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Free vibration of laminated conical shell frusta of variable thickness is studied using spline approximation. This
problem includes first order shear deformation and considers shells as antisymmetric angle-ply orientation. The
governing differential equations of the shells are resolved in terms of displacement functions and rotational func-
tions. These functions are approximated using splines and the method of collocation is adopted for simultaneous
algebraic equations. These equations become generalized eigenvalue problems and are solved numerically to avail
eigenfrequencies and the corresponding eigenvectors. The variation of frequencies is analysed with respect to the
cone angle, aspect ratio, material properties, number of layers, and thickness variation.

1. INTRODUCTION

To build a stable and sturdy construction in engineering in-
dustries, it is necessary to study the vibration analysis of the
structures. This means that the structures should be designed
with consideration to factors such as frequency parameter, ma-
terials, and orientation in order to construct highly reinforced
structures. Thin shells play an important role as structural el-
ements in industries because of their great range of desirable
properties such as high degrees of reserved strength and struc-
tural integrity. Large-span roofs, water tanks, aircraft, and sub-
marine are all examples of shell structures that can be found in
engineering industries. Shell structures made up of compos-
ite materials have been used significantly as they possess high
specific stiffness, better damping, and shock absorbing charac-
teristics.

The study of conical shells enables engineers to meet the
demand of industries. A number of analytical and numerical
studies were conducted on the static and free vibration anal-
ysis of conical shells. Free vibration of laminated conical
shells was studied by Wu and Wu using asymptotic differential
quadrature (DQ) solutions.1 Tong developed a solution using
power series method to solve free vibration of orthotropic con-
ical shells using the Donnell-type classical shell theory with
and without shear deformation effects.2–4 Shu conducted a free
vibration analysis on composite laminated conical shells us-
ing generalized quadrature method (GDQ) where the method
approximate a spatial derivative of a function with respect to
a coordinate at a discrete point as a weighted linear sum of

all the functional values in the whole domain.5 GDQ was
also used by Ng et al. to investigate the orthotropic influence
of composite materials on frequency characteristics for a ro-
tating thin truncated circular symmetrical cross-ply laminated
composite conical shell with different boundary conditions.6

Civalek presented discrete singular convolution method (DSC)
for the vibration analysis of conical shells.7 Civalek contin-
ued this research, determining the frequencies of the free vi-
bration of laminated conical shell including shear deformation
theory.8 Liew et al. and Liew and Zhou used element-free kp-
Ritz method to study the free vibration of conical shells and
functionally graded conical shells respectively.9, 10

Studies on vibration of conical shells were conducted by
Viswanathan et al. for free vibration of cross-ply and angle-ply
laminated truncated shells using spline method.11–13 A study
on free vibration analysis of multiple delaminated angle-ply
composite conical shells using finite element method (FEM)
was performed by Dey and Karmakar using QR iteration al-
gorithm.14 In order to study the free vibration of simply sup-
ported circular cylindrical shells, a semi-analytical procedure
was introduced by Farshidianfar and Olizadech for simply-
supported boundary condition.15 A modified Fourier series
was used by Jin et al. to analyse the vibration of truncated
conical shells with general boundary conditions and the effect
of elastic restraint parameters, semi-vertex angle and the ratio
of length to radius.16

Malekzadech and Daraie presented a study on the dynamic
behaviour of functionally graded (FG) truncated conical shells
subjected to asymmetric internal ring-shaped moving loads.17
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He used FEM alongside Newmark’s time integration scheme
to discretize the equations of motion in the spatial and tem-
poral domain, respectively to solve the problem. Ma et al.
used Fourier-Ritz method to solve the problem for free and
forced vibration analysis of coupled conical-cylindrical shells
with arbitrary boundary conditions.18 Free vibration analysis
of fibre reinforced composite (FRC) conical shells resting on
Pasternak-type elastic foundation was investigated by Zaroumi
et al. using Galerkin and Ritz methods.19 A study on coni-
cal shells was conducted by Heydarpour et al. in which they
applied the differential quadrature method (DQM) to solve
free vibration analysis of rotating functionally graded carbon
nanotube-reinforced composite truncated conical shells based
on the first order shear deformation theory of shells.20

