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Abstract: Partial discharges (PDs) are one of the most important classes of ageing processes that
occur within electrical insulation. PD detection is a standardized technique to qualify the state of the
insulation in electric assets such as machines and power cables. Generally, the classical phase-resolved
partial discharge (PRPD) patterns are used to perform the identification of the type of PD source when
they are related to a specific degradation process and when the electrical noise level is low compared
to the magnitudes of the PD signals. However, in practical applications such as measurements carried
out in the field or in industrial environments, several PD sources and large noise signals are usually
present simultaneously. In this study, three different inductive sensors have been used to evaluate
and compare their performance in the detection and separation of multiple PD sources by applying
the chromatic technique to each of the measured signals.

Keywords: partial discharges (PDs); inductive sensors; chromatic technique; condition monitoring;
electrical insulation condition

1. Introduction

Under normal operating conditions, insulation systems of high voltage electrical equipment
are constantly subjected to multiple mechanical, electrical, thermal, and environmental stresses [1,2].
Although these stresses do not produce immediate failures on insulation, over time, a slow but effective
aging of the material is initiated, due to the appearance of a series of degradation processes such as
decomposition, erosion, oxidation, hydrolysis, chemical attack, mechanical creep, tracking, treeing,
cracking, pitting, or dry-band arcing, among others, eventually leading to the loss of the insulating
properties of the material until, finally, complete electric asset failure occurs [3–5]. In pre-failure stages,
it is common to find small displacements of charge or ionization phenomena of very low energy and
short duration inside the insulation or on the insulation surface. These ionizations are known as PD
and can be considered as an important indicator when characterizing the state of the insulation of a
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machine or equipment [6–9]. According to their nature, PD can be divided into three types: internal,
superficial, and corona; this distinction is important since not all sources of PD are equally harmful to
electrical equipment. As documented in numerous studies [7,10,11], each PD type can contribute to
the degradation of an insulation system in different ways. However, internal PDs are considered the
most harmful sources, since they occur inside the insulation and, if not detected in time, irreversible
damage can lead to catastrophic failures.

In this context, the development of PD diagnosis has received an increasing amount of attention in
recent decades so that unexpected failures in high voltage equipment might be avoided. Both industry
and science seek to develop monitoring systems that guarantee reliable operation and, at the same
time, reduced maintenance costs. Therefore, PD measurement systems must be capable of detecting all
types of PD sources; otherwise, measurement may not yield correct diagnoses of power equipment.

Traditionally, the identification of the PD source type is carried out through so-called
phase-resolved partial discharge (PRPD) patterns [12,13]. These patterns represent the PD activity
with the applied voltage, where all the PD sources can exhibit a specific PRPD pattern that makes it
clearly identifiable. Unfortunately, in practical applications, such as measurements made in the field or
in industrial environments, it is very difficult to find or capture a single type of source, so identification
cannot be achieved directly from the PRPD patterns acquired during the test. This happens because
the PRPD patterns are usually complex and can be formed by more than one type of source acting
simultaneously, in addition to the presence of pulses of great amplitude without phase correlation
associated with electrical noise, which can hide or mask other sources [14]. As a consequence, the
identification of PD sources through the PRPD plots under these circumstances becomes practically
impossible for an operator or any intelligent identification system.

Regarding PD source separation, several studies have indicated [15–17] that, in order to improve
the identification process, it is necessary to incorporate a separation step that allows different PD
sources to be properly separated and grouped, so that the sources can be analyzed individually and
displayed in their respective PRPD pattern. This separation step can be taken by dividing the complex
PRPD pattern into different sub-patterns, where each is associated with a specific PD source. The above
procedure can be implemented in a more effective way if high bandwidth instrumentation systems
based on sensors that can be easily coupled with standard detection circuits are used [18–20]. The main
advantage of using this type of sensor is that they allow for the capture of all of the information of the
signal, which is used to identify a number of characteristic parameters (in temporal and frequency
domain) for the sources obtained, which may also serve for the subsequent separation step [21].

