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Abstract: In this study, the artificial neural network (ANN) technique was employed to derive an
empirical model to predict and optimize landfill leachate treatment. The impacts of H2O2:Fe2+ ratio,
Fe2+ concentration, pH and process reaction time were studied closely. The results showed that the
highest and lowest predicted chemical oxygen demand (COD) removal efficiency were 78.9% and
9.3%, respectively. The overall prediction error using the developed ANN model was within−0.625%.
The derived model was adequate in predicting responses (R2 = 0.9896 and prediction R2 = 0.6954).
The initial pH, H2O2:Fe2+ ratio and Fe2+ concentrations had positive effects, whereas coagulation
pH had no direct effect on COD removal. Optimized conditions under specified constraints were
obtained at pH = 3, Fe2+ concentration = 781.25 mg/L, reaction time = 28.04 min and H2O2:Fe2+

ratio = 2. Under these optimized conditions, 100% COD removal was predicted. To confirm the
accuracy of the predicted model and the reliability of the optimum combination, one additional
experiment was carried out under optimum conditions. The experimental values were found to agree
well with those predicted, with a mean COD removal efficiency of 97.83%.

Keywords: artificial neural network (ANN); chemical oxygen demand (COD); Fenton treatment;
landfill leachate; wastewater treatment

1. Introduction

Solid waste management (SWM) is an increasingly complex task, absorbing a huge amount of
resources and having a major environmental impact [1]. Municipal solid waste (MSW) is defined
as waste from residential, multifamily, commercial and institutional sources [1,2]. Worldwide,
approximately 1.3 billion tons of MSW is now generated per year, and this number is expected
to reach 2.2 billion tons by 2025 [3]. Overall, 90% of MSW is disposed of in open dumps and landfills
unscientifically, creating problems for public health and the environment [4]. If landfills are not
properly managed, these can generate uncontrolled gaseous and liquid emissions as leachate [5].
Percolation of rainwater through waste layers in municipal landfills generates leachate [6]. The most
important persistent pollutants in landfill leachate that pose a long-term threat to surrounding ground
and surface waters are rich in organic matter, ammonia, heavy metals and toxic materials such as
xenobiotic organic compounds and refractory humic substances. Waste type and compaction, landfill
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hydrology, climate and, particularly, landfill age have an influence on the amount and composition of
landfill leachate [7,8].

Fenton oxidation is a process under acidic conditions that use the decomposition of hydrogen
peroxide catalysed by a ferrous ion to generate hydroxyl radicals [9]. The Fenton treatment is performed
at ambient temperatures in a series of continuous steps and has two components, catalytic chemicals
and chemical oxidation. During a Fenton reaction, hydroxyl radicals are produced and will react to
pollutants, decomposing and oxidising organic molecules to provide H2O2 and CO2 [10]. The classical
Fenton process (FP) involves a sequence of the following reactions [11–13]:

Fe2+ + H2O2 → Fe3+ + OH
◦
+ OH− (1)

Fe3+ + H2O2 → Fe2+ + HO
◦
2 + H+ (2)

OH
◦
+ H2O2 → HO

◦
2 + H2O (3)

OH
◦
+ Fe2+ → Fe3+ + OH− (4)

Fe3+ + HO
◦
2 → Fe2+ + O2H+ (5)

Fe2+ + HO
◦
2 + H+ → Fe3+H2O2 (6)

2HO
◦
2 → H2O2 + O2 (7)

The generation of hydroxyl radicals (Equation (1)) is very rapid. The net reaction (1) to (7) can
overall be defined as the dissociation of H2O2 in the presence of iron as a catalyst [13].

2Fe2+ + H2O2 + 2H+ → 2Fe3+ + 2H2O (8)

