasets. If the site-specific coefficient were available at a smaller grid, a fine-scale estimation of the 
satellite precipitation would be achievable.

Based on the above-mentioned concept and hypothesis, we attempted to conduct an experiment. 
To test this hypothesis, Peninsular Malaysia was selected as an experimental site, because the coefficient 
of variance (COV) for seasonal precipitation is low [27]. The experiment has two main objectives: 
(1) Derive the site-specific coefficient (SSC) for each individual pixel, using the average bias ratio 
between the high-resolution ground rainfall data and re-gridded satellite rainfall data; and (2) validate 
the SSC to produce high-resolution precipitation maps. The proposed downscaling algorithm can be 
used to create high-resolution precipitation maps in the highly dynamic hydro-meteorological status 
quo of humid tropics, with less complex computation and more reliable results.

2. Materials and Methods

2.1. Study Site

Peninsular Malaysia (99.7-104.5° E, 1.3-6.8° N) is located in the western part of Malaysia 
(Figure 1a). It has a population of 18 million and an area of ~132,000 km2. The general land cover is 
agricultural (52%), forest (22%), and built-up areas (26%) [28]. The climate is that of a tropical rainforest, 
with temperatures ranging from 24 °C to 32 °C and an annual rainfall of 2500 mm. The rainfall 
distribution pattern over Peninsular Malaysia is strongly influenced by seasonal monsoons, and the 
area is classified into five local climate regions: northwest, east, west, southwest, and highland (>400 m 
above sea level) (Figure 2) [27]. There are two distinct wet seasons: one from November to February, 
during which the northeast monsoon (NEM) produces heavy rainfall in the eastern region (Figure 1b); 
and the other from M ay until mid-September, when the southwest monsoon (SWM) affects areas in 
the west and southwest regions (Figure 1d). The northwest, west, and southwest regions experience 
two annual wet seasons, from mid-March until May (IM1) (Figure 1c), and from mid-September until 
August (IM2) [21,27]. Both of these seasons occur during the inter-monsoon periods between the 
NEM and SWM seasons. Substantial rainfall occurs during the inter-monsoon periods, because of the 
directional wind change and effects of the local topography.
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Figure 1. Peninsular Malaysia and its seasonal rainfall variation.

Figure 2. Rain gauge distribution in Peninsula M alaysia and rainfall zones (based on seasonal 
and intensity).
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2.2. Data

2.2.1. Tropical Rainfall Measuring Mission Satellite Data

The Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) 
data product, which provides rainfall estimates from multiple satellites and other sources, was selected 
for this study. The TRMM satellite orbits the Earth at an altitude of 402 km, carrying three primary 
sensors, including precipitation radar (PR), a TRMM microwave imager (TMI), and a visible and 
infrared scanner (VIRS). The PR sensor is designed to provide detailed vertical distribution of radar 
reflectivity related to the amount of precipitation inside the system. The TMI sensor measures the 
vertically-integrated ice and water path, and the VIRS provides information on cloud-top temperatures 
and reflectance. Using the fundamental concept of precipitation and radar reflectivity, the rain rate 
is estimated. A  general description of the data product, including algorithms and other parameters, 
can be found in the TRMM instruction manual (2005 and 2011).

Precipitation data products from the TRMM satellite were used because they provide frequent, 
current, and consistent data (scaling from three hourly to monthly readings) with high spatial resolution 
(0.25), and because the data are publicly available. The high spatial and temporal resolution satisfies 
the requirement of primary inputs for hydrological modelling and spatial analysis. The data were 
downloaded from the official website of the National Aeronautics and Space Administration (NASA), 
with the collaboration of the Japanese Aerospace Exploration Agency (JAXA). The rainfall data can 
be accessed from the following link (http://daac.gsfc.nasa.gov/data/datapool/TRMM/01_Data_ 
Products/02_Gridded/index.html). The TMPA data for Peninsular Malaysia were extracted using the 
corresponding global coordinates for this region.

2.2.2. Rain Gauge Data

A total of 984 rain gauges, covering the entire Malaysia peninsula from 1998 (prior to the 
availability of the TRMM data) to 2011, were collected from the Malaysian Department of Irrigation 
and Drainage (Figure 2 ). Rain gauge measurements were conducted on a daily basis with a 24 h 
observation period, beginning and ending each day at 8:00 a.m. Then, the daily rainfall measurements 
were summed over one month to produce monthly rainfall data. After that, these data and their 
corresponding geographical coordinates were exported into a geographic information system (GIS) in 
shapefile format.