In this sense, the chromatic technique, presented initially in [22], can generate different signatures
for all types of PD by calculating three different parameters: signal energy (Eb), characteristic angular
frequency (ωc), and signal equivalent bandwidth (B). Other studies based on this technique have
allowed for characterization in a separation map, radio frequency emissions from surface PD sources,
internal PD, and noise, which were captured with a log-periodic antenna [23]. However, this study had
its limitations. First, due to the type of antenna used, it was not possible to characterize corona activity.
Second, as they were signals from antennas (radiated signals), the signal-to-noise ratio (SNR) was
high, which reduced the sensitivity of parameters used in the characterization of the sources. Third,
multiple PD sources were not characterized.

In this work, three inductive sensors commonly used in industrial and laboratory measurements
have been used: a high-frequency current transformer (HFCT), an inductive loop sensor (ILS), and a
Rogowski coil (RC). Their separation ability was evaluated and compared by the application of the
chromatic technique. This was carried out by calculating the values of Eb, ωc, and B for the PD
signals obtained from the sensors and determining the discrimination capability of those parameters.
As corona, surface, and internal PDs are common in power transformers, these types of PD sources
were selected in order to produce similar signals to those produced in practical applications.

This paper is divided into six sections. Sections 2 and 3 present the basic concepts of the inductive
sensors and the chromatic technique approach, respectively. The experimental setup is described in
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Section 4, and the results are discussed in Section 5. Finally, the conclusions of this work are presented
in Section 6.

2. Inductive Sensors for the Detection of PD

For the measurement of PD, different types of inductive sensors have been
implemented [14,16,21,24,25]. One of the main advantages of these sensors is that they do not
require galvanic contact with the system or equipment under test, so the acquisition procedure is
carried out without altering the measurement circuit. In general, these sensors can have bandwidths
of the order of MHz (depending on the materials used and their construction principle), which allows
them to be an adequate option when capturing all the information in time and in frequency of those
signals associated with PD or electrical noise.

The experiments described in this paper used a commercial HFCT, an ILS, and an RC.
These sensors were selected since their behavior and performance were characterized in previous
works [21,23–26]. In addition, the RC and ILS are easy to manufacture and are inexpensive, which
makes them widely used in industry and laboratory measurements [23–26]. The following are the
most important characteristics of these sensors:

• HFCT: A commercial sensor Clamp High-Frequency Current Transformer (model 30 mm of the
company Techimp-System) was used. This ferromagnetic core sensor has a sensitivity of about
25 dB and a bandwidth between 1 and 80 MHz [21]. Its dimensions are 72 × 97 × 35 mm,
the central hole being where the line that leads the pulses of the PD and the electrical noise of
30 mm is located (see Figure 1).

• ILS: The prototype used is the same one described in [21], which presents a derivative behavior
between 0 and 34.69 MHz, where it reaches a sensitivity of 17.5 dB. As expected, the sensitivity
of this sensor is much lower than the one obtained for the HFCT; this is due to its constructive
principle and the absence of ferromagnetic material, which increases the concentration of
magnetic flux.

• RC: As indicated in [24], this prototype has a sensitivity of approximately 12 dB; its behavior is
derivative between 0 and 9 MHz; however, for bands 9–60 MHz, the sensor output is proportional
to the measured signal. Among the three sensors, the RC has the lowest sensitivity.

Figure 1. Experimental setup and location of the three sensors to record the partial discharge
(PD) signals.

3. The Clustering Process Based on a Chromatic Technique Approach

This methodology provides a series of parameters that facilitate the extraction of information from
a complex group of signals whose characteristics cannot be easily identified. It has been demonstrated
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that this technique also enables, for some types of applications, the identification of the correlation
of the parameters that define the signals, determining if a group of signals can be identifiable from a
chromatic point of view [22,23,27–29].

