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Abstract: Fuzzy Petri net (FPN) is a powerful tool to execute the fault diagnosis function for various
industrial applications. One of the most popular approaches for fault diagnosis is to calculate the
corresponding algebra forms which record flow information and three parameters of value of all
places and transitions of the FPN model. However, with the rapid growth of the complexity of
the real system, the scale of the corresponding FPN is also increased sharply. It indicates that the
complexity of the fault diagnosis algorithm is also raised due to the increased scale of vectors and
matrix. Focusing on this situation, a bidirectional adaptive fault diagnosis algorithm is presented
in this article to reduce the complexity of the fault diagnosis process via removing irrelevant places
and transitions of the large-scale FPN, followed by the correctness and algorithm complexity of the
proposed approach that are also discussed in detail. A practical example is utilized to show the
feasibility and efficacy of the proposed method. The results of the experiments illustrated that the
proposed algorithm owns the ability to simplify the inference process and to reduce the algorithm
complexity due to the removal of unnecessary places and transitions in the reasoning path of the
appointed output place.
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1. Introduction

With the increasing complexity of real systems, multifarious mechanisms have been presented to
implement the inference process: expert system [1–4], Bayesian network [5], neural fuzzy system [6–11],
multi-class diagnostic technique [12], Petri net (PN) [13,14], fuzzy Petri net (FPN) [15–17], etc. Among
these techniques, FPN inherits the graphical nature and mathematical foundation of PN and represents
the fuzzy production rule (FPR) accurately. Besides that, FPN can implement the dynamic inference
process using different reasoning mechanisms. Owing to the advantages above, FPN has been applied
in various fields to implement inference [18–23].

Ever since Looney (1998) proposed the forward fuzzy reasoning method using FPN for rule-based
decision making [24], it has received much attention in the field of fault diagnosis to implement
reasoning by FPN [25]. According to the existing literature, the main approach of fault diagnosis using
FPN could be classified into two type: inference utilizing reachability tree-based analysis strategy and
reasoning using the algebraic forms. Based on the former method, various reasoning algorithms based
on fuzzy Petri net were proposed to implement knowledge representation and forward/backward
inference [26–29]. The first strategy has some benefits as it can generate the reachability tree easily
and analyze the reasoning process clearly. However, this approach still has some drawbacks such as
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difficulty utilizing the parallel reasoning ability and modeling large-scale knowledge-based systems
(KBS). Thus, to make the most of the parallel operational ability of FPN, the second method, namely
reasoning mechanism using the algebraic forms, was proposed to analyze and implement the reasoning
process. Gao et al. proposed a parallel reasoning algorithm using max-algebra, and they presented
an improved reasoning algorithm based on the novel fuzzy reasoning Petri net (FRPN) to represent
and reason the KBS with the negative literals [30,31]. In addition, there are other similar algorithms
that have been proposed by other researchers [32–34]. Although fault diagnosis algorithms using FPN
have been known to be successful, the existing algorithms are facing an enormous challenge called
state explosion issue where the scale of FPN would increase with the rapid growth of the scale of KBS.
The side-effect of the state explosion issue is to make the scale of related vectors and matrix of FPN
using the second fault diagnosis mechanism by algebra forms increase sharply. It further indicates that
the complexity and difficulty of the corresponding fault diagnosis algorithm is also increasing.

Focusing on the problematic issues, a bidirectional adaptive fault diagnosis algorithm by FPN is
proposed to optimize and simplify the reasoning process based on our previous work, to generate an
equivalent FPN model for the corresponding large-scale knowledge-based systems and to decompose
the large scale FPN into a series of sub-FPNs surrounding the inner-inference-paths among fuzzy
Petri nets [35,36]. The main thinking of the proposed algorithm is to reduce the complexity of fault
diagnosis processing by removing the unnecessary places and transitions in the inference path of
the appointed output place. To realize this presented function, the proposed algorithm has three
phases: (1) using a backward reasoning mechanism to seek the unconcerned places and transitions;
(2) implementing delete row or column commands to compress the dimension of the operational
matrices; and (3) executing the forward reasoning strategy to calculate the truth degree of the goal on
the simplified FPN. A practical example of turbine fault diagnosis system is employed to provide the
feasibility and efficacy of the proposed method. The results of the experiments prove the proposed
algorithm can select the optimum reasoning path of the appointed output place.

