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Abstract

Spoken Language Identification (LID) is the process of determining and classifying natural

language from a given content and dataset. Typically, data must be processed to extract

useful features to perform LID. The extracting features for LID, based on literature, is a

mature process where the standard features for LID have already been developed using

Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian

Mixture Model (GMM) and ending with the i-vector based framework. However, the process

of learning based on extract features remains to be improved (i.e. optimised) to capture all

embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is

an effective learning model used to perform classification and regression analysis and is

extremely useful to train a single hidden layer neural network. Nevertheless, the learning

process of this model is not entirely effective (i.e. optimised) due to the random selection of

weights within the input hidden layer. In this study, the ELM is selected as a learning model

for LID based on standard feature extraction. One of the optimisation approaches of ELM,

the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and

improved by altering the selection phase of the optimisation process. The selection process

is performed incorporating both the Split-Ratio and K-Tournament methods, the improved

SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The

results are generated based on LID with the datasets created from eight different languages.

The results of the study showed excellent superiority relating to the performance of the

Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with

the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the

accuracy of SA-ELM LID of only 95.00%.
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1. Introduction

Language Identification (LID) is the process of determining and classifying a natural spoken

language from given content and datasets [1, 2]. It is undertaken by performing computational

linguistics approaches and applying many contexts. These contexts include; text categorisation

of a written text [3] or speech recognition of a recorded utterance [4] of a spoken identified

language. It is a challenging task because due to the variations in the type of speech input and

understanding how humans process and interpret speech in adverse conditions [5].

When using a LID system, several types of information are considered. Furthermore,

human understanding has inspired the classification of information, and several studies have

applied methods which people have used to differentiate languages, whether consciously or

not. A broad classification has been used to separate or split speech features into a low level

and a high level.

At the low level, most commonly used features for LID are acoustics, phonetics, phonotac-

tics and prosodic information while at the high level, LID can be established based on the mor-

phology and sentence syntax [6].

The acoustic features usually modelled by MFCCs are the compact representation of the

input speech signal fulfilling a compression of the data contained in the audio waveform.

The phonotactic features represent admissible sound patterns formed within a given lan-

guage. The N-gram language model (LM) is used to model the phonotactic features. The pro-

sodic features refer to the duration, pitch and stress of the speech and reflect elements such as

the speaker’s emotional state which cannot be characterised by the grammar used. The lexical

features address the problems associated with the internal structure of words, and lastly, the

syntactic features are the outcome of the analysis performed by the way in which words are

linked or connected together to form phrases, clauses and sentences [6].

The conclusions, therefore, when comparing these two broad levels can be as follows. The

low-level features are easier to obtain but are very volatile and are easily affected by noise and

speaker variations, whereas high-level features contain more information regarding language

discrimination. However, high-level features rely on large vocabulary recognisers, and as a

result, more training data is needed which ultimately leads to a greater level of complexity in

obtaining these features. Therefore, this study has used acoustic features and adopted the con-

cept of feature extraction from [7] whereby the LID system is combined with a sequence of

steps commencing from feature extraction, the Gaussian mixture model (GMM), i-vector con-

struction, and recognition (classification), refer “Fig 1”.

LID is an important pre-processing technique applied to future multi-lingual speech

processing systems, such as audio and video information retrieval, automatic machine tran-

slation, multi-lingual speech recognition, intelligent surveillance and so forth. A major prob-

lem in LID is how to design a specific and effective language to represent speech utterances.

It is challenging due to the significant variations introduced relating to different speech pat-

terns, speakers, channels and background noise [8]. Due to technological advances, data is

being generated at an ever-increasing pace, and the size and dimensionality of the data sets

continue to grow each day. Therefore, it is important to develop efficient and effective machine

learning methods that can be applied to analyze the data and to extract useful knowledge and

insights from the information. More recently, Extreme Learning Machines (ELMs) have

emerged and have been adopted as a popular framework for machine learning [9–11]. ELMs

are a type of feed-forward neural network, characterized by random initialization of their hid-

den layer weights, combined with a fast training algorithm. The effectiveness (i.e. without

blindness) of the random initialization and fast training makes it very appealing for large data

analysis.
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The core classification unit is an important part of any LID system. The role of the classifi-

cation unit is to map the audio sets and extract features from the i-vector system to enable its

corresponding language to be identified. Different classifier types are defined in the literature

such as the deep learning classifier, SVM, and ELM. ELM is described by [12], as a kind of

feed-forward single hidden layer neural network, whose input weights, and thresholds of hid-

den layers are randomly generated. Because the output weights of the ELM are calculated uti-

lizing the least-square method, the ELM exhibits high speed for training and testing purposes.