2.3. Downscaling Tropical Rainfall Measuring Mission Data Using the Seasonal Site-Specific Coefficient

2.3.1. Phase 1: Preparation of the High-Resolution Precipitation Data for Coefficient Derivation

Monthly areal precipitation at 0.05° resolution was generated using the dense rain gauge network 
and the universal co-kriging interpolation method in the ArcGIS software package (Esri, Redlands, 
CA, USA). Meanwhile, the satellite precipitation data was re-gridded from the original 0.25° resolution 
to a resolution of 0.05°, though within this new fine resolution grid (0.05°), the original precipitation 
value of the TRMM data was retained. For further understanding of this process, an illustration has 
been provided (Figure 3a). Two types of areal precipitation datasets were produced: the first is from 
the satellite; while the second is from the ground rain gauges, where both have an identical 0.05° grid. 
This process was done to the dataset from 1998 to 2008.

http://daac.gsfc.nasa.gov/data/datapool/TRMM/01_Data_Products/02_Gridded/index.html
http://daac.gsfc.nasa.gov/data/datapool/TRMM/01_Data_Products/02_Gridded/index.html
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Figure 3. (a) Overall methodology. (b) Methodological flowchart of the spatial downscaling process- 
generating the high resolution precipitation data.

2.3.2. Phase 2: Deriving the Seasonal Site-Specific Coefficient

By using the input from phase 1, the SSC was derived through two fundamental steps. First, 
the re-gridded satellite precipitation data were divided by the ground precipitation. This process was 
performed at monthly scale. Prior to this process, new images were produced, where each pixel has a 
specific monthly bias ratio value. This was done for the dataset from 1998-2008. The second step was 
to calculate the average bias ratio for each pixel. The outcome of this process is known as the seasonal 
coefficient, or SSC. In total, there were 12 unique coefficient images, each representing the monthly 
basis downscale coefficient from January to December. Equation (1) shows the SSC-downscaled 
precipitation calculation, and Figure 3 illustrates the process (Phase 2).
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(1)

(2)

where Sat is the satellite precipitation data, Rg is the areal ground precipitation data, DSat and 
RSat are the downscale and raw re-gridded precipitation values, respectively, and i  and j are the 
pixel coordinates.

Site-Specific Coefficient

The next step of the downscaling process is to apply the derived SSC to an independent dataset 
from 2009-2011. The satellite precipitation data was re-gridded from 0.25° to 0.05°. Subsequently, 
each pixel value for the re-gridded raw TRMM data (0.05°) was divided by the corresponding SSC 
derived in phase 2. An SSC value of 1.0 represents a perfect condition where no modification occurs. 
Meanwhile, an SSC value greater than 1.0 indicated an overestimate, and vice versa. Equations (1) 
and (2), as well as Figure 3 (phase 3), summarize the process of the SSC derivation and downscale 
process, respectively.

2.3.4. Phase 4: Accuracy Validation

To verify the performance of the SSC-downscale procedures, four indicators were used on their 
respective products, generated in phase 3. The first two indicators were the bias ratio reduction capacity 
and root mean square error (RMSE) between the precipitation product from the SSC-downscaled data 
and the interpolated rain gauges. To determine the quality of the SSC-downscaled products, we first 
computed the bias ratio reduction, which is the percent difference between the average bias ratios of the 
direct re-gridded raw TRMM data against that of the downscaled product. High bias ratio reduction 
capacity (~100%) indicated good quality (low bias), and vice versa. In addition, the coefficient of 
variance (COV) for the bias ratio was computed to examine whether the bias records were developed 
under low seasonal variance. Equation (3) shows the calculation for the bias ratio reduction capacity.

where RSat is the average of the directly re-gridded satellite precipitation data, DSat is the average 
SSC-based downscale precipitation, Si is the satellite precipitation, and Gi is the rain gauge 
measurement. RMSE was computed for two measurement pairs: downscale rainfall vs rain gauge, 
and raw rainfall vs rain gauge.

The third indicator was the bias ratio comparison to other gridded precipitation data products, 
measured either by satellite or rain gauge interpolation, or also by hybrids that are publicly available. 
This was carried out to determine the relative performance of the highest resolution of SSC-downscaled 
precipitation data upon other data products. Our expectation was that the SSC-downscaled should 
perform better than other products, or at least have comparable performance. Statistically, a small bias 
ratio was taken to indicate the spatial predictive increment after the downscaling process.