The rest of this article is organized as follows: Section 2 introduces the basis of FPN. Section 3
presents the proposed algorithm in detail. Section 4 analyzes the correctness and complexity of the
proposed algorithm. Section 5 illustrates the feasibly and validity of the proposed algorithm via a case
study. Section 6 concludes this article.

2. Fuzzy Petri Net

In this section, the formality and relevant notions of FPN are discussed. Following that, the
corresponding operators in the inference process are also generated.

2.1. Fuzzy Petri Net and Related Definitions

Focusing on the fault diagnosis issue, an FPN formalism is proposed in this article based on [37].

Definition 1. Fuzzy Petri Net.
The FPN is represented as an 8-tuple: FPN = (P, T, M, I, O, W, µ, CF), where

1. P = {p1, p2, · · · , pn} is a finite set of places. Moreover, X = (x1, x2, · · · , xn)
T indicates a place vector,

where |X|=|P|. If pi is the goal place or a place which has a direct or indirect relationship with the goal
place, xi = 1. Else, xi = 0.

2. T = {t1, t2, · · · , tm} is a finite set of transitions. Moreover, Y = (y1, y2, · · · , ym)
T indicates a transit

vector, where |Y|=|T|. If tj is the transition which has a direct or indirect relationship of the goal place,
yj = 1. Else, yj = 0.

3. I : P× T → (I(pi, tj))n×m is an input matrix. Here, I(pi, tj) records whether a directed arc from pi to
tj(i = 1, 2, · · · , n; j = 1, 2, · · · , m) exists, where
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I(pi, tj) =

{
1 if there is an arc from pi to tj

0 otherwise

4. O : T × P→ (O(tj, pi))m×n is an output matrix. Here, O(tj, pi)n×m records whether a directed arc
from tj to pi(j = 1, 2, · · · , m; i = 1, 2, · · · , n) exists, where

O(tj, pi) =

{
1 if there is an arc from tj to pi

0 otherwise

5. M = (m1, m2, · · · , mn)
T is a vector of fuzzy marking, where mi ∈ [0, 1] means the truth degree of

corresponding place pi(i = 1, 2, · · · , n). The initial truth degree vector is denoted by M0.
6. µ : µ→ (0, 1] , µi is the threshold of tj. Moreover, D = (µ1, µ2, · · · , µm)

T is a threshold vector, where
µj ∈ (0, 1] (j = 1, 2, · · · , m);

7. W(i, j) is the weight of the arc from pi to tj. w(i, j) ∈ [0, 1] indicates how much the place pi impacts its
following transition tj;

8. CF is the belief strength, where CFij ∈ (0, 1] indicates how much of a transition tj impacts its output
places pi.

Definition 2. Pre-set and Post-set.
For an FPN ∑ = (P, T, M, W, µ, CF), •x = {y|(y, x) ∈ F} is the pre-set or input set of x and x• =

{y|(x, y) ∈ F} is the post-set or output set of x, where x, y ∈ P ∪ T. F is a flow relationship.

Definition 3. Input place and Output place.
If p = {p ∈ P|•p = ∅∧ p• 6= ∅}, place p is an input place.
If p = {p ∈ P|•p 6= ∅∧ p• = ∅}, place p is an output place.

Definition 4. Enable and fired.
For a transition tj ∈ T, if there exists M(pi)·w(i, j) ≥ µ(tj), transition tj is enabled in the condition of

marking M and denoted by M[tj. Moreover, if transition tj is enabled in the condition of making M, then a new
marking M′ could be obtained after tj fired and denoted by M[tj > M′.

Additional, an input strength vector I is defined as I = (I1, I2, · · · , Ii)
T(i = 1, 2, · · · , n) to records the

input strength value of each place pi, where, Ii = M(pi)·w(i, j).

Definition 5. Incidence Matrix, Input Weight Matrix, and Output Belief Strength Matrix.
Incidence matrix H is defined as H = (hij)n×m(i = 1, 2, · · · , n; j = 1, 2, · · · , m), where,

hij =


1 i f pi ∈ •tj

−1 i f pi ∈ tj
•

0 otherwise

Input Weight Matrix A is defined as A = (aij)n×m(i = 1, 2, · · · , n; j = 1, 2, · · · , m), where aij ∈ (0, 1]
is the weight from pi to tj. If pi ∈ •tj, there are aij = wij. Else, aij = 0.