However, the random input weights and thresholds of the hidden layers are not the best

parameters, given that they cannot promise to achieve the ELM training goals and to meet

global minimum requirements. The literature addresses the problem of optimizing the weights

of the single-hidden layer feedforward neural networks (SLFN) trained by the ELM using vari-

ous approaches. Researchers [13, 14] attempted to optimize the weights using meta-heuristic

searching methods. Also, [15] aimed to optimize the weights of the ELM using the teaching

phase and the learning phase under the ameliorated teaching learning-based optimisation

framework. However, studies on the selection approach, to generate fresh solutions and to

examine the impact on the performance of the search, are currently limited. This may lead to a

slower convergence rate or incomplete optimisation. The purpose of this study is to improve

the Extreme Learning Machine (ELM) algorithm by improving the self-adjusting approach

and the implementation of Spoken Language Identification (LID). The final aim of the study is

to prove the efficiency of the extreme learning machine as a classifier model for LID when

improved optimisation is observed. The remainder of the study is organized into the following

sections. Section 2 discusses related work; Section 3 describes the proposed method; Section 4

discusses and presents the experiments and results, and finally, Section 5 presents the conclu-

sions and recommendations for future action.

2. Related work

The focus in this section is on machine learning and its applicability on LID as a learning

model for classifying languages. The ELM is one type of classification algorithm proposed by

Fig 1. Steps of the language identification system, [6].

https://doi.org/10.1371/journal.pone.0194770.g001
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[12] as being an effective approach towards training Single Hidden Layer Neural Network

(SLNN) in one iteration. The research conducted by Huang and his team published several

improvements to the extreme learning machine such as an online extreme learning machine

[16] and a kernel extreme learning machine [17]. This has been proven in a wide range of

applications requiring learning; human action recognition [18], Cryptography [19], image seg-

mentation [20], face classification [21, 22], intrusion detection in cloud computing [23],

Graph embedding [24], and ELMs for both semi-supervised and unsupervised tasks based on

the manifold regularization [25, 26].

During the past years, extreme learning machine (ELM) [27] has been becoming an

increasingly significant research topic for machine learning and artificial intelligence, due to

its unique characteristics, i.e., extremely fast training, good generalization, and universal

approximation/classification capability. ELM is an effective solution for the single hidden layer

feedforward networks (SLFNs), and has been demonstrated to have excellent learning accu-

racy/speed in various applications. Thus, ELM tends to achieve faster and better generalization

performance than those of back propagation (BP)-based neural networks (NNs), and SVM

[27–29].

One of the important factors motivating researchers to use the extreme learning machine is

its superiority over classical support vector machines from several aspects [12]. Firstly, the

extreme learning machine has greater capability to avoid overfitting. Secondly, it can function

on both binary and multi-type of classifiers, and thirdly, it has a neural network structure and

can function as being kernel based, like SVM. All these factors add increased recognition capa-

bilities regarding the efficiency of ELM to achieve effective learning performance.

In the field of language identification, there have been several attempts at building an ELM

based language classifier to replace the classical SVM. [30] developed a new variant of an ex-

treme learning machine applied to language identification. The improved algorithm is known

as the Regularized Minimum Class Variance Extreme Learning Machine (RMCVELM). The

core concept of the algorithm is to minimize the empirical risk, structural risk, and the intra-

class variance. The authors evaluated it from the perspective of the execution time and level of

accuracy. It outperformed SVM on the execution time and comparable classification accuracy.

It is important to point out, that despite the fact of the superiority of the developed classifier,

the aspect relating to the optimisation of random weights of the ELM have been ignored, caus-

ing non-optimal classification performance.

Another study applying the extreme learning machine was in the field of speaker recogni-

tion by [31]. The study used ELM on a speaker with independent text data and comparing the

results with SVM. The findings from this study identified that ELM is faster to execute with

much higher accuracy, however, this work is not considered as a precise application given it

focused on language identification. Furthermore, their model is a binary classification model,

whereby the aim of this study is to investigate using ELM in language identification, being a

multi-classification problem.

A further study was conducted by [32] to identify emotions of the speaker using DNN as a

feature extractor and to use extreme learning machine as a classifier. The findings identify that

Kernel ELM (KELM) and ELM combined with DNN achieve the highest accuracy compared

to the other baseline approaches. The authors, however, ignore the fact that ELM or KELM

needs to be optimised on the input hidden layer weights.

[33] used ELM to examine the problems associated with another classifier on a different

type of audio-related classification. The emotion recognition studied was based on the audio

of the speaker. The features of the GMM model are used as input to the classifier with the

authors emphasizing the high capabilities of GMM based features in providing a discrimina-

tive factor for classifying emotions. Unfortunately, however, minimal investigation on the

LID based on ESA-ELM approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0194770 April 19, 2018 4 / 27

https://doi.org/10.1371/journal.pone.0194770


effect of adding extra features to the classification or attempts to overcome the drawbacks of

ELM was carried out.

3. Method

3.1 General overview

The general overview of the proposed method is illustrated in “Fig 2”. The diagram shows the

various blocks that will be used to create the LID system with optimised machine learning.

The following sub-sections will discuss a separate area as shown in the LID system.