According to this technique, the signal processing for their classification is carried out by means
of signal principal parameters. These parameters include energy content, average frequency, average
time, RMS bandwidth, and RMS duration. In this work, three of them are used in order to classify the
signals: signal energy (Eb), characteristic angular frequency (ωc), and signal equivalent bandwidth (B).
These parameters are described below.

Signal energy content (Eb) can be expressed as follows:

Eb =
∫
| f (t)|2dt =

1
2π

∫
| f (ω)|2dω (1)

Average frequency or characteristic angular frequency (ωc) can be expressed as follows:

ωc =

∫
ω|F(ω)|2dω

2πEb
(2)

Equivalent bandwidth (or RMS bandwidth, B) can be expressed as follows:

B =

√
1
Eb

∫
(ω−ωc)

2|F(ω)|2dω (3)

where F(ω) is the Fourier transform of f (t), ω is the angular frequency, and t is the time.

4. Experimental Setup

An NI-PXI-5124 system with a 200 MS/s sampling rate, 12 bits of vertical resolution and 150 MHz
of bandwidth was used for the acquisition, processing, and visualization of the data obtained from PD
activity and electrical noise.

According to what is shown in Figure 1, the information captured by the three sensors was sent
sequentially to one of the channels that has the PXI acquisition system (Channel 0). The measurement
procedure was carried out sequentially, since the system does not have three channels required for a
simultaneous connection of the three sensors. For this reason, once a stable PD activity was ensured on
the test object, each sensor was sequentially connected in the order HFCT, RC, and ILS. Additionally,
the synchronism signal (to the applied voltage frequency) was taken from the measurement impedance
Zm, in order to establish the phase of occurrence of the pulses with respect of the applied voltage.
The ambient conditions at the beginning of the tests were a temperature of 29 ◦C, a relative humidity of
43%, and an atmospheric pressure of 1019 mbar. These conditions did not change significantly during
the tests. The remaining part of the indirect measurement circuit used for the measurement process,
which is according to the IEC 60270 standard [12], is described below:

• a 10 kVA transformer that provides up to 100 kV to apply high voltage on each test object.
• a coupling capacitor Ck of 1 nF used as a low impedance path for high frequency currents. In this

way, the PD pulses cross the line where the three sensors described in Section 2 are connected.
• Test objects:

- a point–plane experimental test object (corona discharges): A tip connected to high voltage was
placed 5.5 cm above a grounded metal plane, obtaining the stable activity of corona PD.
Although the voltage levels applied to this test object in all experiments were completely
controlled, a thin layer of insulation was placed over the ground plane to avoid any
possible damage to the acquisition system, in case of a total breakdown of the air gap
between the tip and the plane.
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- ceramic bushing (surface discharges): This test object consisted of a bushing insulator made
of porcelain, commonly used in medium-voltage transformers. Additionally, this sample
was surface-contaminated with a 40% saline solution, in order to obtain PD on its surface.
A stable partial surface discharge activity was achieved applying high voltage between
the ends of the bushing through two cylindrical steel electrodes.

- sheets of NOMEX paper with cavity (internal discharges): For this test object, nine sheets of
NOMEX paper were stacked together, vacuum packed, and immersed in transformer
mineral oil between two electrodes subjected to high voltage. The three central sheets were
previously perforated with a needle 0.5 mm in diameter in order to obtain a cylindrical
vacuole that provided internal PD.

These test objects were selected in order to obtain PD sources similar to those produced in a
transformer and to evaluate the individual behavior of each PD source type when the chromatic
technique was applied to the signals recorded for each sensor.

The acquisition of the PD pulses was carried out in intervals of 20 ms in order to obtain the data
for an entire cycle of applied voltage. After acquisition, the PD or electrical noise pulses were separated
into time windows of 1 or 4 µs, so an individual analysis was guaranteed for all measured pulses.