All parameters in the Fenton oxidation process are modified to increase the reduction of pollutants
and hydroxyl radicals. Fenton reduction has advantages over other advanced oxidation processes
(AOPs). Hydrogen peroxide, which easily decomposes into water and oxygen, is plentiful and easy to
remove from water, which makes Fe2+ the most commonly used metal for the application of Fenton
reactions [14,15]. In addition, Fenton reactions generate lower harmful by-products than AOPs [16].
The Fenton process has some remarkable advantages over other chemical treatment methods including
high efficiency, biodegradability improvement, simplicity in operation, and treatment capability of
a wide range of substances [17–19]. However, some operational problems such as sludge production
and a high concentration of remaining sulphates are encountered [20]. The removal efficiency is
dependent on various factors such as initial pH, reaction time, the initial concentration of pollutant,
dosages of Fenton reagents, reagents mole ratio, coagulation pH, mode of reagent addition and
temperature [21,22]. For example, Wadley and Waite [23] reported that when the pH is between 2 and 4,
the Fenton oxidation is efficient, especially at pH of 2.8, due to the formation of ferric oxyhydroxide.
The role of iron in Fenton process can be considered as a catalyst, and the reaction of a ferrous ion
with H2O2 produces a high rate constant. Transmission of electrons happens among H2O2 and Fe3+.
The oxidation of Fe2+ to Fe3+ occurs in a range of a few seconds to a few minutes if there is an excess of
H2O2. The Fe3+ generated can further react with excess hydrogen peroxide to form more OH radicals
and Fe2+ in Fenton-like reaction.

Artificial neural networks (ANN) are now commonly employed in many areas of science and
engineering due to their ability and flexibility to model highly non-linear phenomena. The ANN
is a powerful method in multivariate calibration. As an alternative to physical models, an ANN is
a valuable forecast tool in environmental sciences [24]. The ANN can be used effectively due to its
learning capabilities and its low computational costs [25]. Because of their reliable, robust, and salient
characteristics in capturing the non-linear relationships between variables (multi-input/output) in
multivariate systems, numerous applications of ANN-based models have been successfully utilized
in the field of environmental engineering in the past decade [26–28]. There is a limited number
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of experimental studies investigating the use of the ANN for the treatment of landfill leachate.
Biglarijoo et al. [29] explored the use of the analytic hierarchy process (AHP) for landfill leachate
treatment and optimization of the process using an ANN. AHP was used to select the favorable
catalyst between FeSO4 and FeCl2 and central composite design (CCN) was used for test design
of the experiments along with response surface methodology (RSM) and an ANN for modeling.
Chemical oxygen demand (COD) was one of the effective variables in this study. Sabour et al. [30]
explored a comparative study of an ANN and RSM for simultaneous optimization of multiple targets
in the Fenton treatment of landfill leachate. Three targets were used to cover different aspects of
post-treatment products such as supernatant and sludge: mass content ratio (MCR) and mass removal
efficiency (MRE). Their results showed low deviation from predicted values with maximum errors of
8% and 9% for RSM and ANN, respectively. Arabameri et al. [31] investigated the use of an ANN for
the prediction of COD removal from landfill leachate by the ultrasonic process. The results showed
that modeling a neural network could effectively predict COD removal from landfill leachate by the
ultrasonic process. The above literature review shows that each investigation is unique and requires
a specific investigation.

The aim of this study was to optimize and predict the Fenton treatment for landfill leachate
by utilizing the ANN as a tool to achieve the optimum parameters. Four experimental factors such
as H2O2:Fe2+ ratio, Fe2+ concentration, pH and process reaction time were selected as the input
parameters and COD removal was selected as the output parameter of the ANN model. Although there
are few studies utilizing ANN for landfill leachate, however, each landfill leachate has its own
characteristics and depends on various factors e.g., type of waste, leachate age, seasonal variations and
many others. Accordingly, each investigation is unique and requires a specific investigation. In the
current study, a matured landfill leachate was used in the experiment which was unique in nature and
has not been explored by other researchers. Moreover, a model was proposed in this study to predict
the responses for the treatment of matured landfill leachate.

2. Material and Methods

2.1. Landfill Leachate

Landfill leachate samples were collected from Jeram Landfill, which is located in an oil palm
plantation at Kuala Selangor, Malaysia. Table 1 shows the characterisation of the landfill leachate.

Table 1. Characteristics of landfill leachate.