3.2 Feature extraction

The standard feature extraction for LID is adopted from [7]. Firstly, segmentation is per-

formed to convert the input signal into frames of 25 ms with 10 ms overlap. Secondly, 7 Mel-

Frequency Cepstral Coefficients (MFCCs), including C0, are obtained followed by applying

Vocal Tract Length Normalization (VTLN). Next, cepstral mean and variance normalization

is performed along with RASTA filtering, and this is then followed by calculating the Shifted

Delta Cepstral (SDC) features in a 7-1-3-7 configuration. The results are 56-dimensional vec-

tors consisting of both the MFCCs and the SDC. Also, GMM containing 2048 Gaussian

Fig 2. An illustrative block diagram of the optimised LID system.

https://doi.org/10.1371/journal.pone.0194770.g002
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components with diagonal covariance matrices was used with the dimensionality of the i-vec-

tors set to 600.

3.3 Basic extreme learning machine (ELM)

The original ELM algorithm for training SLFN is proposed by [12]. The main concepts or

ideas behind ELM are the hidden layer weights, where the biases are generated randomly. The

output weights are then calculated using the least-squares solution which is defined by the out-

puts of the hidden layer and targets. An overview of the ELM structure and the training algo-

rithm is shown in “Fig 3”. The next section which provides a brief description of the ELM.

Where

N = represents a set of distinct samples (Xi, ti), where Xi = [xi1, xi2. . . xin] T 2 Rn and ti = [ti1,

ti2. . . tim] T 2 Rm.

L = indicates to the hidden layer nodes.

g(x) = represents the activation function, which is a mathematical model as described and

applied using Eq (1)

PL
i¼1

bigiðXjÞ ¼
PL

i¼1
bigiðWi:Xj þ biÞ ¼ oj ð1Þ

J = 1. . . N.

Where:

Fig 3. Diagram of the extreme learning machine [34].

https://doi.org/10.1371/journal.pone.0194770.g003
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Wi = [Wi1, Wi2. . . Win] T is the weight vector that provides the connection between the ith
input nodes and the hidden node.

βi = [βi1, βi2,. . .. . .,βim] T = the weight vector that provides the connection between the ith
output nodes and the hidden node.

bi = the threshold of the ith hidden node.

Wi. Xj = the inner product of Wi and Xj. However, the output nodes are chosen linearly.

L = hidden nodes, and the standard of SLFNs in the activation function g(x) could be the

samples of N without error.

That is:
PL

j¼1
koj � tjk ¼ 0, i.e., there exist βi, Wi, and bi such that in Eq (2):

PL
i¼1

bigiðWi:Xj þ biÞ ¼ tj; j ¼ 1; . . . :;N: ð2Þ

From the above equations for N, this can be written as follows:

Hb ¼ T ð3Þ

Where:

HðW1 . . . WL; b1 . . . bL; X1 . . . XN Þ

¼

gðW1:X1 þ b1Þ � � � gðWL:X1 þ bLÞ

..

.
. . . ..

.

gðW1:XN þ b1Þ � � � gðWL:XN þ bLÞ

2

6
6
4

3

7
7
5

b ¼
b
T
1

b
T
L

" #

L�m

and T ¼
tT
1

tTN

" #

N�m

The authors in Huang et al. (2006) named the variables, where H refers to the output matrix of

the hidden layer in the neural network; in H the ith column refers to the ith hidden layer nodes

on the input nodes. If the desired number of the hidden nodes is L� N, this therefore means

the activation function g is infinitely differentiable. Eq (3) then turns into a linear system. Fur-

thermore, the output weights β can be determined analytically by discovering a least square

solution in the following way:

b ¼ HyT

Where H† is represents the Moore–Penrose generalised inverse for H. Thus, the output

weights are calculated via a mathematical transformation. This makes sure that the lengthy

training phrase when network parameters are iteratively adjusted with some suitable learning

parameters (like iterations and learning rate) is done away with.

The authors in [12] named the variables, where H refers to the output matrix of the hidden

layer in the neural network; in H the ith column refers to the ith hidden layer nodes on the

input nodes. If the desired number of the hidden nodes is L� N, this therefore means the acti-

vation function g is infinitely differentiable.

The weakness of ELM is that it should have a particular approach for determining the

weights of the input-hidden layer weights and therefore, is subject to local minima. In other

words, based on given training data, there is no way to assure that the trained ELM is the most

appropriate in performing the classification. To resolve the weakness, an optimised approach

must be integrated with the ELM to identify the optimal weights that assure the best

LID based on ESA-ELM approach
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performance of ELM. In the next subsection, ATLBO is presented and adopted as an optimisa-

tion approach for this very purpose.

3.4 Ameliorated teaching-learning-based optimisation (ATLBO)

Teaching Learning Based Optimisation (TLBO) is one of many optimisation approaches pro-

posed by Rao et al. The algorithm has attracted many researchers’ due to its simple structure,

fewer parameters and high execution speed. After developing TLBO, [35], further improve-

ment of the algorithm was made to execute faster and to avoid selfish behaviour and presented

this improvement in ATLBO.

The set of equations of ATLBO can be divided into two phases; the ‘Teaching’ phase, and

the ‘Learning’ phase. The ‘Teaching’ phase means learning from the teacher, while the ‘Learn-

ing’ phase means learning through the interaction between learners. In the teaching phase,

each solution is updated based on Eqs (4–6):

Xnew;i ¼ oiXold;i þ ;iðMnew � TFMiÞ ð4Þ

oi ¼ 1=ð1þ expð� fitðiÞ=apÞiterÞ ð5Þ

;i ¼ 1=ð1þ expð� fitðiÞ=apÞ � iterÞ ð6Þ

Let Mi = the mean, and Ti = Teacher (best learner) at any iteration i. Ti will try to move the

mean Mi towards its own level, so now the new mean will be Ti and designated as Mnew. The

solution is updated according to the difference between the existing and the new mean as

depicted in Eq (4).