After the measurements over the laboratory test samples were carried out, an oil-paper insulated
distribution transformer (300 kVA, 12/0.42 kV), affected by the internal PD in one of its windings
was used as an object to test the chromatic separation technique. Simultaneously, the point–plane
configuration was connected in parallel in order to obtain corona PD for the same voltage level.
Naturally, the acquired PD signal had an additional source corresponding to the electrical noise present
in the laboratory if a low trigger level was kept.

In the experimental measurements where only a single PD source was present, approximately 600
pulses were acquired. For the case where more than two sources were active, about 1500 pulses were
stored in order to obtain a more significant amount of data from a statistical point of view.

5. Measurements and Experimental Results

5.1. Electrical Noise Characterization

For the test objects described in Section 4, the acquisition of electrical noise in a shielded
high-voltage laboratory was carried out by applying a low trigger level in the PD acquisition system
and a low voltage (1 kV), to guarantee the sync signal needed to build the PRPD plots but without PD
activity. This procedure exclusively measured the electrical noise of the environment in the laboratory.

Trigger levels were established individually for each sample according to the SNR of each
sensor, in order to capture the maximum noise levels (see Table 1). When a lower trigger level
was used, the acquisition system tended to saturate due to the large number of pulses that can reach
the measurement channel.

Table 1. Trigger levels to characterize electrical noise.

Sensor Trigger Level (V)

HFCT 0.0021
ILS 0.0016
RC 0.0012

Figure 2 shows the results obtained by applying the chromatic technique whereby the noise
signals recorded in the different test objects are clustered and separated. Although the measurements
were made individually at different times, the results for the three test objects are represented in the
same map, in order to jointly analyze the behavior of the electrical noise captured in the different test
objects for each sensor.
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Figure 2. Representation of clusters associated with electrical noise for each sensor: (a) high-frequency
current transformer (HFCT); (b) inductive loop sensor (ILS); and (c) Rogowski coil (RC). Red dots:
point–plane; black circles: ceramic bushing; blue crosses: NOMEX.

Figure 2a shows the noise clusters that were obtained with the data recorded with the HFCT
sensor. In this figure, there is a clear overlap between clusters associated with electrical noise in ceramic
bushing (black circles) and sheets of NOMEX paper (blue crosses). However, the cluster of electrical
noise in the point–plane configuration (red dots) had a displacement in the ωc axis due to a lower
energy in the noise pulses recorded for this test object. Analyzing the signals measured with the other
two sensors, a similar behavior was also observed in each cluster. For both ILS (Figure 2b) and RC
(Figure 2c), the cluster associated with the electrical noise signals in the point–plane configuration
continued to maintain a low energy level, which caused this cluster to shift on the ωc axis with respect
to the other clusters. Like the signals captured with HFCT, the ILS concentrated in the same zone
the pulses of noise captured in the ceramic bushing and the insulation papers; however, for the RC,
a displacement in the equivalent bandwidth (B) of these sources was observed, which caused them to
be located in different areas, leaving the clusters in different zones.

In general, although it was the same source of noise, this variation in the position of the clusters
can be related to changes in the equivalent capacitance of the test object, the type of sensor (depending
on their frequency response and gain), and the total path traveled by the signals, all of which imposed
different spectral and temporal behavior to the signal when it reached the point where the sensor was
connected [16,21]. This approach explains why the same source of electrical noise captured by each
sensor resulted in a different location in the 3D map.

Figure 2 shows that the highest energy levels (Eb) were recorded by HFCT (up to 4 × 10−7 J),
followed by ILS (up to 2 × 10−7 J) and then by RC (up to 1.5 × 10−7 J). This behavior was in agreement
with the gain levels of the sensors shown in Section 2, the highest being from the HFCT (25 dB) and
the lowest being from the RC (12 dB).
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5.2. Partial Discharge Characterization

The PD activity was characterized in the test objects by applying a trigger level that was higher
than the noise level measured in the previous section. Subsequently, the voltage level was increased
until a stable PD activity was obtained. This measurement procedure guaranteed that only the pulses
associated with PD were captured in each experiment.