Test Parameters Units Values

pH - 7.5
Temperature ◦C 40

Chemical oxygen demand (COD) mg/L 10,516
Total Suspended Solid mg/L 810

Oil and Grease mg/L 9.5
Zinc as Zn mg/L 2.48
Iron as Fe mg/L 4.8

Chromium as Cr mg/L 0.15
Arsenic as As mg/L 0.17

Aluminium as Al mg/L 20
Barium as Ba mg/L 2.75

Formaldehyde mg/L 1.9
Ammonia Nitrogen mg/L 715
Colour Original pH ADMI >500

Colour adjusted to pH 7.0 ADMI >500
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2.2. Fenton Process and Optimisation Phase

To evaluate and optimise the Fenton process, a random experimental design was chosen to assess
at laboratory scale. Some variables such as pH, the concentration of Fe2+, reaction time and the ratio of
H2O2:Fe2+ were considered. All tests were conducted at room temperature (25± 1 ◦C) and atmospheric
pressure. All experiments were carried out in a glass reactor with 1 L capacity using jar-test equipment
with flat stirring vanes used as a batch reactor. Three hundred millilitres of leachate were placed into
the glass reactor and then the pH (3, 4.5, 6, 7.5, and 9) was adjusted according to the provisions of the
experimental design using 95–97% H2SO4. The pH condition was controlled with a pH meter and
rapid mixing was conducted using the jar-test device. The Fenton reaction was carried out by the
addition of powdered ferrous sulphate (FeSO4 7H2O) (500 mg/L, 750 mg/L, 1000 mg/L, 1250 mg/L,
1500 mg/L) and an appropriate H2O2:Fe2+ ratio (2, 4, 6, 8 and 10) was prepared and mixed for 5 min
to obtain a homogeneous solution. Afterwards, the designed amount of hydrogen peroxide solution
(H2O2, 30% w/w) was added in one step and the Fenton reaction was initiated. The glass reactor was
then carried to the jar-test (used for coagulation and flocculation) equipment where the sample was
subjected to a rapid mixing at 250 rpm for 80 s and then slowly mixed for the adjusted contact time
(5 min, 18.75 min, 32.5 min, 46.25 min, 60 min) at 50 rpm. The proposed values of pH, the concentration
of Fe2+, reaction time and the ratio of H2O2:Fe2+ above were based on some of the works that have
been carried using Fenton treatment for landfill leachate [15,19,32,33]. Once the stirring time was
finished, separate aliquots without filtration were taken at the same intervals and neutralized to about
pH 7.5–8.0 with sodium hydroxide solution. The sample was allowed to precipitate and form sludge
during a period of 1 h. The final sampling was made taking an aliquot of the supernatant liquid.
The biodegradability improvement of the Fenton process was achieved through the COD ratio after
the treatment was carried out and compared with the initial ratio. The expression used to determine
the COD removal (%) achieved was as follows [33]:

(CODinitial − CODfinal/CODinitial) × 100 (9)

2.3. Experimental Design and Statistical Model

The neural network used was a feed forward-like network, consisting of three layers (input,
hidden and output). The feed-forward neural network fit criterion using a back-propagation algorithm
was used in order to minimize the mean square error for training sets, validation and the test.
A three-layered feed forward back propagation neural network (4–3–3) has been used for the modelling
of landfill leachate treatment by the Fenton process [34]. The input layer of the network included
four parameters, namely, the pH of the leachate, the concentration of Fe2+, the ratio of H2O2:Fe2+,
and the reaction time. The output variable of the entire network was the removal of COD. Thus a 4–3–3
structure network was constructed. The parameters of the ANN experiments are shown in Table 2.
The selected ANN model provided a best-fit model for the training data that are demonstrated in
Table 3. Figure 1 presents the diagram of the implemented network with four neurons in the input
layer, three neurons in the hidden layer and three neurons in the output layer (4–3–3 network) for the
modelling. As seen in Figure 1, each neuron is connected to several of its neighbours, with varying
coefficients or weights representing the relative influence of the different neuron inputs to other
neurons. The weighted sum of the inputs is transferred to the hidden neurons, where it is transformed
using an activation function, such as a tangent sigmoid activation function. In turn, the outputs of the
hidden neurons act as inputs to the output neuron where they undergo another transformation [35].
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Table 2. Parameters of artificial neural network (ANN) experiments.