Where

ωi = the inertia weight, which controls the effect of the former solution.

;i = the acceleration coefficient, which defines the maximum step size.

TF = the teaching factor that decides the value of the mean to be changed, the value of TF

can be either 1 or 2.

fit(i) = the fitness of the ith learner.

ap = the maximum fitness in the first iteration.

iter = the current iteration.

While in the learning phase each solution is updated using Eqs (7–9).

Xnew;i ¼

(
Xold;i þ φiðXj � XiÞ if f ðXiÞ � f ðXjÞ

Xold;i þ ciðXbest � XiÞ if f ðXiÞ > f ðXjÞ
ð7Þ

φi ¼ 1 � expðfitðXjÞ � fitðXiÞÞ ð8Þ

ci ¼ 1 � expðfitðXbestÞ � fitðXiÞÞ ð9Þ

where

Xbest = the best learner in a class.

φi and ψi = the acceleration coefficients that decide the step size depending on the differ-

ences between two learners.

3.5 Self-adjusting extreme learning machine (SA-ELM)

[15] proposed SA-ELM using the concept of an of Teaching-Learning-Based Optimisation

algorithm (TLBO) consisting of two phases for adjusting the input weight and bias of hidden

LID based on ESA-ELM approach
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nodes. The first phase being the ‘teaching phase’ and the second phase being the ‘learning

phase’.

The SA-ELM is described in detail as follows. The values of the input weights and thresh-

olds of the hidden nodes are defined randomly in the teaching phase of SA-ELM, and learners’

indicating the marks of all course types as shown below.

Visy ¼ fw11; w12; . . . w1n; w21; w22; . . . w2n; wm1; wm2;
. . . wmn; b1; . . . bmg:

where,

Wij is the weight’s value connecting between the jth input node and the ith hidden node,

Wij 2 [–1, 1];

bi is the bias of the ith hidden node, bi 2 [0, 1];

n is the number of input nodes; and

m is the number of hidden nodes.

(n + 1) × m represents the dimension of the learners’ mark, which means the (n +1) × m
parameters need to be optimised. Therefore, the fitness function in the SA-ELM is set using

the following Equation

f yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

j k
Pm

k rkgðwkxj þ bkÞ � yjk
2

2

N

s

ð10Þ

where,

ρ is the output weight matrix;

yj is the true value; and

N is the number of training samples.

The initial or first step calculates each target function fitness value. Following this, the

learner having the minimum fitness value is selected as a teacher. The learner’s new mark fun-

damentally relied on the previous mark θold,i and the difference between the former mark and

the teacher (θbest – θold,i). The mechanism to update the structure of the parameters in the

SA-ELM are calculated using the following Equations:

ynew;i ¼ oiyold;i þ ;iðybest � yold;iÞ ð11Þ

oi ¼ 1=ð1þ expð� f ðiÞ=aÞiterÞ ð12Þ

;i ¼ 1=ð1þ expð� f ðiÞ=aÞ � iterÞ ð13Þ

where,

ωi is the inertia weight, which controls the effect of the former mark.

;i represents the acceleration coefficient, which defines the maximum step size.

In Eqs (12) and (13), ‘a’ represents the maximum target function fitness value in the first

iteration, and iter represents the present iteration.

Through communicating with each other, the learners increased their marks in the

SA-ELM ‘learning phase’. In this step, the structure of the updated parameters used the Elitist

strategy. The following Equations are used to calculate the update in the ith learner’s marks, in

LID based on ESA-ELM approach
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the ith iteration.

ynew;i ¼

(
yold;i þ aiðyj � yiÞ if f ðyiÞ � f ðyjÞ

yold;i þ biðybest � yiÞ if f ðyiÞ > f ðyjÞ
ð14Þ

ai ¼ 1 � expðf ðyjÞ � f ðyiÞÞ ð15Þ

bi ¼ 1 � expðf ðybestÞ � f ðyiÞÞ ð16Þ

where,

θbest in Eq (14), represents the best learner; αi and βi are acceleration coefficients which

decide the step size depending on the differences between two learners.

3.6 Optimization approach

This section provides an explanation of the optimisation approach of the LID learning model.

As previously mentioned, the ELM requires optimisation of the input hidden layer weights.

The baseline approach adopts ATLBO for performing the optimisation. However, ATLBO

uses only one criterion for selection. Therefore, an enhanced ATLBO or EATLBO will seek to

optimize the ATLBO which is discussed further in the next sub-section along with the

ESA-ELM which is based on EATLBO.