Table 2 shows the trigger and voltage levels used for these experiments. The results obtained in
terms of clustering are shown in Figure 3. Once again, for each sensor, the clusters are displayed in a
single map so that the behavior of each sensor for different PD sources can be analyzed.

Table 2. Trigger and voltage levels to characterize PD.

SETUP Voltage Level (kV) Trigger Level (V)
HFCT

Trigger Level (V)
ILS

Trigger Level (V)
RC

Point–plane setup 9
0.0134 0.0050 0.0038Ceramic bushing 13.5

Sheets of NOMEX 8.8

Figure 3. Representation of the clusters associated with PD for the three sensors: (a) HFCT; (b) ILS;
and (c) RC. Red dots: point–plane; black circles: ceramic bushing; blue crosses: NOMEX.

As shown in Figure 3, the signals captured with the sensors, for each one of the PD sources, took
different positions and forms in the 3D classification maps of the chromatic technique. This validated
that all types of PD sources analyzed here can exhibit a different behavior in function of the ωc, B,
and Eb parameters, facilitating the differentiation and separation of PD sources, even in the cases
where these sources act simultaneously during the process of acquisition. For the data captured with
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the HFCT (Figure 3a) and the ILS (Figure 3b), the separation between the clusters was much more
noticeable than for the data obtained with the RC (Figure 3c), since for this sensor a slight overlap
between clusters associated with PD corona (red dots) and surface PD (black circles) was observed.

In terms of dispersion, when comparing the three clusters obtained by the sensors, the cluster
associated with internal PD (blue crosses) had the largest variability in the axis associated with the
energy of the signals Eb, this variability being more noticeable for the ILS sensor (Figure 3b). Moreover,
it was observed that, according to the characteristics of the sensors in terms of gain, the signals captured
with the HFCT sensor had higher energy levels (up to 2.5 × 10−5 J) than those signals obtained with
the ILS sensor (up to 7.3 × 10−6 J) and the RC sensor (up to 1 × 10−6 J).

It should be noted that, for all sensors, the shape and location of the clusters associated with the
same source will not always be the same if any parameter of the measurement circuit, including the
equivalent capacitance of the test object or the type of sensor, varies during the acquisition. For example,
for the test object that created internal PD (sheets of NOMEX with cylindrical vacuole), when the size
of the vacuole increased or decreased, or when the number of sheets or the type of isolation were
changed, the cluster associated with this type of source had a different form and position in the map.
This behavior has been documented in our previous work [16], where the separation and clustering
techniques were based on the extraction of information from the spectral and temporal content of the
measured signals of PD and electrical noise. The variability in clusters due to possible changes in
the test objects or the measurement circuit itself confirmed that it is not possible to perform source
identification by simply evaluating the position or shape of a cluster in the separation map. However,
this situation does not affect the main contribution of this article, which is based on clustering and
separating sources of partial discharge by applying the chromatic technique, in order to improve the
subsequent identification process, either by an expert or by an intelligent identification system.

Evaluation of ωc, B, and Eb parameters for different types of PD: In order to evaluate which of the three
parameters used in the chromatic technique (ωc, B, and Eb) allowed a better characterization of the
type of PD source, the value of these parameters was obtained for all signals recorded with the three
sensors in each of the PD measurements. The results are shown in Figure 4.

In all the parameters, PD sources were represented with the same colors of Figure 3, aiming to
identify the degree of similarity and/or variability that each parameter had in relation to a specific PD
source type.

Figure 4a shows that the parameters ωc and B in the HFCT were those that best characterized
the type of PD source, besides presenting a lower variability in the values obtained in all PD pulses
(by obtaining low dispersion values in the parameters of the separation map, less dispersed clusters can
be achieved, facilitating the selection of the cluster when the representation of its PRPD is required for
the subsequent identification process). For the case of the parameter Eb, there was no clear difference
between the three types of PD sources.