Output Belief Strength Matrix B is defined as B = (bij)n×m(i = 1, 2, · · · , n; j = 1, 2, · · · , m), where
bij ∈ (0, 1] is the belief strength from tj to pi. If pi ∈ tj

•, there are bij = CFij. Else, bij = 0.



Symmetry 2018, 10, 192 4 of 15

2.2. Proposed Operators of the Proposed Algorithm

In the proposed algorithm, to delete the row or column in the operational matrices, the operators
of these delete rows and columns are defined as follows.

Definition 6. Operators of Delete Rows and Columns.
Assume vector V is the vector to record the locations of rows which need to be deleted. Operator

matrixname(V, :) = []; % is designed to delete the appointed rows.
Assume vector W is the vector to record the locations of columns which need to be deleted. Operator

matrixname(:, W) = []; % is designed to delete the appointed columns.

Definition 7. Three operators of Max Algebra.
⊕ : X⊕Y = Z, Zij = max(xij, yij), where, X, Y, Z are the n×m-dimensional matrices.
⊗ : X ⊗ Y = Z, Zij = max(xik, ykj)(k =, 1, 2, · · · , s), where X, Y, Z are the n × s, s × m, n × m-

dimensional matrices, respectively.
Θ : XΘY = Z. If xij ≥ yij, zij = yij. Else, zij = 0.

3. Bidirectional Adaptive Reasoning Algorithm

An acyclic net is a net which does not have a loop or circuit structure. According to
reference [38,39], there does not exist circularity structure in the practically KBS. Based on this finding,
the research focuses on how to implement the inference on the acyclic FPN. Thus, the proposed
algorithm would only just consider the situation of the acyclic FPN model.

The related concepts of the proposed algorithm are listed as follows. (The assumption is that the
FPN model has its own n places and m transitions in the reasoning process.)

3.1. The Proposed Algorithm

In the algorithm, to compress the scale of the operational matrices, a bidirectional reasoning
algorithm is presented with combined highlights and a forward reasoning strategy with backward
reasoning mechanism. The backward reasoning mechanism is employed to seek the unnecessary
places and transitions to the forward reasoning strategy which is used to calculate the truth degree of
the goal on the simplified FPN. The entire flowchart is drawn as shown in Figure 1.

According to the flowchart in Figure 1, it is easy to find that the entire algorithm could be
divided into three phases. The Phases 1 and 2 execute the backward searching to find and remove the
unnecessary places and transitions of the goal output place. Phase 3 executes the forward searching to
calculate the truth degree of goal place based on the obtained simplest inference-path based on the
Phases 1 and 2.
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Figure 1. Flowchart of the Proposed Algorithm.

3.2. Implementation Steps

The implementation of the proposed algorithm could be separated into nine steps:
Step 1: Initialize the place vector, transition vector, and incidence matrix.
In the initial place vector X0 = (x1, x2, · · · , xn)

T , if place pi is the goal place, mark the
correspondence xi as 1. Else, xi is marked as 0. Moreover, each element of the initial transition
vector is marked as 0, where Y0 = (0, 0, · · · , 0)T .

Step 2: Assume i = 1.
First, calculate Yi = (−HT)⊗ Xi−1, Xi = HT ⊗ Yi ⊕ Xi−1, and i ++ repeatedly until Yi = Yi−1

is satisfied.
Then, execute X = Xi, Y = Yi. (In vector X, Y, one represents the related places or transition of

the goal place.)
Step 3: Make V = all locations of elements whose value is 0 in X, and W = the location of

elements whose value is 0 in Y. Then, using the proposed operators of delete rows and columns to
update the input weighted matrix A′, output belief strength matrix B′, threshold vector D′, and fuzzy
marking vector M′.

Step 4: Assume k = 0, Imax = (01, 02, · · · , 0n). Then, execute Ik+1 = A′T ·M′k.
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Step 5: Execute I′k+1 = IK+1ΘImax, and judge whether I′k+1 > Imax(previous). If it is true, it reveals
that a new transition can be enabled in the reasoning process. Then, execute Imax = Ik+1⊕ Imax(previous).
Else, I′k+1 = 0 and move to Step 9.