3.6.1 Enhanced ATLBO (EATLBO). The SA-ELM benchmark is based on ATLBO

optimisation. The ATLBO process is divided into two parts. The first part consists of the

‘Teacher Phase’ and the second part consists of the ‘Learner Phase’. The ‘Teacher Phase’ is best

described as, learning from the teacher and the ‘Learner Phase’ described as learning through

the interaction between the learners. A good teacher is one who brings his or her learners up

to his or her level regarding knowledge. But in practice, this is not always possible, and the

teacher can only move the mean or average of a class up to some extent depending on the capa-

bility of the class. This follows a random process depending on many factors. In the ‘Learner

Phase’, the Learners can increase their knowledge using two different methods. The first

method is through obtaining input from the teacher, and the second method is through the

interaction between them. A learner interacts randomly with other learners assisted through

group discussions, presentations, formal communications, etc. A learner can learn something

new if the other learner whom they are interacting with, has greater knowledge. ATLBO is

based on the Elitist strategy criterion to select the best solutions in each iteration, but, this

approach suffered from two problems. The first problem is that if the best solution falls into

some local optima, then all other solutions will be driven towards the wrong solution and the

algorithm will provide the incorrect answer. Secondly, since all solutions will follow the best

solution, if there is a better solution than the one found, it may not be possible to discover.

Therefore, the enhancement of ATLBO in this study, two additional criteria are incorporated,

Split Ratio and K-Tournament method.

The purpose of using the k-Tournament method is to choose several solutions randomly,

followed by selecting from the selected solutions the most appropriate (or best) solutions to

transfer to the following generation. The Split ratio method determines how many of the iden-

tified best solutions will be transferred to the next generation, and then, from the remaining

solutions, randomly selecting solutions to transfer to the next generation. Through applying

this method, the search space is expanded, and the right answer is more likely to be found.

K-random samples are selected from the population to illustrate how K-Tournament

works. The best solution is then selected from among the random tournament. Next, the k-
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Tournament is repeated until the required number of solutions is reached and then moved to

the next generation. Similarly, the split ratio is applied based on a 25% - 75% ratio. This means

that the algorithm will select the best 25 solutions in a deterministic manner, and then moved

to the next generation while the next 75% are randomly chosen from the entire population.

3.6.2 Enhanced self-adjusting extreme learning machine (ESA-ELM). The ESA-ELM is

recommended based on the concept of the Enhanced Teaching-Learning-Based Optimisation

algorithm (called EATLBO). This uses the Split Ratio instead of the Elitist strategy, whose

input weight values and the bias of hidden nodes are adjusted via the teaching phase and learn-

ing phase of the EATLBO. The ESA-ELM is described along with the notation of the ESA-ELM

and presented in Table 1.

The values of the input weights and thresholds of the hidden nodes are defined randomly

in the teaching phase of the ESA-ELM and represented as learners’ marks for all courses types,

VisX ¼ fw11; w12; . . . w1n; w21; w22; . . . w2n; wm1; wm2;
. . . wmn; b1; . . . bmg:

where:

Wij is the weight’s value connecting between the jth input node and the ith hidden node,

Wij 2 [–1, 1];

bi is the bias of the ith hidden node, bi 2 [0, 1];

n is the number of input nodes; and

m is the number of hidden nodes.

(n + 1) × m represents the dimension of learners’ mark, which therefore requires the (n +1)
× m parameters to be optimised. Therefore, the fitness function in the ESA-ELM set is calcu-

lated using the following Equation

f Xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

j jj
Pm

k rkgðwkxj þ bkÞ � yjjj
2

2

N

s

ð17Þ

where,

ρ is the output weight matrix;

yj is the true value; and

N is the number of training samples.

In the first step, the target function fitness value is calculated. Then, the learner having the

minimum or lowest fitness value is chosen as a teacher. The learner’s new mark fundamentally

relied on the previous mark Xold,i and the differences between the former mark and the teacher

Table 1. Notation table for ESA-ELM.

Notations Implications

X Input-weight and bias assemble

ρ The output weight matrix

Xold,i The previous ith solution

Xnew,i The new ith solution

Xbest The best solution

ωi The inertia weight

;i The acceleration coefficient

iter The current iteration

a The maximum fitness value in the first iteration

αi The acceleration coefficients

βi The acceleration coefficients

https://doi.org/10.1371/journal.pone.0194770.t001
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(Xbest – Xold,i). The mechanism to update the structure of the parameters in the ESA-ELM is

calculated using the following Equations

Xnew;i ¼ oiXold;i þ ;iðXbest � Xold;iÞ ð18Þ

oi ¼ 1=ð1þ expð� f ðiÞ=aÞiterÞ ð19Þ

;i ¼ 1=ð1þ expð� f ðiÞ=aÞ � iterÞ ð20Þ

where,

ωi is the inertia weight, which controls the effect of the former mark; and

;i representing the acceleration coefficient, defining the maximum step size.

In Eqs (19) and (20), ‘a’ represents the maximum target function fitness value in the first

iteration, and iter represents the present iteration.