The vibration analysis of conical shells with variable thick-
ness has been studied by some researchers using a few meth-
ods. Irie et al. analysed free vibration of truncated conical
shell with variable thickness through use of the transfer ma-
trix approach.21 Sankaranarayanan et al. conducted a study
on vibrations of laminated conical shells of variable thickness
based on classical thin shell theory using Rayleigh-Ritz pro-
cedure.22 Takahashi et al. used Ritz method to study the vi-
bration of conical shells with variable thickness.23 Sivadas and
Ganesan studied the free vibration of cantilever conical shells
with variable thickness by using semi-analytical finite element
method.24 Later, they performed a study on the vibration of
laminated conical shells with variable thickness using the same
method.25 Kang proposed a three-dimensional (3D) method of
analysis for determining the free vibration frequencies of com-
plete conical shells with linearly varying thickness.26 Selahi et
al. developed a hybrid method based on 3D elasticity theory
for transient analysis of FG truncated conical shell with vari-
able thickness.27 Also, Mehdi et al. conducted a thermo-elastic
analysis of axially functionally graded rotating thick truncated
conical shells with varying thickness using multi-layer method
(MLM).28

This study investigates free vibration of antisymmetric
angle-ply conical shells with linear and exponential varia-
tion in thickness under first order shear deformation theory
(FSDT). The spline function approximation technique used
here is preferable to other methods, since, in this study, a chain
of lower order approximations can yield greater accuracy than
a global higher order approximation. Also, polynomials of
high degrees when applied to a large number of given data
points tends to exhibit more numerous undulations than a curve
drawn by spline. Hence, spline function is a more adaptable
approximating function than a polynomial involving a compa-
rable number of parameters. Another disadvantage of poly-
nomial approximations is that, if the function to be approxi-
mated is badly behaved anywhere in the interval of approxima-
tion, then the approximation is poor everywhere. This global
dependence on local properties is avoidable with the use of
splines. This conjuncture was made and tested by Bickley over
a two-point boundary value problem with a cubic spline.29 The
layers of conical shell are considered to be thin, elastic, and
specially orthotropic or isotropic. Stress-strain relations and
strain-displacement relations are substituted into the equilib-
rium equation of the conical shell to obtain the governing dif-
ferential equations in terms of mid-plane displacement compo-

nents and shear rotation. Governing differential equations are
assumed in the separable form and then reduced to a system of
ordinary differential equations on a set of displacement func-
tions. Bickley-type spline is used to approximate the displace-
ment functions. The field equations along with the equations
of boundary conditions reduced into a system of homogenous
simultaneous algebraic equations on the assumed spline coeffi-
cients. The clamped-clamped and simply-supported boundary
conditions are considered. The frequencies are obtained us-
ing eigensolution techniques since the problem is considered
as eigenvalue problem with spline coefficients as eigenvectors.
For this work, two types of layered materials are used and ar-
ranged in antisymmetric angle-ply orientation. The thickness
variation, cone angle, aspect ratio, circumferential node num-
ber, and boundary conditions are taken into consideration in
calculating the frequency parameters. The findings are pre-
sented and discussed in terms of graphs and tables.

2. THEORETICAL FORMULATION

Consider a composite laminated truncated conical shell with
an arbitrary number of layers that are perfectly bonded to-
gether. The orthogonal coordinate system x, θ, z is fixed at
its reference surface, which is assumed to be at the middle
surface. The radius of the cone at any point along its length
is r = x sinα. The radius at the small end of the cone is
ra = a sinα, the other end is rb = b sinα and 1 is the length
of the cone.