Step 6: Execute Sk+1 = ImaxΘD′, and judge whether Sk+1 ≥ D. Then, Fire the related transition.
Else, move to Step 9.

Step 7: Execute U′k+1 = B′ ⊗ Sk+1, where U′k+1 represents the belief strength of output place
with the fired transition in Step 6.

Step 8: Execute M′k+1 = U′k+1 ⊕M′k to get the latest update belief strength of all places. Then,
judge whether M′k+1 = M′k. If it is true, move to Step 9. Else, move to Step 4.

Step 9: The whole reasoning process is stopped, and the final result is recorded in M′k+1.

4. Analysis

This section presents the theoretical analysis of the proposed algorithm from two different
viewpoints: correctness and algorithm complexity.

4.1. Correctness

The analysis of correctness of the proposed algorithm is organized and based on two phases:
backward reasoning phase and forward reasoning phase.

In the backward reasoning phase, xk = 1 (k = 1, 2, · · · , n) means that pk is the goal in the initial
place vector.

When i = 1, perform Y1 = (−HT)⊗ X0, yj = max
1≤k≤n

(−hij × xk)(j = 1, 2, · · · , m). If hij = −1 and

xk = 1, then yj = 1 can be obtained (yj = 1 means pk ∈ tj
•). Then, Y1 = (−HT)⊗ X0 is used to add

the input transition tj of goal place pk into the transition vector Y.
In X1 = H ⊗ Y1 ⊕ X0, H ⊗ Y1 is analyzed first. Assume Z = H ⊗ Y1, where Zs = max

1≤k≤n
(hij ×

bj)(s = 1, 2, · · · , m). If hij = 1 and yj = 1, then Zs = 1 can be obtained where Zs = 1 means pk ∈• tj.
Hence, the function of Z = H ⊗Y is to add the input place of input transition tj of conclusion place pk
into the vector Z. Furthermore, X1 = H ⊗ Y1 ⊕ X0 = Z⊕ X0 reflects the set of related places of the
goal place pk.

In the repeated part of Figure 1, with the increasing of i(i = 1, 2, · · · , n), the equations Yi =

(−HT)⊗ Xi−1 and Xi = H ⊗ Yi ⊕ Xi−1, can also be easily understood based on the thinking of the
situation i = 1.

Based on the analysis above, the correctness of backward reasoning phase has been proven. In
comparison to the backward reasoning phase, the forward reasoning phase uses four equations to
implement the reasoning process.

When k = 0, I1 = A′T M′0. iz =
n
∑

j=1
wzj·mjz(z = 1, 2, · · · , m) is the input strength of each

transition. Then, I′k+1 = IK+1ΘImax.i′z =

{
iz iz ≥ izmax

0 else
(z = 1, 2, · · · , m) is used to judge whether

a new transition exists in the reasoning path. In addition, if there is a new transition, the equation
Imax = IK+1 ⊕ Imax(previous) will be used to update the newest data.

Sk+1 = ImaxΘD′. Sz =

{
izmax izmax ≥ µ

0 else
is used to judge which transitions can be enabled.

After firing the transition, M′k+1 = B ⊗ Sk+1 is used to record the belief strength of output place
related to the fired transition. To sum up, these equations in the forward reasoning phase are used to
judge the transition that can be fired and implement the reasoning process step by step.

After analyzing the function of each equation in these phases, the correctness of the proposed
algorithm has been proven.
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4.2. Algorithm Complexity

The algorithm complexity is presented in two phases.
In the backward reasoning phase, the algorithm is used to analyze the worst situation where only

one transition is added into the transition vector Y each time. In the (m + 1)th repeat, no transition can
be added into Y. Yi+1 = Y exists at this time. Thus, the biggest circle number is m + 1. Accordingly, the
matrix can implement parallel analysis and computation and the algorithm complexity of backward
reasoning phase is O(n×m).

After implementing the backward reasoning mechanism, the dimensions of the operational
matrices are reduced to (n− r)× (m− p) from n×m, where r, p are the number of irrelevant places
or transitions.