Through communicating with others, the learners improved their marks in the ‘Learning

Phase’ of ESA-ELM. In this step, the mechanism to update the structure of the parameters,

adopted the Split Ratio method to calculate the ith learner’s marks in the ith iteration, as

shown in the following Equations

Xnew;i ¼

(
Xold;i þ biðXj � XiÞ if f ðXiÞ � f ðXjÞ

Xold;i þ aiðXbest � XiÞ if f ðXiÞ > f ðXjÞ
ð21Þ

ai ¼ 1 � expðf ðXjÞ � f ðXiÞÞ ð22Þ

bi ¼ 1 � expðf ðXbestÞ � f ðXiÞÞ ð23Þ

Where, Eq (21), Xbest represents the best learner; αi and βi are the acceleration coefficients

which decide the step size depending on the differences between two learners. The learning

algorithm of the ESA-ELM performed using the following steps:

• Step (1): Generate the input weights and the bias of the hidden layer (i.e. a number of stu-

dents) randomly which sets the population number and target function.

• Step (2): ‘Teaching phase’, calculates the fitness value, thereby updating the structure param-

eters applying Eq (18).

• Step (3): ‘Learning phase’, adopts the Split Ratio method to update the parameters using Eq

(21).

According to explanations noted above, regarding the ESA-ELM, this can be described fur-

ther with the aid of a flowchart illustrating the ESA-ELM algorithm and steps. “Fig 4”. repre-

sents the flowchart of the ESA-ELM algorithm.

4. Experiments and results

4.1 Raw dataset preparation

Eight different spoken languages were selected and tested for recognition purposes. The lan-

guages were; 1) Arabic, 2) English, 3) Malay, 4) French, 5) Spanish, 6) German, 7) Persian, and

8) Urdu with audio files recorded from broadcasting media channels in those respective coun-

tries. The following media broadcasting channels were:

1. Arabic: Syrian broadcast TV;
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2. English (British): British Broadcasting Corporation (BBC);

3. Malay: TV9, TV2, TV3;

4. French: TF1 HD;

Fig 4. Flowchart illustrating the ESA-ELM algorithm.

https://doi.org/10.1371/journal.pone.0194770.g004
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5. Spanish: Real Madrid TV HD, La1, La2;

6. German: Zweites Deutsches Fernsehen (ZTV);

7. Persian: Islamic Republic of Iran News Network (IRINN); and

8. Urdu: GEO Kahani.

Each language consisted of 15 utterances, with the duration of each utterance recorded

being 30 Sec. 67% of the datasets were used for training, and 33% of the datasets were used for

testing purposes. The audio files were recorded from respective channels as mentioned, with

each dataset representing a different language to test the robustness of the algorithm.

All utterances were recorded using an mp3 format with a dual channel, using MATLAB as

an array consisting of two similar columns although, only one column was used. The utterance

term was the equivalent to one vector of the sampled data from the audio file. Each utterance

was 30 seconds in length and required to be sampled and quantised:

1. Sampling rate: (44100 Hz), the largest frequency was (22050 Hz) referencing the Nyquist

frequency. The 30 seconds’ length was approximately (30 � 44100 = 1323000).

2. Quantisation: representing real-valued numbers as integers using a 16-bit range (with val-

ues from -32768 to 32767).

The dataset that has used is described in the following below:

a. Dataset name (with extension): iVectors.mat.

b. Dataset dimensions as presented in Table 2:

c. Class description as provided in Table 3:

d. Features description as depicted in Table 4:

e. Class-label-column number: Last column (601)

4.2 Evaluation scenario

This section discusses the evaluation measures of the EATLBO and ESA-ELM. Firstly, the

EATLBO was compared with the original ATLBO for several standard mathematical functions

Table 2. Dataset dimension.

Number of records Number of classes Number of features

120 8 600

https://doi.org/10.1371/journal.pone.0194770.t002

Table 3. Class description.

Number Meaning Number of records

1 Arabic 15

2 English 15

3 Malay 15

4 French 15

5 Spanish 15

6 German 15

7 Persian 15

8 Urdu 15

https://doi.org/10.1371/journal.pone.0194770.t003
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relating to the optimisation surface. Secondly, the ESA-ELM was evaluated on several different

parameters of the learning model.

4.2.1 Evaluation of common mathematical functions. Five experiments applying five

different objective functions were conducted for ATLBO and the EATLBO (k-Tournament

and Split Ratio), with the number of iterations equivalent to 1000. The purpose of using five

different objective functions was to evaluate the performance of choosing the optimal (i.e.

best) fitness value for the ATLBO and the EATLBO (k-Tournament and Split Ratio) in all iter-

ations. Table 5, represents the fitness values obtained from the ATLBO and the EATLBO (k-

Tournament and Split Ratio).

Comparing EATLBO and ATLBO it can conclude that the former has outperformed the lat-

ter. However EATLBO in this comparison is based on K-Tournament which might not be the

best. Thus another selection criteria will be investigate. Therefore, another method called the

Split Ratio method was also used. The results as shown in Table 1, illustrate the EATLBO (split

Ratio) providing a fitness value closer to the optimal value, meaning that the performance of

the EATLBO (split Ratio) was better compared to both the EATLBO (K-Tournament) and the

ATLBO.