The displacement components are assumed to be in the form

u(x, θ, z, t) = u0(x, θ, t) + zψx(x, θ, t);

v(x, θ, z, t) = v0(x, θ, t) + zψθ(x, θ, t);

w(x, θ, z, t) = w0(x, θ, t); (1)

where u0, v0, and w0 are the displacements of the shell in
the mid-plane, ψx and ψθ are the shear rotations of any point
on the middle surface of the shell.11 The stress-resultants and
moment-resultants are given as

(Nx, Nθ, Nxθ, Qxz, Qθz) =

∫
z

(σx, σθ, τxθ, τxz, τθz)dz;

(Mx,Mθ,Mxθ) =

∫
z

(σx, σθ, τxθ)dz. (2)

The equations of stress-resultants and moment-resultants are
obtained as follows:

Nx
Nθ
Nxθ
Mx

Mθ

Mxθ

 =


A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

 ·


∂u0

∂x
1
xu0 + 1

x sinα
∂v0
∂θ + 1

x tanαw
1

x sinα
∂u0

∂θ + ∂v0
∂x −

1
xv0

∂ψx
∂x

1
xψx + 1

x sinα
∂ψθ
∂θ

1
x sinα

∂ψx
∂θ + ∂ψθ

∂x −
1
xψθ

 ;

(3)
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Table 1. Convergence study of fundamental frequency parameter λ of anti-
symmetric angle-ply conical shells with linear thickness variation using KGE-
KGE material combination under C-C boundary conditions.

β = 0.5, γ = 0.05, η = 0.75

N λ1 % change
4 0.437932 —
6 0.336534 –23.154
8 0.295677 –12.141

10 0.275403 –6.857
12 0.263968 –4.152
14 0.256922 –2.669
16 0.252287 –1.804
18 0.249081 –1.271
20 0.246774 –0.926

and[
Qθz
Qxz

]
= K

[
A44 A45

A45 A55

] [
ψθ + 1

x sinα
∂w
∂θ −

1
x tanαv0

ψx + ∂w
∂x

]
;

(4)
where we define the elastic coefficients Aij , Bij , and Dij as
extensional stiffness, bending-extensional coupling stiffness,
and bending stiffness respectively and K is the shear correc-
tion factor. The value for the shear correction factor K is cho-
sen from the lamination scheme. The procedure for finding the
values of shear correction factors have been explored by Whit-
ney.30 The elastic coefficientsAij ,Bij , andDij corresponding
to layers of uniform thickness with superscript ‘c’ are assumed
to be in the form

Aij = Acijg(x); Bij = Bcijg(x); Dij = Dc
ijg(x);

Acij =
∑
k

Q
(k)

ij (zk − zk−1),

Bcij =
1

2

∑
k

Q
(k)

ij (z2
k − z2

k−1),

Dc
ij =

1

3

∑
k

Q
(k)

ij (z3
k − z3

k−1) for i, j = 1, 2, 6;

Acij = K
∑
k

Q
(k)

ij (zk − zk−1) for i, j = 4, 5; (5)

and zk−1 and zk are boundaries of k-th layer.
In this study, the thickness variation of the k-th layer of the

shell is assumed in the form of

hk(x) = h0kg(x); (6)

where g(x) = 1 + Cl(x − xa/l) + Ce exp(x − xa/l), Cl =
1/η − 1, η is the taper ratio, h0k is a constant thickness of the
k-th layer, l = b−a is the length of the cone, xa is the distance
from origin to x = a (small end of the cone), andCl andCe are
the coefficients of linear thickness in variation. The thickness
of the shell becomes uniform when g(x) = 1.