In the forward reasoning phase, the algorithm complexity is related to the dimension of
operational matrices. Thus, the algorithm complexity of forward reasoning algorithm is O((n −
r)× (m− p)).

To conclude this section, the proposed algorithm is summarized into two situations as follows.

1. In the worst situation, all places and transitions appear in the reasoning path. This means that
the backward reasoning mechanism is out of work. The algorithm complexity of the proposed
algorithm is O(n×m).

2. In other situations, the number of unconcerned places and transitions are r and p, and the
algorithm complexity of the proposed algorithm is O((n− r)× (m− p)).

5. Case Study

In this section, a numerical case study is reported to demonstrate the whole reasoning process of
the present reasoning algorithm, particularly the potential of the proposed method for simplifying the
inference process and reducing the algorithm complexity based different appointed output places.

In the experiment, the FPN models adopted in this study should meet three requirements to
reflect the algorithm feasibility. First, three types of FPN models are included in the model. Second,
the model should contain two or more of the final conclusions (i.e., output places). Third, other special
cases, such as a certain place where a pre-set is greater than or equal to two transitions or a subsequent
place that is greater than or equal to two transitions, is considered. This study accordingly uses the
fault diagnosis case for an integrated manufacturing system in the literature [26] to demonstrate the
proposed decomposition of the algorithm.

The corresponding FPN model is generated as shown in Figure 2 and the meaning of each place
is listed in Table 1.

Table 1. The meaning of each place of Figure 2.

Place Meaning

P1 molecular pump is not in proper position
P2 pressure exerted is too high
P3 temperature of cooling water is high
P4 cooling system failures
P5 pump is not drying enough
P6 air exhaust is not enough
P7 compressor operates in magnetic field
P8 roller bearing wears
P9 compressor is noisy
P10 temperature of bump is high
P11 blade of turbine wears
P12 blade of compressor is broken
P13 pressurization ratio of compressor is low
P14 blade of turbine is scales
P15 compressor is in turbulence
P16 blade of turbine breaks down
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Figure 2. The Fuzzy Petri net (FPN) of case study.

5.1. Relevant Experimental Data of the Case Study

Assume the initial marking vector is defined as follows.

M0 = (0.85, 0.7, 0.75, 0.8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

The H,−HT , A and B of the case study are illustrated as follows.

H =



1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
−1 0 0 1 0 0 0 0 0 0 0
0 −1 0 0 1 0 0 0 0 0 0
0 0 −1 0 0 1 0 0 0 0 0
0 0 0 −1 0 0 1 0 0 0 0
0 0 0 0 −1 −1 0 1 0 0 0
0 0 0 0 0 −1 0 0 1 0 0
0 0 0 0 0 0 −1 −1 0 1 0
0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 −1



−HT =



−1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 −1 −1 −1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 −1 −1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1





Symmetry 2018, 10, 192 9 of 15

A =



1 0 0 0 0 0 0 0 0 0 0
0 1 0.3 0 0 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0 0 0
0 0 0.2 0 0 0 0 0 0 0 0
0 0 0 0.5 0 0 0 0 0 0 0
0 0 0 0.5 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0.7 0
0 0 0 0 0 0 0 0 0 0.3 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



B =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0.9 0 0 0 0 0 0 0 0 0 0
0 0.8 0 0 0 0 0 0 0 0 0
0 0 0.9 0 0 0 0 0 0 0 0
0 0 0 0.8 0 0 0 0 0 0 0
0 0 0 0 0.95 0.9 0 0 0 0 0
0 0 0 0 0 0.7 0 0 0 0 0
0 0 0 0 0 0 0.9 0.95 0 0 0
0 0 0 0 0 0 0 0 0.9 0 0
0 0 0 0 0 0 0 0 0.8 0 0
0 0 0 0 0 0 0 0 0 0.95 0
0 0 0 0 0 0 0 0 0 0 0.8


5.2. Experiments

According to the case study, two experiments are designed based on different appointed goal
output place. In Experiment 1, the goal output place is p15. In Experiment 2, the goal output place is
changed to p16.

5.2.1. Experiment One

Experiment 1 aims at trying to get the truth degree of p15 in Figure 2.
The initial place vector X and transition vector Y are demonstrated as follows.

initial X = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)T initial Y = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

After performing the backward reasoning phase, the relevant vectors and matrices are gained
as follows.