4.2.2 Evaluation on different learning model parameters. Several classification ex-

periments were conducted on the formulated datasets with both the SA-ELM benchmark and

the ESA-ELM (Split Ratio) method, varying the number of hidden neurones in the range

[650–900] with an increment or step of 25. Therefore, the number of all experiments for the

SA-ELM benchmark was 11, and similar for ESA-ELM (Split Ratio) and the number of itera-

tions for each test was equal to 500 iterations. The Split ratio method was selected to generate

the remaining results due to its advantages over using the K-tournament method.

The evaluation performed in this study is based on [36] which presents different measures

applied for the evaluation. This article was selected because it addresses the problem of classi-

fier evaluation, and provides effective measures. Supervised Machine Learning (SML) has sev-

eral ways to evaluate the performance of learning algorithms and produced classifiers.

Measures relating to the quality of the classification are created from a confusion matrix which

records recognised examples for each class based on their correction rate.

In this study, several evaluation measures were used to evaluate the SA-ELM (benchmark)

and the ESA-ELM (split ratio) based on the ground truth. Furthermore, the evaluation mea-

sures have been adopted to compare the benchmark with the ESA-ELM (split ratio) regarding

true positive, true negative, false positive, false negative, accuracy, precision, recall, F-measure

Table 4. Features description.

Number Name Type

1! 600 i-vector values Single

https://doi.org/10.1371/journal.pone.0194770.t004

Table 5. Testing results of optimizing benchmark mathematical functions.

Function number Function

Name

Number of variables EATLBO (Split Ratio) fitness EATLBO (K-Tournament) fitness ATLBO fitness Optimum value

1 Ackley’s 10 0 0 0.3445 0

2 Alpine #2 10 -26454 -370.3588 -119.7927 -30491

3 Styblinski Tang 10 -320.8240 -262.8895 -236.5990 -391.6620

4 Egg-Holder 2 -838.5126 -759.1134 -759.1971 -959.6407

5 Deb’s No.01 10 -1 -0.8806 -0.8180 -1

https://doi.org/10.1371/journal.pone.0194770.t005
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and G-mean. The evaluation measures used in this study are depicted in Eqs (24–28)

accuracy ¼
tpþ tn

tpþ tnþ fnþ fp
ð24Þ

precision ¼
tp

tpþ fp
ð25Þ

recall ¼
tp

tpþ fn
ð26Þ

F � Measure ¼
ð2� precision� recallÞ
ðprecisionþ recallÞ

ð27Þ

G � Mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tp
p
�

tn
n

2

r

ð28Þ

where:

tp = true positive, tn = true negative, fp = false positive, and fn = false negative.

The following figures demonstrate the results between the SA-ELM and the ESA-ELM

(Split Ratio) for all experiments conducted. The accuracy of the ESA-ELM in the range [650–

900] of hidden neurones was higher than the SA-ELM benchmark. This means that the

ESA-ELM performance results are much better than the SA-ELM benchmark in all iterations.

“Figs 5–9” illustrate the comparative results between the SA-ELM benchmark and ESA-ELM

regarding accuracy, precision, recall, F-measure and G-mean. An important observation here

Fig 5. Accuracy measurement of the ESA-ELM and the SA-ELM benchmark.

https://doi.org/10.1371/journal.pone.0194770.g005
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Fig 6. Precision measurement of the ESA-ELM and the SA-ELM benchmark.

https://doi.org/10.1371/journal.pone.0194770.g006

Fig 7. Recall measurement of the ESA-ELM and the SA-ELM benchmark.

https://doi.org/10.1371/journal.pone.0194770.g007
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Fig 8. F-measure measurement of the ESA-ELM and the SA-ELM benchmark.

https://doi.org/10.1371/journal.pone.0194770.g008

Fig 9. G-mean measurement of the ESA-ELM and the SA-LEM benchmark.

https://doi.org/10.1371/journal.pone.0194770.g009
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is that the highest accuracy was achieved for 875 neurones, refer “Fig 5”. The achieved accuracy

was 96.25% for ESA-ELM and slightly lower, 95.00% for SA-ELM. Also, the obtained results of

other measures for SA-ELM were; Recall 80.00%, Precision 80.00%, F-measure 80.00%, and G-

mean 66.25%. While for ESA-ELM the results were; Recall 85.00%, Precision 85.00%, F-mea-

sure 85.00% and G-mean 73.41%. Tables 6 and 7 provides all the results of the Evaluation Mea-

sures through all the experiments for the SA-ELM and ESA-ELM as the following below:

As mentioned above, the highest accuracy have achieved with 875 hidden neurons there-

fore, “Figs 10–14” show the comparative results between the SA-ELM benchmark and

ESA-ELM regarding accuracy, precision, recall, F-measure and, G-mean for each language

separately with 875 hidden neurons.

Moreover, “Figs 15–19” illustrate the comparative results between the ESA-ELM and addi-

tional approach under name Elitist Genetic Algorithm Based ELM (EGA-ELM) regarding

accuracy, precision, recall, F-measure, and G-mean.

5. Conclusion

This study enhances the existing learning model based on the ELM named as SA-ELM. The

context regarding the development was to improve LID accuracy. The improvement of SA-

ELM was based the optimisation approach, namely, ATLBO. ATLBO was enhanced through

incorporating additional selection criteria for the searching process. The improvement was

Table 6. SA-ELM Evaluation measures through all the experiments.