Run Time (min.) Fe2+ Concentration (mg/L) H2O2 Concentration (mg/L) pH H2O2:Fe2+ Ratio

1 46.25 750 3000 4.5 4
2 46.25 1250 10,000 7.5 8
3 32.5 1000 6000 6 6
4 32.5 1000 6000 6 6
5 32.5 1000 6000 6 6
6 32.5 1000 6000 6 6
7 32.5 1000 6000 6 6
8 32.5 1000 6000 6 6
9 32.5 1000 6000 6 6

10 32.5 1000 6000 6 6
11 18.75 750 3000 7.5 4
12 18.75 750 6000 4.5 8
13 32.5 1000 6000 6 6
14 46.25 1250 5000 4.5 4
15 32.5 1000 6000 6 6
16 18.75 1250 10,000 7.5 8
17 32.5 1000 6000 6 6
18 32.5 1000 6000 6 6
19 32.5 1000 6000 6 6
20 46.25 1250 5000 7.5 4
21 32.5 1000 6000 6 6
22 32.5 1000 6000 6 6
23 46.25 1250 10,000 4.5 8
24 18.75 1250 5000 4.5 4
25 18.75 750 6000 7.5 8
26 18.75 1250 5000 7.5 4
27 32.5 1000 6000 6 6
28 46.25 750 6000 7.5 8
29 32.5 1000 6000 6 6
30 46.25 750 6000 4.5 8
31 18.75 1250 10,000 4.5 8
32 32.5 1000 10,000 6 6
33 32.5 1000 10,000 6 6
34 18.75 750 3000 4.5 4
35 32.5 1000 6000 6 6
36 46.25 750 3000 7.5 4
37 32.5 500 3000 6 6
38 60 1000 6000 6 6
39 32.5 1500 9000 6 6
40 32.5 1000 6000 3 6
41 5 1000 6000 6 6
42 32.5 1000 6000 9 6
43 32.5 1000 2000 6 2
44 32.5 1000 10,000 6 10

Table 3. ANN training parameters.

Parameter Magnitudes

Number of input nodes 4
Number of hidden neurons 3
Number of outputs nodes 3

Maximum number of epochs 5000
Learning rate (Ir) 0.01

Learning rule Back-propagation
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Figure 1. Schematic representation of neural network.

3. Results and Discussion

3.1. Investigation of the Chemical Oxygen Demand (COD) Treatment Efficiency

The effects of four parameters, namely pH, Fe2+ concentration, H2O2:Fe2+ ratio and experimental
time of degradation, were studied using Matlab software; the subsequent statistical analysis was
performed by the ANN method. A total of 44 runs of experiments were conducted to examine
the prediction accuracy of the developed ANN model. Four experimental factors were selected as
the input parameters and COD removal was selected as the output parameter of the ANN model.
The experimental variables and the observed response (Y1) are presented in Table 4. The maximum
COD removal occurred in run 40 with 94.41% and the lowest COD removal occurred in run 26 with
12.4% removal. The highest predicted COD removal percentage was 78.9% and the lowest predicted
removal percentage was 9.3%. To validate the precision of the predicted values, a comparison of the
COD removal obtained from the proposed model with the experimental results was performed and
the results are presented in Figure 2. It was found that the overall prediction error using the developed
ANN model was within −0.625%. Thus, the ANN model’s prediction accuracy was acceptable for the
purpose of this study. The plots of the predicted values versus the actual data demonstrate acceptable
agreement between the observed data and the fitted model. Figure 3 shows that the predicted values of the
responses from the models agreed well with the observed values; the data points are distributed relatively
close to the straight line (y = x). Consequently, the model could be used to navigate the design space.
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Table 4. ANN design magnitudes and experimental results for COD removal.

Run Time (min.) Fe2+ Concentration
(mg/L)