A similar trend in the three parameters for ILS (Figure 4b) and RC (Figure 4c) was also obtained,
where Eb was the least representative parameter when the PD source was differentiated (in addition
to having the largest dispersion). Thus, the parameters ωc and B resulted to be better suited for the
characterization of PD source.

In order to confirm that ωc and B are sufficient for performing a correct separation among PD
sources, the same results shown previously in Figure 3 are depicted in a two-dimensional (2D) map
comprising only the variables ωc and B. Figure 5 shows the new 2D maps obtained.
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Figure 4. Parameters of the chromatic technique for each of the sensors for the recorded signals:
(a) HFCT; (b) ILS; and (c) RC. Corona PD (red), internal PD (blue), and surface PD (black).



Sensors 2018, 18, 1021 10 of 17

Figure 5. 2D representation (ωc − B) of the clusters associated with PD activity for each of the sensors.
HFCT (left); ILS (middle); and RC (right).

In these new 2D maps, it can also be clearly observed that different PD sources take different
positions, which indicates the presence of three different types of sources.

Two different classification options are represented in Figure 6: in (a) the 2D map Eb − B and in (b)
the Eb − ωc. The maps shown in this figure correspond to the data taken with the ILS sensor (similar
results were obtained with the RC and HFCT sensors). As expected, when the energy was used as a
variable in the separation map, an overlapping occurred that did not allow for a proper separation of
the different types of sources. This is evidenced in both maps: in Figure 6a, the clusters associated
with internal and surface PD are overlapped; a similar situation occurred for clusters associated with
corona and surface PD, as shown in Figure 6b. For the case of the signals captured with the other two
sensors, overlap was also found. As a conclusion, Eb was not a useful parameter for the clustering
process and therefore could be discarded in the analysis.

Figure 6. 2D Representation of the clusters associated with PD activity for the ILS sensor. (a) Eb − B and
(b) Eb − ωc. The highlighted areas point out the overlapping when the energy (Eb) is used as variable
in the maps.

5.3. Partial Discharge Source and Noise Characterization

In the results shown in the previous section, since the data were not taken simultaneously in
the same acquisition, it cannot be considered as a good indicator that the chromatic technique serves
to separate multiple sources acting at the same time into clusters. Accordingly, it was necessary to
carry out measurements of PD sources and/or electrical noise acting simultaneously to validate the
technique of clustering multiple PD sources. In this section, through the simultaneous acquisition of
multiple PD sources and electrical noise in environments and test objects not so controlled, attempts to
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evaluate whether or not the ωc and B parameters are indeed sufficient to make a correct separation
and, on the contrary, the energy of the signals becomes useful at separation are presented.

In order to simultaneously obtain sources of PD and electrical noise for the test objects, the voltage
levels of Table 2 were applied, while the trigger levels shown in Table 1 were maintained in the sensors.
Following this procedure during acquisition, the PXI acquisition system was forced to store sources of
noise and PD simultaneously. It is worth mentioning that, during the experiment, it was necessary to
keep an adequate trigger level to avoid the saturation of the acquisition channel with sources of noise,
which prevented the acquisition of higher amplitude sources associated with PD. The results obtained
for these experiments are shown in Figure 7.

Figure 7. Representation of the clusters associated with PD activity and electrical noise for the
three sensors using ωc, B, and Eb parameters: (a) HFCT; (b) ILS; and (c) RC. Corona+noise (red),
internal+noise (blue), and surface+noise (black). The highlighted clusters are associated with
electrical noise.