Accuracy Precision Recall F-measure G-mean

SA-ELM 650 hidden neurons 93.75 75.00 75.00 75.00 59.54

SA-ELM 675 hidden neurons 93.13 72.50 72.50 72.50 56.37

SA-ELM 700 hidden neurons 92.50 70.00 70.00 70.00 53.56

SA-ELM 725 hidden neurons 93.75 75.00 75.00 75.00 59.32

SA-ELM 750 hidden neurons 94.37 77.50 77.50 77.50 62.90

SA-ELM 775 hidden neurons 93.75 75.00 75.00 75.00 59.50

SA-ELM 800 hidden neurons 93.13 72.50 72.50 72.50 56.16

SA-ELM 825 hidden neurons 93.75 75.00 75.00 75.00 59.37

SA-ELM 850 hidden neurons 94.37 77.50 77.50 77.50 62.58

SA-ELM 875 hidden neurons 95.00 80.00 80.00 80.00 66.25

SA-ELM 900 hidden neurons 92.50 70.00 70.00 70.00 53.29

https://doi.org/10.1371/journal.pone.0194770.t006

Table 7. ESA-ELM evaluation measures through all the experiments.

Accuracy Precision Recall F-measure G-mean

ESA-ELM 650 hidden neurons 94.37 77.50 77.50 77.50 62.76

ESA-ELM 675 hidden neurons 94.37 77.50 77.50 77.50 62.50

ESA-ELM 700 hidden neurons 93.75 75.00 75.00 75.00 59.38

ESA-ELM 725 hidden neurons 94.37 77.50 77.50 77.50 62.81

ESA-ELM 750 hidden neurons 95.63 82.50 82.50 82.50 69.64

ESA-ELM 775 hidden neurons 95.00 80.00 80.00 80.00 66.11

ESA-ELM 800 hidden neurons 95.63 82.50 82.50 82.50 69.64

ESA-ELM 825 hidden neurons 95.00 80.00 80.00 80.00 66.16

ESA-ELM 850 hidden neurons 95.00 80.00 80.00 80.00 66.16

ESA-ELM 875 hidden neurons 96.25 85.00 85.00 85.00 73.41

ESA-ELM 900 hidden neurons 95.00 80.00 80.00 80.00 66.20

https://doi.org/10.1371/journal.pone.0194770.t007

LID based on ESA-ELM approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0194770 April 19, 2018 19 / 27

https://doi.org/10.1371/journal.pone.0194770.t006
https://doi.org/10.1371/journal.pone.0194770.t007
https://doi.org/10.1371/journal.pone.0194770


Fig 10. Accuracy measurement of the ESA-ELM and the SA-ELM for each language separately.

https://doi.org/10.1371/journal.pone.0194770.g010

Fig 11. Precision measurement of the ESA-ELM and the SA-ELM for each language separately.

https://doi.org/10.1371/journal.pone.0194770.g011
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Fig 12. Recall measurement of the ESA-ELM and the SA-ELM for each language separately.

https://doi.org/10.1371/journal.pone.0194770.g012

Fig 13. F-measure measurement of the ESA-ELM and the SA-ELM for each language separately.

https://doi.org/10.1371/journal.pone.0194770.g013
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Fig 14. G-mean measurement of the ESA-ELM and the SA-ELM for each language separately.

https://doi.org/10.1371/journal.pone.0194770.g014

Fig 15. Accuracy measurement of the ESA-ELM and the EGA-ELM.

https://doi.org/10.1371/journal.pone.0194770.g015
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Fig 16. Precision measurement of the ESA-ELM and the EGA-ELM.

https://doi.org/10.1371/journal.pone.0194770.g016

Fig 17. Recall measurement of the ESA-ELM and the EGA-ELM.

https://doi.org/10.1371/journal.pone.0194770.g017
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Fig 19. G-mean measurement of the ESA-ELM and the EGA-LEM.

https://doi.org/10.1371/journal.pone.0194770.g019

Fig 18. F-measure measurement of the ESA-ELM and the EGA-ELM.

https://doi.org/10.1371/journal.pone.0194770.g018
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validated based on the optimisation of standard, but complex multi-variable mathematical

functions and compared to the ATLBO. The EATLBO was then used in the ESA-ELM as an

optimisation block for the weights of the input hidden layer neurones. The results identify the

excellent (i.e. favourable) superiority of ESA-ELM compared to SA-ELM for LID. Moreover,

different values of the learning model parameters were tested where the results identified the

optimal parameters for learning. Following this study, the plan is to develop the LID system

that can accommodate on-line execution of the feature extraction and classification while

applying real-time aspects. Because only off-line LID was considered in this study. An online

LID system is therefore recommended to accommodate a wider range of LID applications

such as conferences, phone services, etc. Additionally, will be explored alternate optimisation

methods for ELM being both cost-effective from a computational perspective and quality

(integrity) from an accuracy perspective using technology. Furthermore, the front-end (fea-

tures extraction) required a long time to extract the needed features thus, utilize the parallel

processing can reduce the time consumption and cost greatly.
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