pH H2O2:Fe2+

Ratio
Experimental COD

Removal %
Predicted COD

Removal % Error %

1 46.25 750 4.5 4 89.16 73.878 17.139
2 46.25 1250 7.5 8 24.4 31.247 −28.062
3 32.5 1000 6 6 51 49.468 3.003
4 32.5 1000 6 6 49.2 49.468 −0.544
5 32.5 1000 6 6 47.7 49.468 −3.706
6 32.5 1000 6 6 53.4 49.468 7.363
7 32.5 1000 6 6 55.3 49.468 10.546
8 32.5 1000 6 6 57.81 49.468 14.430
9 32.5 1000 6 6 49.15 49.468 −0.647
10 32.5 1000 6 6 47.2 49.468 −4.805
11 18.75 750 7.5 4 36.2 33.934 6.258
12 18.75 750 4.5 8 58.4 69.144 −18.398
13 32.5 1000 6 6 52.3 49.468 5.414
14 46.25 1250 4.5 4 75.3 69.790 7.316
15 32.5 1000 6 6 50.5 49.468 2.043
16 18.75 1250 7.5 8 13.4 9.331 30.365
17 32.5 1000 6 6 49 49.468 −0.955
18 32.5 1000 6 6 49.13 49.468 −0.687
19 32.5 1000 6 6 52.4 49.468 5.595
20 46.25 1250 7.5 4 34.31 33.484 2.405
21 32.5 1000 6 6 53.7 49.468 7.880
22 32.5 1000 6 6 48.67 49.468 −1.639
23 46.25 1250 4.5 8 55.17 66.921 −21.299
24 18.75 1250 4.5 4 51.4 47.087 8.390
25 18.75 750 7.5 8 35.8 33.766 5.681
26 18.75 1250 7.5 4 12.4 15.035 −21.256
27 32.5 1000 6 6 48.3 49.468 −2.418
28 46.25 750 7.5 8 46.7 40.371 13.552
29 32.5 1000 6 6 49 49.468 −0.9551
30 46.25 750 4.5 8 77.41 76.310 1.420
31 18.75 1250 4.5 8 36.79 39.777 −8.121
32 32.5 1000 6 6 50.15 49.468 1.359
33 32.5 1000 6 6 50.36 49.468 1.77
34 18.75 750 4.5 4 64.6 67.755 −4.884
35 32.5 1000 6 6 56 49.468 11.664
36 46.25 750 7.5 4 57 40.696 28.602
37 32.5 500 6 6 57 57.042 −0.075
38 60 1000 6 6 58.6 60.795 −3.746
39 32.5 1500 6 6 18.4 16.230 11.790
40 32.5 1000 3 6 94.41 78.969 16.355
41 5 1000 6 6 15.8 28.303 −79.135
42 32.5 1000 9 6 22.3 28.553 −28.042
43 32.5 1000 6 2 48 51.403 −7.089
44 32.5 1000 6 10 41.6 46.336 −11.386
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3.1.1. Interactive Effect of Time and Fe2+ Concentration on COD Reduction

Figure 4a presents the 3D response surface from the ANN algorithm for COD reduction as
a function of contact time and Fe2+ concentration. It is obvious that reaction time had a positive effect
on the mineralization of the leachate. It was observed that with an increase in reaction time and
a decrease in Fe2+ concentration, COD removal could be effectively increased. Increasing residence
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time from 5 min to 32.5 min increased COD removal from 15.80% to 57.81%. Most organic removal
occurred in the first 32.5 min, at which point the COD removal efficiency reached 57.81%, which is the
common result of oxidation and coagulation. After 32.5 min, the change in COD removal efficiency
became insignificant.

3.1.2. Interactive Effect of Contact Time and pH on COD Reduction

The pH of the leachate had a significant influence on COD removal. It was found that with
a decrease in pH, the COD removal increased as the time increased (Figure 4b). Thus, the pH has to
be in the acidic range to generate the maximum amount of hydroxyl radicals to oxidize the organic
compounds. A similar phenomenon was observed in previous studies [36,37]. However, the pH should
not be too low since at very low pH values (<2.0) the reaction will slow down due to the formation of
complex iron species and oxonium ions [H3O2]+ [38]. On the other hand, at high pH (pH > 4), iron
ions precipitate, especially Fe3+, which inhibits the regeneration of ferrous ions. Therefore, the amount
of catalyst available for the Fenton reaction decreases. Hydrogen peroxide is also unstable in a basic
solution and may decompose into oxygen and water and lose its oxidation ability.
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3.1.3. Interactive Effect of Time and H2O2:Fe2+ Ratio on COD Removal

In the Fenton process, hydrogen peroxide and iron are the two major chemicals that determine
the operating costs as well as the efficacy of the process. In order to maximize the effectiveness of
the process, it is very important to determine the optimal operational H2O2:Fe2+ratio. The results
demonstrate that with an increase in reaction time, COD removal increased as the ratio decreased
(Figure 4c).

