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The Q-switched pulse regime is demonstrated by integrating conductive graphene as passive saturable
absorber producing relatively high instantaneous peak power and pulse energy. The fabricated conduc-
tive graphene is investigated using Raman spectroscopy. The single wavelength Q-switching operates at
1558.28 nm at maximum input pump power of 151.47 mW. As the pump power is increased from thresh-
old power of 51.6 mW to 151.47 mW, the pulse train repetition rate increases proportionally from 47.94

kHz to 67.8 kHz while the pulse width is reduced from 9.58 s to 6.02 ps. The generated stable pulse pro-
duced maximum peak power and pulse energy of 32 mW and 206 n]J, respectively. The first beat node of
the measured signal-to-noise ratio is about 62 dB indicating high pulse stability.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Q-switching operations can be realized by either active or
passive approach. The passively Q-switched technique is rather
preferred by researchers as it offers simplicity and flexibility [1]
in terms of cavity design. Passively Q-switching does not require
external component to modulate its intracavity loss, instead,
saturable absorbers (SA) is used to accommodate the function.
Various starting material such as graphene, graphite, carbon nan-
otubes, and topological insulators (TI) [2] have been adapted and
investigated as SAs and researchers is still searching for the ideal
SA as yet. Saturable absorber based on graphene nano-particles is
investigated to obtain evanescent-wave mode-locking regime at
which is proven to be a better integration method of the graphene
SA as compared to traditional technique which often involves the
SA being sandwiched between two fiber ends. The technique yields
an improved light transmittance as well as higher modulation
depth [3]. Similarly, the SA integration method was also done
differently by Lin et al. [4] whom directly imprinted graphite
nano-particles on a thinly scribed polyvinyl alcohol (PVA) on a
fiber end. This method was claimed to improve the mode-locking
performance of the laser by reducing the loss normally induced
by the SA’s thickness. Single walled carbon nanotubes was investi-
gated as SA with different concentrations and thickness in generat-
ing mode-locked laser where it is found that certain level of
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concentration and thickness can be varied to be applied for better
performance in certain applications [5]. Bismuth (II) Telluride
(Bi,Tes) topological insulator has also been widely used as SA. A
sub-picosecond pulse width of 403 fs was successfully obtained
through soliton compression [6].

When first discovered in 2004, graphene is directed towards
electronic applications due its excellent electronic properties, but
it is further utilized in optical fibres not long after, for its intrinsic
optical properties. Graphene consisted of a single atomic layer of
sp? hybridized carbon atoms arranged in a honeycomb structure
[7] and is known for their ultrahigh carrier mobility, thermal con-
ductivity and mechanical strength. Graphene is made commer-
cially available due to the convenience of printing and mass
production of said material. A research by Secor et al. [8] on the
inkjet printing of conductive graphene shows that the end product
demonstrated uniform morphology, compatible with flexible sub-
strate and bending stresses tolerance. Conductive graphene among
many other derivatives of graphene, have been put use to many
applications involving antennas [9-12] and other electronic
devices, such as demonstrated by Dragoman et al. [9], Sayeed
et al. [10] and Akbari et al. [11]. Dragoman makes use of the
graphene resistivity to control the antenna gain by tuning the
graphene’s gate voltage while Sayeed fabricated a flexible
graphene-based antenna to overcome the drawbacks of commonly
used conductor, copper. Another research is also based on conduc-
tive graphene antennae for wearable electronics, indicating
graphene as mechanically stable material. The advantages offered
by conductive graphene is owed to graphene’s own stable
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Fig. 1. Raman spectra of graphene film.

mono-atomic structure [13,14]. In the field of fiber lasers and pho-
tonics, graphene has been best shown to demonstrate excellent
optical properties [15] including ultrawide spectral range due to
the linear dispersion of Dirac electrons [1], gapless energy band
gap [16], broadband saturable absorption, and ultrafast recovery
time among others which allows for ultrashort pulse generation.
These optical properties in graphene are used and exploited as sat-
urable absorbers in optical fibres in order to come up with various
ranges of practical applications. This work demonstrated the alter-
native use of conductive graphene as saturable absorber in pulse
laser generation, showing ample performance and stability.

