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Abstract 
In this paper, a microfluidic device capable of trapping a single cell in a high throughput manner 

and at high trapping efficiency is designed simply through a concept of hydrodynamic manipulation. The 

microfluidic device is designed with a series of trap and bypass microchannel structures for trapping 
individual cells without the need for microwell, robotic equipment, external electric force or surface 
modification. In order to investigate the single cell trapping efficiency, a finite element model of the 

proposed design has been developed using ABAQUS-FEA software. Based on the simulation, the 
geometrical parameters and fluid velocity which affect the single cell trapping are extensively optimized. 
After optimization of the trap and bypass microchannel structures via simulations, a single cell can be 
trapped at a desired location efficiently. 
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1. Introduction 

Microfluidics is a rapidly developing area of research, and scientists in the 
biotechnology, pharmaceutical and life science industries are continually discovering the wide 
range of possibilities the technology can provide. Microfluidics plays important roles in various 

emerging biological research and application development, including cellular biology [1,2], lab-
on-a-chip [3-6], organ-on-a-chip [7,8] and synthetic biology [9,10] just to name a few. Recently, 
single cell analysis has become increasingly important in the field of cellular biology and medical 

research. Conventional cellular analysis usually measures the average response from a whole 
cell group. However, bulk measurements may cause misleading interpretations due to cell 
heterogeneity [11]. Therefore, the analysis of single cell is required to obtain accurate 

information regarding the properties, conditions or functional responses of individual cells. 
For analyzing a single cell, the scale of the system must be miniaturized to the single 

cell level i.e. the physical dimensions of the systems are in the microscale range. In this light, 

microfluidics emerges as a powerful technology in providing an accurate individual cell 
manipulation. For achieving single cell analysis in microfluidic devices, trapping of a single cell 
is necessary. Currently, various techniques have been employed to trap an individual cell in 

microfluidic devices. These techniques include dielectrophoresis (DEP) [12-14], optical tweezers 
(OT) [15-16], microwell [17-19], and hydrodynamic trapping [20-23]. Dielectrophoresis uses a 
nonuniform electric field to exert a force on a dielectric particle [24] and can be used to 

manipulate different types of particles [25]. Although it is a very versatile technique, it requires 
polarization of the manipulated object. Moreover, to design the system correctly, the frequency 
at which the object will experience positive or negative dielectrophoresis must also be known. 

There is also a risk of cell damage from the stress induced by the electrical field or joule heating 
if care is not taken when designing the system [26]. Optical tweezers are capable of mobilizing 
and trapping cells using a gradient force produced by a focused laser beam [27]. The trapped 

cell can be moved freely by the manipulator. Although optical tweezers are a high-precision 
technique, it can only be used on a limited number of cells, and the position of the cell needs to 
be known in advance. Care must also be taken to avoid absorption of laser light by trapped 

cells, since cell may be heated during manipulation due to photothermal effects from the laser 
irradiation and this may result in cell damage [28]. Microwell arrays allow random capture of 
thousands of cells by gravity forces. Although the throughput of such devices is high and many 
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cells can be trapped in an array-based format, precise geometrical optimizations are required in 

designing the microwells to achieve a high trapping efficiency [17]. In this method cells are not 
actively held inside the traps and the following chemical rinsing step may remove the cells from 
the bottom of the microwells. Hydrodynamic trapping systems are based on the use of 

differential fluidic resistances, where fluidic streamlines transport single cells into each trap. 
Once a cell is captured by a trap, the cell body diverts the streamlines to exclude subsequent 
cells. In comparison to other methods, hydrodynamic trapping has shown advantages of ease of 

operation, high biocompatibility, and high trapping efficiency without the need for surface 
modifications or external forces. Although hydrodynamic technique has recorded success in 
trapping cells, further parameter investigation and optimization on cellular trapping efficiencies 

are still requested [29]. 
In this study, a proof of concept demonstration for a cell positioning platform using 

hydrodynamic manipulation to trap a single cell is presented. The proposed microfluidic device 

consists of a series of trap and bypass microchannel structures for efficient and reliable cell 
trapping. Selecting appropriate geometrical parameters and obtaining the fluid velocity are 
helpful to ensure efficient trapping of cells. By using the optimal design parameter selection of 

the device, individual cells could be trapped efficiently without the need for surface modification, 
external electric force, or robotic equipment. To fulfill this requirement, a finite element 
simulation model to study the hydrodynamic trapping of cells in the microfluidic device is 

created. Then, the simulations are conducted to evaluate the cells trapping efficiencies for 
various geometrical parameters. The results obtained from the finite element simulation model 
show a very good agreement with the previously published experimental results by Tan and 

Takeuchi [21], which highlighted the value of finite element simulations in predicting and 
investigating the movement of cells in the microfluidic device. The simulation set -up discussed 
in this paper can provide some significant guidelines for new biochip design and optimization.  
 
 

2.    Research Method 
2.1. Hydrodynamic Trapping Mechanism 

The proposed device employs fluidic resistance engineering to perform hydrodynamic 
trapping of single cell. To explain this mechanism, the possible flow paths of a single cell are 
schematically presented in Figure 1. In Figure 1A the arrow is going to the trapping path and in 

Figure 1B the arrow is going to the bypassing path. Here trapping is defined as a single cell 
flowing into the trap, and bypassing is defined as the flow of subsequent cell through the 
channels next to the trap. 

In order to trap the cell as shown in Figure 1, the trap array geometry should be 
designed so that the trapping path for an empty trap has a lower flow resistance than the 
bypassing path. Then during the loading process, a cell in the fluid is most likely to move into an 

empty trap (Figure 1A). However, once the trap is loaded by a cell, the flow resistance in 
trapping path dramatically increases and is much larger than that in bypassing path, and thus 
subsequent cell bypass the filled trap as shown in Figure 1B. 