There were six gridded precipitation data products that were taken into account: (1) Global 
Satellite Mapping of Precipitation (GsMAP), (2) Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Networks (PERSIANN), (3) CPC Morphing precipitation product 
(CMORPH), (4) CPC Unified Gauge-Based Analysis of Daily Precipitation (CPC), (5) CPC Merged

2.3.3. Phase 3: Downscaling the Tropical Rainfall Measuring Mission Satellite Data Using the

BR Capacity Bias ratioRSat -  Bias ratio-DSat x 100% (3)
Bias ratioRSat

RM SE (4)
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Analysis Precipitation (CMAP) data, and (6) Global Precipitation Climatology Project (GPCP) 
precipitation data.

The GSMaP Project was sponsored by Japan Science and Technology— Core Research for 
Evolutional Science and Technology (JST-CREST) and is promoted by the JAXA Precipitation 
Measuring Mission (PMM) Science Team. The GsMAP products currently provide 0.1° resolution 
data, which is distributed by the Earth Observation Research Center, Japan Aerospace Exploration 
Agency [29]. The PERSIANN product, produced by the Center for Hydrometeorology and Remote 
Sensing (CHRS) at the University of California, uses neural network function classification procedures 
to compute an estimate of rainfall rate at 0.25° x 0.25° for each pixel of the infrared brightness 
temperature image provided by geostationary satellites [30]. Gridded precipitation numbers three 
to five were different types of products produced by the NOAA Climate Prediction Center, using 
various types of data and processing methods. The CPC product utilized the optimal interpolation 
(OI) objective analysis technique [31] provided by the NOAA Climate Prediction Center. Meanwhile, 
the CMORPH product produces high spatial and temporal resolution global precipitation estimates 
from passive microwave and infrared data. Morphing technique refers to the process of performing a 
time-weighting interpolation between multi-temporal, microwave-derived precipitation at a given 
location. Details about the morphing process can be found in [32]. Another product, CMAP, is a global 
precipitation product that merged precipitation estimates from several satellite-based algorithms and 
rain gauges. The creators of CMAP used the merging technique of reducing random error [33] and 
blending [34] . The last product, GPCP, eventually utilized a similar input, but with different merging 
techniques [24].

The fourth indicator was Moran's I. It was used to determine the qualitative performance of the 
downscaled result. M oran's I was able to define the rainfall pattern, and was reliable to be used in 
hydrology (e.g., [35]). The idea is that the pattern of the downscaled precipitation should more closely 
resemble the ground areal rainfall pattern. Therefore, the difference of the M oran's I values between 
the downscaled and ground areal rainfall should be small compared to those of the non-downscaled 
values. We computed the value based on monsoon preferences, because the rainfall patterns were 
strongly influenced by that factor. The corresponding equations [36] are shown below:

T n E U  E 5 L1 w i,j z iz j
I  =  ------c r n z 2------ (5)So E i=1 z i

n n

So =  E E  w i,j (6)
i=1 j=1

where zi is the rainfall value deviation from its mean, w i,j is the spatial weight between rainfall at i and 
j location, n is the total samples, and So is the aggregate of all the weights.

2.4. Determining the Effect o f Interpolation to the Gridded Areal Ground Rainfall

To evaluate the effects of the interpolation process to the gridded site-specific coefficient, as well 
as the areal rainfall, k-fold cross-validation analysis was conducted. We applied the holdout method, 
which is based on separating the data into two sets: one is used for training and the other for testing. 
Prior to that, the rain gauge data was divided into two datasets. The samples for testing and validation 
were divided to be 60 and 40%, respectively. This is to ensure that there were a balanced number of 
samples between testing and validation, and also adequate samples to cover the whole study area [37] . 
A well-distributed selection was made to ensure the equivalent spatial coverage for both datasets. 
Two indicators were computed: the mean average error, known as root mean square error (RMSE); 
and the datasets' corresponding percentage against the average rainfall. We justified that the effect 
should be small and not affect the entire downscaling quality (<10%) [38].
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3. Results