The displacement components u0, v0, w and shear rotations
ψx, ψθ are assumed in the separable form given as

u0(x, θ, t) = U(x)enθeiωt;

v0(x, θ, t) = V (x)enθeiωt;

w(x, θ, t) = W (x)enθeiωt;

ψx(x, θ, t) = ΨX(x)enθeiωt;

ψθ(x, θ, t) = ΨΘ(x)enθeiωt; (7)

Table 2. Comparison of fundamental frequency for isotropic conical shells
(α = 45◦).

n Irie et al. Lam and Hu Daneshjou et al. Jin et al. Present
1 0.8120 0.8452 0.8128 0.8119 0.8427
2 0.6696 0.6803 0.6713 0.6695 0.7488
3 0.5430 0.5553 0.5449 0.5428 0.5609
4 0.4570 0.4778 0.4588 0.4566 0.4953
5 0.4095 0.4395 0.4108 0.4089 0.4299

where ω is the angular frequency of vibration, t is the time, and
n is the circumferential node number. The non-dimensional
parameters are written as follows:

X =
x− a
l

, a ≤ x ≤ b and X ∈ [0, 1];

λ = ωl

√
I1
A11

– frequency parameter;

γ =
h

ra
, γ′ =

h

a
– ratios of thickness to radius and to length;

β =
a

b
– length ratio;

δk =
hk
h

– relative layer thickness of the k-th layer. (8)

The thickness hk(X) of the k-th layer at X distance from the
smaller end of the cone can be written as

hk(X) = h0kg(X); (9)

where g(X) = 1 + Cl(X) + Ce exp(X).

Substituting Eqs. (3) and (4) into the equation of motion of
conical shells and applying the condition of antisymmetric in
angle-ply laminates (i.e., A16, A26, A45, B11, B12, B22, B66,
D16 and D26 are identically zero), the differential equations
in terms of displacement functions and rotational function are
obtained.12 Then, applying Eq. (7) into the obtained differen-
tial equations and using the non-dimensional parameters given
in Eq. (8), we get a new differential equation in terms of X
written in matrix form as


L11 L12 L13 L14 L15

L21 L22 L23 L24 L25

L31 L32 L33 L34 L35

L41 L42 L43 L44 L45

L51 L52 L53 L54 L55



U
V
W
ΨX

ΨΘ

 =


0
0
0
0
0

 . (10)

The differential operators Lij of the matrix are given in Ap-
pendix A.

3. SOLUTION PROCEDURE

3.1. Spline Collocation Method

The displacement functions U(X), V (X), W (X) and shear
rotational functions ΨX , ΨΘ are approximated by the cubic
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Table 3. Effect of taper ratio on fundamental frequency parameter for two-layered and four-layered antisymmetric angle-ply shells under C-C boundary condition.

η λ

(C-C) 30◦/−30◦ 45◦/−45◦ 60◦/−60◦ 30◦/−30◦/30◦/−30◦ 45◦/−45◦/45◦/−45◦ 60◦/−60◦/60◦/−60◦

0.5 1.705182 1.490318 2.29726 1.42444 1.32304 1.970109
0.7 1.708879 1.490695 2.276687 1.42754 1.31681 1.965038
0.9 1.718141 1.490702 2.262988 1.42894 1.31159 1.959725
1.1 1.713475 1.491801 2.245690 1.42962 1.30378 1.952383
1.3 1.722526 1.491454 2.234581 1.43036 1.30173 1.947813
1.5 1.716608 1.491069 2.224776 1.42981 1.29638 1.942269
1.7 1.717887 1.490648 2.216387 1.42835 1.29303 1.934020
1.9 1.721095 1.490266 2.208637 1.42738 1.28982 1.933757

Table 4. Effect of taper ratio on fundamental frequency parameter for two-layered and four-layered antisymmetric angle-ply shells under S-S boundary condition.

η λ

(S-S) 30◦/−30◦ 45◦/−45◦ 60◦/−60◦ 30◦/−30◦/30◦/−30◦ 45◦/−45◦/45◦/−45◦ 60◦/−60◦/60◦/−60◦

0.5 1.300378 1.403061 2.046212 0.992034 1.276639 1.51583
0.7 1.275566 1.397328 1.914694 0.930002 1.236238 1.47639
0.9 1.204745 1.381609 1.864453 0.887438 1.175017 1.47844
1.1 1.146880 1.369522 1.819716 0.876579 1.152948 1.44300
1.3 1.102348 1.119105 1.776701 0.876694 1.133833 1.44309
1.5 1.056352 1.100282 1.736113 0.842458 1.116575 1.43035
1.7 1.020276 1.10031 1.662452 0.829011 1.116822 1.41038
1.9 0.988152 1.100148 1.665756 0.829124 1.116575 1.40947

Table 5. Effect of exponential variation of thickness on fundamental frequency parameter for two-layered and four-layered antisymmetric angle-ply shells under
C-C boundary condition.