 
 

 
 

Figure 1. Schematic illustration of the flow hydrodynamic resistance in the microchannel for two 
different conditions (A) empty trap channel (before cell trapping occurs); (B) after cell has been 

trapped. 
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The flow within a microfluidic device is determined by the pressure drop across the two ends of 

the microchannel, as defined by the following Equation: 
 

              (
    

   
)       (1) 

 

where ∆P is the pressure drop, Rh is the hydrodynamic flow resistance of the rectangular 
microchannels, μ is the fluid viscosity, L, H and W are length, height and width of the channel 
respectively. By using a relationship of A = W × H and P = 2(W + H), the hydrodynamic flow 

resistance can be formulated in the following equation: 
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where C denotes a constant that depends on the aspect ratio (H/W), A is the cross -sectional 

area and P is the perimeter of the channel. The flow rate ratio between trap path and main path 
can be modelled as given in the following equation: 
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For the trap to work, the flow rate along trap path must be greater than that of main path 
(QTrap>QMain). 

In this section, it is explained the results of research and at the same time is given the 

comprehensive discussion. Results can be presented in figures, graphs , tables and others that 
make the reader understand easily [2],[5]. The discussion can be made in several sub-chapters. 

 

2.2. Simulation Setup 
The analysis is carried out using finite element ABAQUS-FEA analysis software which 

can perform multiphysics analysis. The single cell trapping model consists of two different parts; 

Eulerian part as the fluid channel and a three dimension (3D) deformable part as the sphere-
shaped elastic cell model as shown in Figure 2A-2B. The fluid consists of two microchannels, 
the main channel and trap channel with a rectangular trap hole is placed in the center, at the 

edge of the trap channel. The microchannel is modelled as 3D Eulerian explicit EC3DR and an 
8-node linear Eulerian brick element part assigned with water properties (density, equation of 
state, and viscosity). A sphere-shaped cell (5 µm in diameter) is modelled as an elastic 3D 

standard solid deformable C3D8R and an 8-node linear brick 3D part. 
Figure 2C shows the assembly setup with a cell positioned in the main channel, near 

the channel’s inlet (left). The parts are assembled to develop the finite element  model for the 

proposed system as shown in Figure 2C. The initial position of cell is fixed to the same position 
(distance between cell and trap channel) for all the models used. Interaction between objects 
and water are set as general contact with rough tangential behaviour and the interaction 

between cell surface and channel’s wall is set as frictionless. The fluid channel and cell is 
meshed using hexahedron and tetrahedron mesh types, respectively. Total mesh elements for 
the cell trapping model ranged from 10627 to 22485 elements. No-inflow and non-reflecting 

outflow Eulerian boundary conditions are applied to the channel’s wall. Constant inflow velocity 
of 0.5 µms-1 is applied to the inlet and atmosphere pressure is applied to the outlet of the 
channel for all the models analyzed. 
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Figure 2. Construction of the finite element model of single cell trapping system and parts 
involved (A) Eulerian part (fluid channel’s top view) Lmain represents the main channel’s length 

and Ltrap represents the trap channel’s length; (B) 3D deformable part (cell model); (C) 

Simulation’s assembly setup (cell is positioned between inlet and trap channel as initial position) 
Whole represents trap hole’s width. 

 

 
3.    Results and Analysis 
3.1. Single Loop Microchannel 

From the simulation result, RhMain/RhTrap ratio of 3.5 is found to be able to trap single 
cell via hydrodynamic trapping concept. The analysis is carried out to investigate the movement 
of subsequent cells after trapping occurred. Results obtained show that the first cell moved into 

the trap channel as shown in Figure 3B and subsequent cells bypassed the trap channel as 
shown in Figure 3C. The velocity streamlines plots illustrate how the fluid stream is directed to 
the trap channel during cell trapping as shown in Figure 3B, but then the direction changed to 

the main channel after the cell trapping as shown in Figure 3C. 
 
 

 
 

Figure 3. Simulation findings of fluid’s veloc ity streamline plots for single loop microchannel with 

RhMain/RhTrap ratio of 3.5 during (A) the initial position of cells; (B) cell trapping; and (C) after 
cell trapping. 
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3.2. High Throughput Microchannel 

The simulation results show that high throughput microchannel with RhMain/RhTrap 
ratio of 3.5 is able to trap single cells using the hydrodynamic trapping concept. Results 
obtained show that the first cell moved into the first trap channel and subsequent cells bypassed 

the first trap channel to be trapped into the following trap channel as shown in Figure 4B. 
 
 

  
A B 

 
Figure 4. Simulation findings of fluid’s velocity streamline plots for high throughput microchannel 

with RhMain/RhTrap ratio of 3.5 during (A) the initial position of cells; (B) cell trapping. 

 
 

4. Conclusion 

In this study, a proof of concept demonstration for a cell positioning platform using 
hydrodynamic manipulation to trap single cells in high throughput manner is presented. 
Selecting appropriate geometrical parameters and obtaining the fluid velocity are helpful to 

ensure efficient trapping of cells. By using the optimal design parameter selection of the device, 
individual cells could be trapped efficiently. A finite element simulation model to study the 
hydrodynamic trapping of cells in the microfluidic device is created. The results obtained from 

the finite element simulation model show a very good agreement with the previously published 
experimental results which highlighted the value of finite element simulations in predicting and 
investigating the movement of cells in the microfluidic device.  
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