3.1.4. Interactive Effect of Fe2+ Concentration and pH on COD Removal

It can be seen in Figure 4d that the Fenton efficiency of COD removal increased with augmenting
the Fe2+ concentration. The maximum Fe2+ concentration for COD removal was 1000 mg/L. A further
increase in Fe2+ concentration resulted in a decrease in COD removal efficiency. Based on operational
costs and organic material removal efficiency, the optimal dosage of Fenton reagents can be determined.
Generally, the removal of organic matter improves with increasing concentrations of iron salt. However,
the removal increment may be marginal when the concentration of iron salt is high. The use of a much
higher concentration of Fe2+ could lead to the self-inhibition of OH radicals by Fe2+ ions and decrease
the degradation rate of pollutants [39].

pH is an important parameter in the Fenton process because the pH of the solution controls the
production of hydroxyl radicals and the concentration of ferrous ions. As can be seen in Figure 4d,
the maximum removal of COD was obtained at pH 3 and decreased with an increase in pH. Thus,
the pH value has to be in the acidic range to generate the maximum amount of hydroxyl radicals to
oxidize organic compounds. The highest COD removal happened at pH = 3 and a Fe2+ concentration of
1000 mg/L. Increasing the pH value and the Fe2+ concentration decreased COD removal. Thus, there
is a clear interaction between pH and Fe2+ concentration, with significant effects on COD reduction.

3.1.5. Interactive Effect of Fe2+ Concentration and Ratio of H2O2:Fe2+ on COD Removal

Fe2+ dosage has a considerable effect on the COD removal efficiency. The removal of organics
directly decreased with the concentration of Fe2+ added to the critical dosage (Figure 4e). The optimum
Fe2+ concentration for maximum COD removal was 1000 mg/L. A further increase in the Fe2+

concentration resulted in a decrease in COD removal efficiency. Moreover, it was seen that the
Fenton efficiency of COD removal increased with a reduction in the H2O2:Fe2+ ratio. Any increase
in the H2O2:Fe2+ ratio beyond 6 decreased the removal efficiency. This may be due to the fact that
the Fenton reaction mechanisms change and some side reactions may occur. It seems that excessive
hydrogen peroxide has a scavenging effect on hydroxyl radicals. On the other hand, when the ratio
was above 6, COD removal decreased because of the scavenging effect of excess Fe2+. It was noted
that the maximum COD removal was obtained with a molar ratio located near the centre of the
experimental region.

3.1.6. Interactive Effect of pH and Ratio of H2O2:Fe2+ on COD Reduction

The influence of the H2O2:Fe2+ ratio and pH on COD removal efficiency was significant (Figure 4f).
In the Fenton process, iron and hydrogen peroxide are the two major chemicals that determine
operational costs as well as efficiency. Determination of the most favorable amount of Fenton reagents is
very important. The results show that removal efficiencies increased with an increase in the H2O2:Fe2+

ratio, but a further increase in the H2O2:Fe2+ ratio (above 6) produced less efficient improvements in
removal. The overall COD removal efficiency showed strong reductions when the initial pH was set
out of the interval, i.e., ranging between 3.0 and 4.5.

3.2. Response Optimization and Validation of the Experimental Model

Numerical optimization was used to determine the optimum process parameters for maximum
leachate mineralization. The optimized conditions under specified constraints were obtained for pH = 3,
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Fe2+ concentration = 781.25 mg/L, after 28.04 min of reaction time and at a ratio of 2. Under these
optimized conditions, 100% COD removal was predicted. In order to confirm the accuracy of the
removal predicted by the model and the reliability of the optimum combination, one additional
experiment was carried out under the optimum conditions. The experimental values were found to
agree well with the predicted ones, with a mean COD removal efficiency of 97.83%.

4. Conclusions

In industrial applications, the determination of the operating conditions to optimize the process
response is of special significance. An innovative technique to predict the response optimization of the
experimental models is essential to measure the optimum operating conditions. In the current study,
the ability of ANN model was evaluated to predict the COD of landfill leachate treatment using the
Fenton oxidation process. The overall prediction error for COD using the developed ANN models
were −0.625% and, thus, the ANN model’s prediction accuracy was acceptable. The derived model
was adequate in predicting responses, R2

COD = 0.8781. The optimized conditions for COD removal
under specified constraints were obtained at pH = 3, Fe2+ concentration = 781.25 mg/L, reaction
time = 28.04 min and H2O2:Fe2+ ratio = 2.
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