X′ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0)T Y′ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)T

According to the X′, Y′, the reasoning path of goal place p15 is demonstrated as shown in Figure 3
after deleting the irrelevant element in FPN.
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After executing Phases 1 and 2 of the proposed algorithm, the subnet of the goal output place is
obtained as shown in Figure 3. The related data (including vectors and matrices) are also modified
based on the result of previous phases. The simplified data are given below.

M′0 = (0.85, 0.7, 0.75, 0.8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T D′0 = (0.3, 0.2, 0.3, 0.3, 0.1, 0.2, 0.3, 0.2, 0.2, 0.2)T

A′ =
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0 0 0 0.5 0 0 0 0 0 0
0 0 0 0.5 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0.7 0.3 0


Based on the modified data, the details of performing the forward reasoning strategy are

demonstrated, as shown in Tables 2 and 3, respectively.
According to Table 3, it is easy to get that the final truth degree of p15 is 0.582415 after repeating

the inference process five times.
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Table 2. The recovery procedure of output strength vector of Experiment 1.

Repeat Output Strength Vector

1st (0.85, 0.9, 0.865, 0, 0, 0, 0, 0, 0, 0)T

2nd (0.85, 0.9, 0.865, 0.3825, 0.72, 0.7785, 0, 0, 0, 0)T

3rd (0.85, 0.9, 0.865, 0.3825, 0.72, 0.7785, 0.306, 0.70065, 054495, 0)T

4th (0.85, 0.9, 0.865, 0.3825, 0.72, 0.7785, 0.306, 0.70065, 054495, 0.613069)T

5th (0.85, 0.9, 0.865, 0.3825, 0.72, 0.7785, 0.306, 0.70065, 054495, 0.613069)T

Table 3. The forward reasoning process of Experiment 1.

Repeat M′

1st (0.85, 0.9, 0.85, 0.85, 0, 0.765, 0.72, 0.7785, 0, 0, 0, 0, 0, 0)T

2nd (0.85, 0.9, 0.85, 0.85, 0, 0.765, 0.72, 0.7785, 0.306, 070065, 054495, 0, 0, 0)T

3rd (0.85, 0.9, 0.85, 0.85, 0, 0.765, 0.72, 0.7785, 0.306, 0.70065, 0.54495, 0.665618, 0.490455, 0)T

4th (0.85, 0.9, 0.85, 0.85, 0, 0.765, 0.72, 0.7785, 0.306, 0.70065, 0.54495, 0.665618, 0.490455, 0.582415)T

5th (0.85, 0.9, 0.85, 0.85, 0, 0.765, 0.72, 0.7785, 0.306, 0.70065, 0.54495, 0.665618, 0.490455, 0.582415)T

5.2.2. Experiment Two

Experiment 2 is meant to try to calculate the truth degree of another output place p16 by using the
same FPN model shown in Figure 2.

The initial place vector X, transition vector Y are demonstrated as follows.

initial X = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)T initial Y = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

After performing the backward reasoning phase, the relevant vectors and matrices are gained
as follows.

X′ = (0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1)T Y′ = (0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1)T

According to the X′, Y′, the reasoning path of goal place p16 is demonstrated as shown in Figure 4
after deleting the irrelevant element in FPN.
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After executing Phases 1 and 2 of the proposed algorithm, the subnet of the goal output place is
obtained as shown in Figure 4. The related data (including vectors and matrices) are also modified
based on the result of previous phases. The simplified data are given below.

M′0 = (0.7, 0.75, 0.8, 0, 0, 0, 0, 0)T D′0 = (0.3, 0.2, 0.2, 0.3)T
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A′ =



0.3 0 0 0
0.5 0 0 0
0.2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


B′ =



0 0 0 0
0 0 0 0
0 0 0 0

0.9 0 0 0
0 0.7 0 0
0 0 0.8 0
0 0 0 0.8



A′T =


0.3 0.5 0.2 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


Based on the modified data, the details of the forward reasoning are demonstrated, as shown in

Tables 4 and 5, respectively.

Table 4. The recovery procedure of output strength vector of Experiment 2.