3.1. Performance o f  the Site-Specific Coefficient Tropical Rainfall Measuring Mission Downscaled Precipitation

(a) Quantitative Assessment

The three-year average showed that the SSC-TRMM downscaled precipitation had a lower bias 
ratio compared to the raw TRMM precipitation products over all hydro-climate regions (Table 1). 
The bias ratio reduction capacity is an indicator quantifying the effectiveness of the downscaling 
method in reducing bias, and represents high similarity value with the ground reference value, which 
had an average score of 54%. The greatest improvement was identified in the northwest, with a 
94% bias reduction. Meanwhile, continuous performance over time showed that the downscaled 
precipitation data scored a lower RMSE compared to the raw precipitation data (Figure 4a-e). However, 
there was a slight decrease of the correlation between the downscaled precipitation data against the 
ground rainfall data. Nonetheless, it can be justified to be a very minimal effect. Hence, it can be 
considered as a positive trade-off, because the downscaled precipitation had improved the data's 
overall quality. The spatial refinement of factor five (from 0.25° to 0.05°) resulted in a remarkable 
improvement of the rainfall predictions, as indicated by a reduction in bias ratio of 54% and an RMSE 
of 40%.

Table 1. Bias ratio com parison betw een raw Tropical Rainfall M easuring M ission (TRMM) data and 
site-specific coefficient (SSC)-downscaled product.

Region
2009 

Raw SSC
2010 

Raw SSC
2011 

Raw SSC
Average Bias Ratio 

Reduction Capacity (%)
Average SSC 

Ratio *

Northwest 3.14 2.01 3.59 1.52 2.70 1.30 94 1.6
East 2.70 1.70 1.60 1.03 1.34 0.86 49 1.2
West 1.28 0.83 1.39 0.85 1.35 0.84 53 0.8

Southwest 1.45 1.09 2.16 1.57 1.72 1.31 31 1.3
Highland 1.04 0.97 1.43 0.91 1.35 0.85 41 0.9

* 1.0 is perfect ratio, >1.0 is a satellite overestimate, <1.0 is a satellite underestimate. The numbers in italics represent 
underestimate cases.

(b) Qualitative Assessment

From the qualitative perspective, a visual assessment showed that the spatial pattern of the 
SSC-downscaled precipitation more closely resembled the ground rainfall (Figure 5). This was 
statistically proven, where the differences between the Moran's I value of the downscaled precipitation 
and rain gauge-interpolated rainfall surfaces was getting smaller (Table 2). The corresponding average 
difference was 2%. Meanwhile, the average difference was 6% for the raw TRMM precipitation vs 
rain gauge-interpolated precipitation. These findings clarified that qualitatively, the SSC-downscaled 
precipitation was effective in depicting the actual rainfall on the ground compared to the raw version of 
the TRMM precipitation. Combining the results from quantitative and qualitative assessment showed 
that the overall SSC-downscaled precipitation results were able to precisely depict the actual ground 
rainfall over continuous spatial dimension and time, with a trade-off in decreased monthly correlation.
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Figure 4. Time series between the ground areal rainfall, raw TRMM, and the SSC-downscale product 
from 2009-2011.

Table 2. Spatial autocorrelation of Moran's I value (transformed into a Z-score) of the interpolated rain 
gauge data (reference), raw TRMM, and the downscaled TRMM data.

Monsoon
Season

Rain
Gauge-Interpolated (a)

SSC-Downscale 
TRMM (b)

Raw TRMM 
(c)

Differences (%) 

(||a — by/a) X 100 (||a — c| /a) X 100

NEM 36.75 35.35 37.22 3.8 1.3
IM1 33.80 33.49 36.14 0.9 6.9

SWM 33.81 33.50 31.44 0.9 7.0
IM2 34.73 33.49 30.74 3.6 11.5
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interpolated TRM M
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Figure 5. Seasonal rainfall maps of Peninsular Malaysia, from the interpolated rain gauge, site-specific 
coefficient-downscaled TRMM product, and raw TRMM product.

3.2. Coefficient o f  Variance o f Historical Bias Ratio Records and Downscaling Performance

Hypothetically, the COV of the bias ratio records, which were the basis of the downscaling 
coefficient, should have a low variance (<35%). This 35% threshold as borrowed from [27], who 
used this value to classify the local hydro-climatic zone over the Malaysian peninsula. The regional 
average COV between the satellite and ground rainfall data was 37%, slightly higher than the preferred 
threshold. Nevertheless, this value was contributed by the large COV in the northwest (54%), while the 
other regions had relatively lower COV values (east: 34%; west: 34%; southwest: 31%; highland: 36%). 
One significant observation was that the COV was higher during the dry season, which takes place in 
February, in all regions (Figure 6). This finding showed that most of the downscaling coefficient was



Water 2018,10,409 13 of 19

derived under a low-variance bias (<35%), except in February. Nevertheless, we found no evidence or 
trend that related the low-variance condition of the downscaling coefficient and the effectiveness of 
the result. Therefore, the results of the lower bias might be achieved due to the site-specific coefficient, 
which minimized the bias in a robust fashion.