Ce λ

(C-C) 30◦/−30◦ 45◦/−45◦ 60◦/−60◦ 30◦/−30◦/30◦/−30◦ 45◦/−45◦/45◦/−45◦ 60◦/−60◦/60◦/−60◦

–0.2 0.942119 1.11540 1.55161 0.29646 0.42921 1.000617
–0.1 0.945672 1.12045 1.55612 0.29991 0.43544 1.004171
0.0 0.947293 1.12161 1.55801 0.30153 0.43848 1.005617
0.1 0.948080 1.12232 1.55890 0.30239 0.44019 1.006293
0.2 0.948461 1.12269 1.55939 0.30290 0.44124 1.006645

Table 6. Effect of exponential variation of thickness on fundamental frequency parameter for two-layered and four-layered antisymmetric angle-ply shells under
S-S boundary condition.

Ce λ

(S-S) 30◦/−30◦ 45◦/−45◦ 60◦/−60◦ 30◦/−30◦/30◦/−30◦ 45◦/−45◦/45◦/−45◦ 60◦/−60◦/60◦/−60◦

–0.2 0.727035 0.95569 1.10094 0.084430 0.295550 0.35790
–0.1 0.84608 1.01571 1.27023 0.21235 0.221520 0.42245

0 0.879383 0.95568 1.36164 0.26676 0.386550 0.49541
0.1 0.915486 1.07887 1.42196 0.30077 0.386544 0.49544
0.2 0.915464 0.94855 1.46537 0.300764 0.386545 0.49544

spline functions as presented below:

U(X) =

2∑
i=0

aiX
i +

N−1∑
j=0

bj(X −Xj)
3H(X −Xj);

V (X) =

2∑
i=0

ciX
i +

N−1∑
j=0

dj(X −Xj)
3H(X −Xj);

W (X) =

2∑
i=0

eiX
i +

N−1∑
j=0

fj(X −Xj)
3H(X −Xj);

ΨX(X) =

2∑
i=0

giX
i +

N−1∑
j=0

pj(X −Xj)
3H(X −Xj);

ΨΘ(X) =

2∑
i=0

liX
i +

N−1∑
j=0

qj(X −Xj)
3H(X −Xj); (11)

where H(X − Xj) is the Heavyside step function and N is
the number of sub-intervals within the range [0, 1] of X di-
vided. The collocation points are the knots of the splines at
X = Xs = s/N , where s = 0, 1, . . . , N . Considering the

condition that the differential equations given by Eq. (10) are
satisfied by these splines at the knots, a set 5N + 5 homoge-
nous equations in 5N + 15 unknown spline coefficients, ai, ci,
ei, gi, li, bj , dj , fj , pj , qj (i = 0, 1, 2; j = 0, 1, 2, . . . , N − 1)
is obtained.

3.2. Boundary Conditions
Two boundary conditions are used to analyse the problem.

(i) Clamped-Clamped (C-C) (both the ends are clamped)
U = V = W = ΨX = ΨΘ = 0 at X = 0 and X = 1.

(ii) Simply-Supported (S-S) (both ends are simply supported)
V = W = NX = MX = ΨΘ = 0 at X = 0 and X = 1.

Each boundary condition gives 10 equations on spline co-
efficients. Gathering them with those obtained earlier, we get
5N + 15 homogenous equations, with the same number un-
known. Hence, the system of equations can be written in the
form

[P ][q] = Λ[Q][q]. (12)
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Figure 1. Effect of cone angle on fundamental frequency parameter of two-layered and four-layered conical shells under C-C boundary condition: linear variation
in thickness.