Repeat Output Strength Vector

1st (0.745, 0, 0, 0)T

2nd (0.745, 0.6705, 0, 0)T

3rd (0.745, 0.6705, 0.46935, 0)T

4th (0.745, 0.6705, 0.46935, 0.37548)T

5th (0.745, 0.6705, 0.46935, 0.37548)T

Table 5. The forward reasoning process of Experiment 2.

Repeat M′

1st (0.7, 0.75, 0.8, 0.6075, 0, 0, 0)T

2nd (0.7, 0.75, 0.8, 0.6075, 0.46935, 0, 0)T

3rd (0.7, 0.75, 0.8, 0.6075, 0.46935, 0.37548, 0)T

4th (0.7, 0.75, 0.8, 0.6075, 0.46935, 0.37548, 0.300384)T

5th (0.7, 0.75, 0.8, 0.6075, 0.46935, 0.37548, 0.300384)T

According to Table 5, it is easy to get that the final truth degree of p16 is 0.300384 after repeating
the inference process five times.

5.3. Analysis of Experiments 1 and 2

The two experiments used the same FPN model to calculate the truth degree of different output
places. Although these inferences are implemented under the same framework, the details of the
inference are different. Table 6 illustrates the comparison of the two experiments from the viewpoint
of the related operational matrices.

Table 6. Comparison of Experiments.

Related Matrices Experiment One Experiment Two

Original Matrices H,A and B 16 × 11 16 × 11
−HT 11 × 16 11 × 16

In backward reasoning phase A′ and B′ 16 × 11 16 × 11
A′T 11 × 16 11 × 16

In forward reasoning phase A′ and B′ 14 × 10 7 × 4
A′T 10 × 14 4 × 7
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In Table 6, it easily found that the scale of the operational matrices is compressed. In the case
of Experiment 2, the scale of the original matrices A and B are 16 × 11 and −HT is 11 × 16. In the
backward reasoning phase, these matrices are unitized to seek the reasoning path for the goal place.
Then, irrelevant places and transitions are deleted by implementing operators. Finally, the dimensions
of related matrices are reduced from 14 × 10 and 10 × 14 to 7 × 4 and 4 × 6, because the forward
reasoning phase is executed in the individual reasoning path as shown in Figure 4.

In the existing literature, the fault diagnosis mechanism using FPN algebra is that all elements
(including places and transitions) of the FPN model are used to execute the fault diagnosis. However,
with the rapidly increasing scale of FPN, the number of unrelated places and transitions of the goal
outplace in a large-scale FPN is also increased. Hence, the biggest feature of the proposed algorithm
is that the complexity of inference is adjusted by different goal places because of the removal of
unnecessary places and transitions of the goal output places. The case study is a typical instance to
indicate this advantage. Although these two experiments are implemented on the same FPN, the scales
of related matrices are compressed from 16 × 11 and 11 × 16 to 7 × 4 and 4 × 7 based on the different
reasoning paths.

In summary, the proposed mechanism will adjust the dimension of the related operational
matrices and vectors in the reasoning process automatically because the individual reasoning path will
be recognized based on different goal places. By implementing the fault diagnosis using large-scale
FPNs, the inference process is more flexible and closer to human thinking

6. Conclusions

Focusing on the side-effect of state explosion issue of FPN, a bidirectional adaptive fault diagnosis
algorithm has been presented in this paper to control the dimensions of the operational matrices
and simplify the reasoning process by removing the irrelated elements (i.e., places and transitions)
in a large-scale FPN model. In the proposed algorithm, the algorithm was implemented in three
phases. Firstly, backward reasoning mechanism was executed to find the unconcerned places and
transitions. Secondly, the delete row and column commands were used to compress the dimensional
of the corresponding operational matrices. Finally, forward reasoning was implemented to calculate
the truth degree of the goal place. After undergoing the three phases, a theoretical analysis was carried
out to prove the feasibly and validity of the proposed algorithm from two aspects: correctness and
algorithm complexity. Using the analysis, a case study of fault diagnosis was used to illustrate the
whole implementation process. From the results of two experiments, it is easy to find that the proposed
algorithm can overcome the state explosion issue effectively because the places and transitions that are
not involved in the reasoning path will be removed automatically.
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