Figure 6. Coefficient of variance of the historical bias record, from the satellite and ground areal rainfall. 
The red line represents 35%, the threshold value for low variance.
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3.3. Comparison o f  the Site-Specific Coefficient-Downscale and Other Satellite Precipitation Products

Discrete rain gauge comparison between the other satellite precipitation products were conducted, 
in order to determine the relative effectiveness of the SSC-downscaled precipitation. At the peninsular 
scale, the SSC-TRMM downscaled precipitation had a lower bias ratio than the other satellite 
precipitation products (Table 3). Only in the northwest and southwest did the GsMAP outperform 
the SSC-downscaled precipitation. However, the resolution of the GsMAP was relatively coarser 
(0.1°). We also found that the higher resolution of the SSC-TRMM-downscaled precipitation (<0.05°) 
was relatively better for depicting the local spatial rainfall in the western region, where many other 
precipitation products had failed to represent it.

Table 3. Comparison between the SSC-downscale product and other satellite precipitation products. 
N represents northwest, E is east, W  is west, S is southwest, and H is highland.

Satellite Precipitation Products * Grid Size (Deg.)
Ratio

N E W S H

TRMM V7— SSC 0.05 2.2 0.9 0.8 1.5 0.8
GsMAP 0.10 1.5 1.4 19.8 0.9 1.0

PERSIANN 0.25 15.0 1.8 43.5 1.9 1.4
CMORPH 0.25 10.6 1.8 20.5 2.0 1.3

CPC 0.50 21.0 1.9 23.7 1.4 0.8
GPCP 1.00 27.0 25.0 24.0 24.0 23.0
CMAP 2.50 15.0 1.8 43.5 1.9 1.4

* GsMAP: Global Satellite Mapping of Precipitation, PERSIANN: Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Networks, CMORPH: CPC Morphing Technique, CPC: Climate Prediction 
Centre Precipitation, GPCP: Global Precipitation Climatology Project, CMAP: CPC Merged Analysis of Precipitation.

3.4. Effects o f the Interpolation Process

The cross-validation results showed that the interpolation scheme on both the SSC (Table 4) and 
ground areal rainfall were small (<10%) (Table 5). The very densely- and well-distributed samples 
could be the reason. A minor variation was found, where a higher error was indicated as rainfall 
intensity increased in specific monsoons. This minor effect was identified for interpolated ground 
rainfall. Nonetheless, we assumed that the interpolation process did not influence the results.

Table 4. Cross-validation analysis of the interpolated data. This evaluates the effect of interpolation to 
the derived site-specific coefficient. Zero percentage means that the interpolation has no effect to the 
value of the coefficient.

M onsoon Season
Cross-Validation M etrics

MPE (%)

NEM (November-January) 5
IM1 (M arch-April) 3

SWM (May-August) 3
IM2 (September-October) 4

Average 4
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Table 5. Ground areal rainfall (2009-2011). This result determines the effects of interpolation process to 
the ground areal rainfall, w hich was used in verifying the downscaled rainfall data from 2009-2011. 
Zero percentage of mean percentage error (MPE) means the interpolation process had no effect. RMSE 
is used in determining the quantitative effect of the interpolation in a standard unit (millimeters).

M onsoon Season
Cross-Validation M etrics

Average Ground R ainfall (mm)
RM SE (mm) MPE (%)

NEM (November-January) 24 13 200
IM1 (M arch-April) 13 8 115

SWM (May-August) 11 9 118
IM2 (September-October) 21 10 176

Average 17 10 152

4. Discussion

The use of the SSC-downscaling method was able to produce a high-resolution precipitation map 
(0.05°) with improved quantitative accuracy. In addition, it was effective in spatially downscaling 
the future dataset without the input from rain gauges. Most of the present or previous merging, 
or other spatial resolution improvement methods, require multi-dataset or the ground in-situ 
preferences' surrogate information [5,6,24,32]. In the context of a tropical region, our results had 
a better performance compared to the downscaling based on multivariate regression done by [12] 
in mountainous, coastal, and forested environments. On the other hand, although our results' 
performance slightly underachieved in using the super ensemble method developed by Yatagai et al. 
(2014), we successfully produced higher-resolution precipitation data. Furthermore, our computation 
was less complex, and fewer input variables were required. Therefore, we can conclude that 
incorporating a dense rain gauge network [39], as well as monsoon rainfall seasonality and variability 
proved to be the effective in robustly downscaling satellite precipitation for various environmental 
contexts in the humid tropics.