Here [P ] and [Q] are square matrices, [q] is a column matrix,
and Λ = 1/λ2, where λ is the frequency parameter. Λ or λ2 is
the eigenparameter and [q] is the eigenvector for this general-
ized eigenvalue problem.

4. RESULT AND DISCUSSION

In this work, convergence study for the frequency parameter
λ has been calculated to choose the number of subintervals
N of the spline function. As shown in Table 1, the program is
performed forN = 2 (N being number of knots) and onwards;
It is seen that N = 18 would be enough to achieve low change
in percentage. In order to verify the results, the reduced case of
constant thickness is compared with the value of fundamental
frequency λ obtained by Daneshjou et al., Lam and Hua, Irie
et al., and Jin et al. presented in Table 2.16, 31–33

In this study, the frequency parameter λ for antisymmet-
ric angle-ply of conical shells is investigated using two dif-
ferent material properties, i.e., Graphite Epoxy (AS4/3501-6)
(AGE) and Kevler-49 Epoxy (KGE). Two and four layers
of materials are considered to analyse the problem where
the materials are arranged in the form of KGE-KGE and
AGE-KGE-KGE-AGE respectively. The layers with the ply-
angles are oriented in the form of 30◦/−30◦, 45◦/−45◦,
60◦/−60◦, 30◦/−30◦/30◦/−30◦, 45◦/−45◦/45◦/−45◦ and
60◦/−60◦/60◦/−60◦. Clamped-Clamped (C-C: both the
edges are clamped) and Simply-supported (S-S: both the edges

are simply supported) boundary conditions are considered.
The thickness variation is assumed to be in linear and expo-
nential.

Table 3 depicts the influence of taper ratio η on the fun-
damental frequency parameter λ for two-layered and four-
layered antisymmetric angle-ply shells under C-C boundary
condition. The value of η ranges for 0.5 ≤ η ≤ 1.9. The
parameters such as circumferential node number n = 1, length
ratio β = 0.5 and ratio of thickness to radius γ = 0.05 are
fixed. In Table 3, it is observed that the value of λ for ply-
angle 30◦/−30◦ increases and then decreases multiple times
throughout 0.5 ≤ η ≤ 1.9. The frequency values for ply-
angle 45◦/−45◦ increase up to η = 1.1 and then decrease
afterwards. The frequency for two-layered shell with ply an-
gle 60◦/−60◦ shows a steady decrease throughout 0.5 ≤
η ≤ 1.9. The value of λ increases up to η = 1.3 and then
decreases with the increase of η for four-layered shell with
ply-angle 30◦/−30◦/30◦/−30◦. In the case of ply-angles
45◦/−45◦/45◦/−45◦ and 60◦/−60◦/60◦/−60◦, the value of
λ decreases as η decreases. The influence of η towards the
fundamental frequency parameter λ for two-layered and four-
layered antisymmetric angle-ply shells under S-S boundary
condition is demonstrated in Table 4. Tables 5 and 6 show
the effects of exponential variation of thickness on the funda-
mental frequency parameter for two-layered and four-layered
antisymmetric angle-ply shells under C-C and S-S boundary
conditions respectively. In Tables 4–6, the variation of fre-

268 International Journal of Acoustics and Vibration, Vol. 23, No. 2, 2018



K. K. Viswanathan, et al.: FREE VIBRATION OF ANGLE-PLY LAMINATED CONICAL SHELL FRUSTA WITH LINEAR AND EXPONENTIAL. . .

Figure 2. Effect of cone angle on fundamental frequency parameter of two-layered and four-layered conical shells under S-S boundary condition: linear variation
in thickness.

quency parameter shows the same pattern as shown in Table 3.
In Tables 3–6, the frequency values are higher for two-layered
shells as compared to the corresponding values of four-layered
shells. Moreover, the values of the fundamental frequency pa-
rameter are lower for S-S boundary condition as compare to
C-C boundary condition.