To date, numerous works have been reported on the utilization
of graphene and its derivatives in pulse laser generation. Graphene
oxide (GO) based SA is reported to generate maximum peak power
of 16.6 mW [17]. Sobon et al. [18] reported the use of reduced gra-
phene oxide producing a maximum of 125 nJ pulse energy. Besides,
in Q-switched regime, graphene SA have also been demonstrated
by exfoliating graphene flakes, generating 40 n] maximum pulse
energy [19]. Bogulawski et al. [20] demonstrated the effect of vary-
ing layer of GO paper on the laser performance where the highest
pulse energy is reported at 36.5 pJ. Monolayer graphene as SA is
also demonstrated achieving maximum pulse energy of 2.75 nJ.
We demonstrated the generation of Q-switched pulse with 32
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mW of instantaneous peak power and 206 n] of pulse energy by
integrating a droplet of conductive graphene solution in Erbium
doped fiber laser in ring cavity.

Material preparation and characterization

The Graphene solution was prepared by diluting 15 ml of the
commercial ultra-high concentration graphene dispersion (23 wt%
graphene) in 5 ml n-Butyl acetate solvent. Then 1.5 ml of ethyl
cellulose collide is added to the dispersion as binding material to
increase its adhesion to the substrate. Subsequently, the combina-
tion was ultrasonicated for 30 min and then stirred for 24 h. The
graphene thin layer can be prepared in few method namely drop
casting, spin coating and spray methods. In order to study the
defects or disorder in the material and to quantify the number of
layers of the graphene samples, the prepared graphene samples
were characterized using Raman spectrometer (WiTec Alpha
300R) with excitation wavelength of 532 nm at room temperature.

Fig. 1 shows Raman spectra of the graphene film. The spectra;
the sharp peaks which reflects the film'’s crystallinity. The spectra
shows three intense features D, G, and 2D bands along the spectra
at almost 1351 cm™!, 1578 cm ™! and 2712 cm™ !, respectively [1].
The D band indicates phonon scattering at defected sites and impu-
rities in sp? bonds which are obviously negligible as seen in the
spectrum. The long G band is attributed to sp?> phonon vibrations
[2]. The 2D band is found at the higher wavelength in the spectra
and doesn’t represent defection. However, it confirms the presence
of graphene and it originates from a double resonance process that
links phonons to the electronic band structure [7]. The shapes of
(G) and (2D) bands indicate that the used graphene is multilayer
graphene flakes. The calculated intensities ratio I,p /I was 0.6; this
ratio, together with the low intensity of the D band and the sharp
symmetric 2D band are often used to confirm the low defects in the
graphene samples.

Graphene samples were also drop casted on glass substrates to
measure its electrical conductivity using the four-point probe.
Since the generated films are not completely uniform, the mea-
surements were done at different random sites on each sample
and then calculating the average value. Fig. 2, describes the influ-
ence of the sheet resistance (Rs) by the film thickness.

The results shows that the graphene films present good electri-
cal conductivity. However, the variation in sheet resistance might
be due to presence of minor defects. Fig. 2, describes how the sheet
resistance decreases as increasing coated film thickness where it
was significantly decreased from about 26 Q/o at 5.7 um to
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Fig. 2. Influence of the sheet resistance by the thickness of the graphene films.
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Fig. 4. OSA trace without SA and with SA.

almost 7 Q/o at 11.4 um. however, the sheet resistance remains
steady within 11 pm to 22 pm thick.

Experimental set-up
The experimental setup of the Q-switched laser is as shown in

Fig. 3. The newly fabricated diluted graphene is dropped on one
end of a fiber ferrule and let dry before integrated in the laser
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cavity by mating it with another ferrule using a connector. A 1 m
long Erbium-doped fiber (EDF) was used as the gain medium.
The setup also consist of a 980/1550 nm wavelength division mul-
tiplexer (WDM), an isolator, the newly fabricated graphene as SA,
and a 95/5 output coupler, arranged in a ring configuration. The
core and cladding diameter of the EDF is 8 um and 125 pm respec-
tively. The numerical aperture of the EDF is 0.16 and has Erbium
ion absorptions of 45 dB/m at 1480 nm and 80 dB/m at 1530 nm.
The EDF was pumped by a 980 nm laser diode via the WDM. The
use of an isolator ensures unidirectional propagation of the oscil-
lating laser. The output of the laser was tapped from the cavity
through a 95/5 coupler while keeping 95% of the light to oscillate
in the ring cavity. The spectrum of the EDFL was inspected by using
the optical spectrum analyzer (OSA) with a spectral resolution of
0.05 nm, whereas the oscilloscope was used to observe the output
pulse train via a 460 kHz bandwidth photo-detector.