Prior to positive results, this technique can be useful to the humid tropical regions, which have 
small land-sea ratio, many islands, and highly-variable seasonal rainfall patterns. Those characteristics 
are common and significant, especially for many areas in Southeast Asia [2,40,41]. It is also one of the 
regions in the world that receives large rainfall excess with high intensity [42], and is prone to extreme 
rainfall events [43]. The availability of high-resolution precipitation information would be significant 
for understanding the dynamics of tropical rainfall at a microscale.

In addition, smaller tropical catchment or sub-basin hydrology modelling from space will be 
possible. Current satellite precipitation data had limitations to representing the catchment scale 
rainfall, due to coarse resolution [2,44]. From a water resources perspective, with the availability of the 
global data, many humid tropical catchments for important reservoirs were categorized as smaller 
catchments (<10 km2) [45]. They were located in thick, remote, and mountainous tropical forests, 
which are difficult to access. Utilizing an operational infrastructure could be expensive and laborious. 
Literature had showed that a substantial number of them were inadequately monitored and require 
support mechanisms [46,47] .

Another positive implication of the downscaling method is the opportunity to develop 
higher-resolution historical tropical precipitation data from satellite datasets. This was a critical 
parameter that was missing from precise regional climate modelling, which is the primary domain 
of future climate and environmental sustainability efforts [25]. There were substantial amounts of 
coarse-resolution satellite precipitation data before TRMM, especially from the early METEOSAT 
missions [48- 50]. Performing our SSC-downscaling technique to those datasets is plausible, under the 
condition that the site-specific coefficient should be derived first.

Despite the promising outcomes of this study, there were a few limitations. First was the 
requirement of a large rain gauge dataset. Because the downscaling coefficient was eventually derived
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by correcting the bias factors at a smaller grid, it is necessary to have as large a rain gauge network 
as possible. This could be a limitation for hydrological data conflict areas (HDCS). An HDCS is an 
area which has experienced one or more of these conflicts: sparse rain gauges, missing rain gauge 
data, inefficient data sharing policies, or ineffective data management. The second limitation was 
whether the downscaling coefficient could be used for other satellite precipitation data besides TRMM. 
Hypothetically, it can be used, but a further investigation is needed.

The third limitation is that there was emerging evidence on the change in seasonal monsoon 
rainfall patterns, due namely to an external factor: El Nino Southern Oscillation (ENSO) [22,51,52]. 
This effect, however, was neglected in our study, due to lack of ENSO data at local scale. The final 
limitation was the effect of decreasing temporal correlation after the downscaling process. It was 
believed to be caused by the high-resolution output grid. Because the original TRMM gridded data 
was coarse, it tended to homogenize the local rainfall pattern. Therefore, as the grid was transformed 
to be smaller, the high heterogeneity of local rainfall patterns appeared. This effect, however, was 
minimal, and did not affect the output performance.

Anticipating the second and third limitations by testing the usability of the coefficient on other 
satellite precipitation data, and excluding samples that affected by ENSO, could be future work in to 
improve this study. In an effort to further localize the satellite precipitation data, utilizing the role of 
topographic control as a proxy variable is promising. This is especially true for high-altitude regions in 
the tropics. In addition, experimenting with the similar downscaling procedures at a higher temporal 
scale (i.e., weekly) could be worthwhile, because the rainfall in humid tropics is highly dynamic.

5. Conclusions

We tested the hypothesis that higher-resolution data on historical bias records for low-variance 
seasonal monsoon rainfall can be used to spatially downscale TRMM satellite precipitation data. 
The use of the site-specific coefficient successfully transformed the initial TRMM satellite precipitation 
data resolution from 0.25° to 0.05°, with smaller errors and increased similarity with the ground rainfall 
pattern. With the availability of the SSC, the downscaling of the future satellite precipitation data can 
be done without any ground reference or rain gauge data. However, it caused a small decline in the 
temporal correlation. The simplistic and effective procedure described in this study can be applied to 
spatially downscale satellite precipitation data in regions with low variability in seasonal rainfall in 
the humid tropics.
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