Figure 1 illustrates the fundamental frequency parameter λ
versus the cone angle α. Figures 1a and 1b show the vari-
ation of λ against cone angle α for two-layered angle-ply
shells with ply-angles 30◦/−30◦, 45◦/−45◦ and 60◦/−60◦

whereas Figs. 1c and 1d represent the influence of α towards
the fundamental frequency value λ for four-layered shells with
ply-angles 30◦/−30◦/30◦/−30◦, 45◦/−45◦/45◦/−45◦ and
60◦/−60◦/60◦/−60◦. The parameters η = 0.75, β = 0.5,
γ′ = 0.5, n = 1 and n = 2 are fixed. As can be seen in
Figs. 1a–1d, the value of λ steadily decreases from α = 10◦

until α = 50◦ and becomes stable afterwards. Also, the fre-
quency values are higher for higher angles and the value of λ
decreases when α increases. The effect of cone angle α with
respect to the frequency parameter value λ is depicted in Fig. 2
by fixing other parameters. The results in Fig. 2 show the same
pattern as shown in Fig. 1. The decrease of λ is up to α = 30◦

and then the value of λ remains almost unchanged for α ≥ 30◦.
In Fig. 3, the variation of fundamental angular frequency ω

with respect to the length ratio β is presented for two-layered
shells. Since frequency parameter λ is a function of length, l
of a conical shell, the variation of ω is analysed. The value

α = 30◦, γ = 0.05, n = 1, n = 2, η = 0.75 and η = 1.75
are fixed. As can be seen in Fig. 3, the angular frequencies in-
crease steadily up to some value of β and then rise significantly
afterwards. Higher angles result in higher fundamental angu-
lar frequency values and the value of ω increases when β in-
creases. Figure 4 presents the fundamental angular frequency
ω subjected to different length ratios β for four-layered shells.
All graphs in Fig. 4 show similar vibrational pattern with the
corresponding case of two-layered shell in Fig. 3. However,
the frequency values for four-layered shells are higher than the
corresponding frequency values for two-layered shells.

Figures 5a and 5b depict the variation of fundamental an-
gular frequency ω with respect to the length ratio β for two-
layered and four-layered conical shells respectively. In Fig. 5a,
conical shell with ply-angle 60◦/−60◦ for length ratio 0.1 un-
til 0.65 has the highest angular frequency values when com-
pared with the other two ply-angles but changes into the
lowest from 0.65 until 0.8. Conical shell with ply-angle
60◦/−60◦/60◦/−60◦ in Fig. 5b also shows the same pattern
since it has the highest frequencies from 0.1 until 0.55 but
switches into the lowest from 0.55 until 0.8. As observed, the
angular frequencies for four-layered shells are higher than cor-
responding two-layered shells. The manner of variation of fun-
damental angular frequency ω with respect to the length ratio
β for two-layered and four-layered conical shells for α = 30◦

and α = 60◦ under S-S boundary condition is shown in Fig. 6.
It is seen that the frequencies are lower for higher angles.
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Figure 3. Effect of length ratio on fundamental angular frequency of two-layered conical shell when α = 30◦ is under C-C boundary condition: linear variation
in thickness.

Figure 4. Effect of length ratio on fundamental angular frequency of four-layered conical shell when α = 30◦ is under C-C boundary condition: linear variation
in thickness.

Figures 7 and 8 indicate the variation of frequency param-
eter λ for two-layered and four-layered conical shells with re-
spect to cone angel α for exponential variation in thickness
by fixing the parameters Ce, β and γ′. Figure 7 relates to
the shells with C-C boundary condition while Fig. 8 uses S-
S boundary condition. Based on Figs. 7 and 8, the value of λ
is higher for higher angles for both conical shells under C-C
and S-S boundary conditions, but the frequency parameter val-
ues for S-S boundary condition are lower than corresponding

values for C-C boundary condition. The fundamental angular
frequency ω for two-layered antisymmetric angle-ply conical
shells with the influence of length ratio β when α = 30◦ for ex-
ponential variation in thickness under C-C boundary condition
is depicted in Fig. 9. Figure 9a shows the variation of angu-
lar frequencies with thickness variation coefficient Ce = −0.2
whereas Fig. 9b depicts the distribution of frequencies when
Ce = 0.2. From Figs. 9a and 9b, it is seen that different value
of exponential variation in thickness does not significantly af-
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Figure 5. Effect of length ratio on fundamental angular frequency of two-layered and four-layered conical shell when α = 60◦ is under C-C boundary condition:
linear variation in thickness.