Figure 7 shows that the clusters associated with electrical noise (highlighted clusters) took different
positions with respect to the clusters of PD. These results confirmed that the technique allows for the
effective separation of the sources of PD from the sources associated with electrical noise. Likewise,
when clusters corresponding to electrical noise in each of the separation maps were evaluated, a much
lower dispersion was observed for this type of source compared to the dispersion obtained for clusters
associated with PD. This high dispersion in the PD cluster was much more noticeable in the Eb axis,
which coincides with the results obtained in Section 5.2, where the largest dispersion in the data
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recorded for the PD sources corresponded to the same variable. The behavior in the Eb dispersion for
the PD pulses can be explained by analyzing the PRPD patterns of this type of source. For example,
if the two PRPD patterns corresponding to the clusters of Figure 7a (right) (surface PD and noise)
captured with the HFCT are presented, it can be seen that the variability in the pulse amplitudes
associated with surface PD was considerable larger than the variability of the electrical noise (signals
without phase correlation), as shown in Figure 8. For this reason, when there is a high variability
in the value of the amplitudes of PD signals, the energy associated with these pulses also varies
proportionally (see Equation (1)).

Figure 8. Phase-resolved partial discharge (PRPD) patterns of surface PD (left) and electrical noise
(right) for the HFCT sensor.

For the case of the noise captured with the HFCT shown in Figure 7a (left), it can be inferred that
the low variability in noise clusters was not completely fulfilled. However, it should be noted that the
gain and bandwidth of this sensor is larger than the other two sensors (see Section 2). For this reason,
it is likely that, during the experiment, the HFCT sensor captured additional sources of electrical noise
from surrounding laboratories.

In general, when the behavior that the sensors presented using the chromatic technique for
separating the PD sources and electrical noise was analyzed, it was clear that there was an adequate
characterization of the two source types. For the case of corona PD and electrical noise, the HFCT
sensor obtained the lowest separation of the three sensors. When the case of internal PD and noise
was evaluated, the separation was similar for the three sensors but was slightly greater for the RC
sensor. Finally, for the case of surface PD and electrical noise, it can be considered that the separation
was notorious for all sensors since there were few diffuse discharges (signals that can contain spectral
components of noise and PD), and the two clusters were more clearly separated from each other.
On the other hand, when the position of the clusters of PD in Figure 7 was compared with the position
of the clusters that were obtained individually in Section 5.2 (see Figure 3), it can be inferred that the
PD sources take similar positions in the separation map, which is expected assuming that there were
no significant changes in the test objects and the measurement circuit did not suffer any significant
variation in the equivalent capacitance.

In Figure 9, the separation maps can be observed, but in this case the parameter associated with
the energy of the signals (Eb) is not considered. As in the previous section, using the two parameters ωc

and B, it was possible to identify the two sources associated with PD and electrical noise in a suitable
way for each sensor.
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Figure 9. Representation of the clusters associated with PD activity and electrical noise for the three
sensors using ωc and B parameters: (a) HFCT; (b) ILS; and (c) RC. Corona+noise (red), internal+noise
(blue), and surface+noise (black). The highlighted clusters are associated with electrical noise.

5.4. Partial Discharges in a Distribution Transformer, Corona and Electrical Noise Acting Simultaneously

In this section, the separation capacity of the chromatic technique in an electric asset was evaluated.
For this purpose, an oil-paper insulated three-phase transformer (300 kVA, 12/0.42 kV) was used
as test object, which had a stable internal PD activity when it was subjected to a voltage of 11.5 kV.
In addition, the point–plane configuration was adjusted with a 5 cm gap distance between the point
and the plane, and it was placed in parallel to the transformer, in order to simultaneously obtain the
corona PD. During the experiment, the trigger level in the acquisition system was set low, in order to
obtain a third source associated with electrical noise. This procedure guaranteed the simultaneous
presence of at least three different sources: the internal PD in the transformer, the corona PD, and the
electrical noise.

Finally, for these experiments, part of the shielding that was located on the walls of the laboratory,
which helps minimize the effect of external noise sources from other laboratories, was removed in
order to generate an environment similar to that found in a field condition, where different signals
(of large amplitude and of broad spectral content) can be coupled to the measurement line.