Experimental results

The laser started to operate in Q-switched regime at 51.6 mW
threshold. The optical spectrum of the laser before and after the
SA integration is shown in Fig. 4, recorded at maximum possible
input pump power of 151.47 mW. The Q-switched laser oscillated
at around 1558.28 nm with SA integration compared to 1561.13
nm without the SA. The shifted of the central operating wavelength
is due to loss induced by conductive graphene based SA. Carbon
based materials such as Graphene is known for having high non
saturable losses and low modulation depth [21]. An adequate level
of modulation depth is required to achieve a securely stable Q-
switching operation as well as to suppress the oscillations of para-
sitic continuous wave that can be seen as a sharp peak in Fig. 4.
This spectral peak can be suppressed by increasing the modulation
depth of the SA. The spectral peak formation can also be caused by
the reflection of light interference between the optical connectors
in the laser cavity [22]. An addition of a polarization controller (PC)
in the laser cavity can help in inhibiting parasitic lasing due to the
losses in the cavity, thus optimizing the spectrum shape of the
pulsed laser operation [23].

Fig. 5(a) shows the pulse train of the laser operating at maxi-
mum incident pump power of 151.47mW. The generated stable
pulse train is at 67.8 kHz with the full width at half maximum
taken as the shortest pulse width of 6.02 pis as shown in the single
pulse envelope in Fig. 5(b). Beyond the maximum pump power of
151.47 mW, the Q-switching pulses diminished and can only be
recovered by reducing the pump power back to 151.47 mW and
below. Hence, no pulse envelop is formed in the output pulse train
above the maximum input pump power. Q-switched mode-locking
regime which is caused by the large oscillations of the laser’s pulse
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Fig. 5. (a) Pulse train of 67.8 kHz at maximum input power (b) Single pulse envelope of the shortest pulse width of 6.02 ps.
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Fig. 8. RFSA measurement signal to noise ratio with first beat note of 62 dB with
500 kHz span.

energy is not observed even at a higher pumping level. This regime
is possible if proper alignment and optimization of the laser cavity
[24] is done to allow for accurate control of the cavity’s parameters
[25] in order to assist mode-locking pulses formation.

To further analyze the dependency of the repetition rate and
pulse width on the input pump power, the relation of repetition
rate and pulse width as function of pump power is illustrated in
Fig. 6. The repetition rate increases from 47.94 kHz to 67.8 kHz,
almost linearly with the increasing pump power. As the input
pump power is increased from 51.6 mW to 151.47 mW, the pulse
width is reduced from 9.58 ps to 6.02 ps, indicating inversely pro-
portional trend as can also be seen in other previously reported
works [26,27]. From the recorded repetition rate and pulse width,

the instantaneous peak power and pulse energy is calculated and
tabulated in Fig. 7. The peak power and pulse energy increases
proportionally as the input pump power is tuned from 51.6 mW
to 151.47 mW. The maximum peak power and pulse energy
recorded is at 32.26 mW and 206.62 n], respectively, higher than
the reported ones based on 2D material as saturable absorber
[16,17,27-30].

The stability of the generated Q-switched pulse, the radio
frequency spectrum analyzer (RFSA) is used. The measurement of
the RFSA is as plotted in Fig. 8. The first beat node at fundamental
repetition rate of 67.8 kHz is about 62 dB, higher than other
reported signal-to-noise ratio (SNR) in previous works [19,31]
indicating high pulse stability.

Conclusion

The proposed experimental works by using conductive gra-
phene as passive saturable absorber in generating Q-switched
pulse laser is successfully demonstrated. This work revealed high
generated instantaneous peak power and pulse energy and the
performance of the pulse laser is as discussed.
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