The results obtained for each sensor, using two and three separation parameters are shown in
Figure 10. The data recorded with the HFCT and the RC were those that better identified the presence
of more than one type of source, although not with the same definition as in the previous experiments,
where the test objects were laboratory-prepared and the noise level was lower. Figure 10a,c (left) show
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that it was possible to characterize the three types of expected sources using the three parameters of
the chromatic technique, the clustering ability being more noticeable for the sensor HFCT.

Figure 10. 3D and 2D maps obtained for simultaneous PD sources: internal PD in the transformer,
corona PD and electrical noise. (a) HFCT; (b) ILS; and (c) RC. The clusters associated with electrical
noise were shaded in red, the clusters associated with corona PD in gray, and the clusters associated
with internal PD in blue. Those clusters that could not be characterized are without color.

For the 2D maps formed with the parameters B and ωc (Figure 10a,c (middle)), the presence of
the three types of sources was also more noticeable for the HFCT sensor. In the case of the RC sensor,
the cloud of points associated with electrical noise and corona PD were scattered and tended to overlap
at the edge. When many more pulses were recorded during the acquisition, a single cluster could be
formed, which would not allow for correct identification of the three types of sources. For the data
recorded with the ILS (see Figure 10b), it was not possible to identify in any of the maps a separation
or characterization of the PD sources.

As these results show, a more hostile environment, with more noise sources and when using a
more complex test object, tends to disturb the signals that the sensors provide to the acquisition system.

One point to consider is that the ILS and RC sensors used in this work did not present any
shielding protection. For this reason, they were susceptible to the capture of unwanted signals that
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could be coupled at any point of the sensor. This phenomenon has already been documented in [24],
where the PD signals provided by sensors of this type in some cases had high additional spectral
content, associated with external signals of electrical noise. In the case of the HFCT sensor used, being
a commercial sensor already tested in industrial environments, its behavior was more robust, and it
was consequently less susceptible to external noise.

As in the previous experiments, for the data provided by the three sensors and when using the
parameters Eb − ωc in the visualization of the clusters (Figure 10a–c (right)), characterization of PD
sources and electrical noise was not achieved.

6. Conclusions

This article presents a comparison of three inductive sensors and their ability to identify and
separate different types of partial discharge using the chromatic technique. The separation of electrical
noise from PD signals and the classification of PD sources is the paramount importance for diagnostics
of electric power equipment and efficient asset management.

In general, the chromatic technique has demonstrated great potential for clustering and separating
sources of partial discharges and electrical noise captured by the HFCT, ILS, and RC sensors in
controlled environments and test objects, where noise sources were limited by shielding cages.
When more practical/industrial test environments and test objects were deployed, and the signal
acquisition included simultaneous PD sources, the ILS and RC sensors provided signals that were
more difficult to separate using the chromatic technique. The authors believe that, by improving the
design and construction of these sensors, the SNR and the results of the separation technique will be
also improved. For example, the ILS sensor could be shielded to be able to only capture signals at the
point where the sensor is coupled.

In most cases, the HFCT proved to be a more robust sensor against external disturbances, so it was
possible to obtain better characterization of the sources in both controlled and practical environments,
which evidences that this technique can be used to analyze the signals measured by this type of
inductive sensor.

When the three parameters (Eb ωc, and B) used in the chromatic technique for the different types
of sources of PD were evaluated individually, it was found that the parameter Eb did not provide
additional information in the characterization of this sources. In the case of internal and surface PD,
this parameter generated high dispersion, which caused the cluster to be scattered on the Eb axis of the
separation map. For this reason, the alternative of using the other two parameters (ωc and B) in a 2D
separation map was exploited, obtaining better results identifying the presence of different sources of
PD and electrical noise.

Although the Eb parameter was not effective in the classification process, the results cannot
be considered definitive; additional tests on other test objects are required in order to obtain
more conclusive results. In these additional tests, an acquisition system that allows simultaneous
measurement of the three sensors could be used and thus facilitate the measuring process and improve
the results comparison. Overall, the chromatic technique used here contributes to the separation of
noise from PD signals and to the classification of PD sources.
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