Figure 6. Effect of length ratio on fundamental angular frequency of two-layered and four-layered conical shell for α = 30◦ and α = 60◦ under C-C boundary
condition: linear variation in thickness.

fect the angular frequencies of conical shells. The fundamental
angular frequency ω versus the length ratio β for four-layered
conical shells is shown in Fig. 10. The shells have cone angle
α = 30◦, Ce = 0.2, n = 1, n = 2 and γ = 0.05. The funda-
mental frequency ω is higher for four-layered shell compared
to the values of ω for two-layered shell with the corresponding
angles.

Figures 11a and 11b describe the influence of length ra-
tio β on angular frequency ω of two-layered and four-layered

conical shells respectively. The thickness variation coefficient
Ce = 0.2 and other parameters are held fixed. The vibrational
behaviour of these shells is similar to the case in Fig. 5. Fig-
ure 12 depicts the effect of length ratio β on angular frequency
ω of two-layered and four-layered conical shells for cone an-
gle α = 30◦ and α = 60◦ under S-S boundary condition.
Analysing from Fig. 12, we can see that the angular frequen-
cies for conical shells with cone angle α = 30◦ are lower when
compared to the corresponding values of α = 60◦.
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Figure 7. Effect of cone angle on fundamental frequency parameter of two-layered and four-layered conical shells under C-C boundary condition: : exponential
variation in thickness.

Figure 8. Effect of cone angle on fundamental frequency parameter of two-layered and four-layered conical shells under S-S boundary condition: : exponential
variation in thickness.

5. CONCLUSION

The effect of linear and exponential thickness in variation,
cone angle, length ratio, circumferential node number, differ-
ent lamination materials, ply-angles, and two different bound-
ary conditions on the free vibration of conical shells using
spline approximation technique is analysed. Antisymmetric
angle-ply laminations for two-layered and four-layered shells
are considered. It is concluded from the results that the value

of the frequency parameter strictly decreases for certain value
of cone angle and become steady afterwards with the increase
of cone angle. Also, the angular frequency values remain
steady for certain value of length ratio and strictly increases
afterwards as the length ratio increases. Further, S-S bound-
ary condition results in lower value of frequency parameter as
compare to C-C boundary condition. The results presented in
this paper may be fruitful for designers in related fields for de-
signing the conical shell structure according to their needs.
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Figure 9. Effect of length ratio on fundamental angular frequency of two-layered conical shells when α = 30◦ under C-C boundary condition: exponential
variation in thickness.

Figure 10. Effect of length ratio on fundamental angular frequency of two-layered conical shells when α = 30◦ under C-C boundary condition: exponential
variation in thickness.

Figure 11. Effect of length ratio on fundamental angular frequency of two-layered and four-layered conical shells when α = 60◦ under C-C boundary condition:
exponential variation in thickness.
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Figure 12. Effect of length ratio on fundamental angular frequency of two-layered and four-layered conical shells for α = 30◦ and α = 60◦ under S-S boundary
condition: exponential variation in thickness.
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APPENDIX A

The differential operators Lij of the matrix are

L11 =
d2

dX2
+

(
g′

g
+ p

)
d

dX
+ S2

g′

g
p− S3p

2 +

S10n
2p2 csc2α+ λ2; (A.1)

L12 = (S2 + S10)np cscα
d

dX
+(

S2
g′

g
− S3p− S10p

)
np cscα; (A.2)

L13 = S2p cotα
d

dX
+

(
S2
g′

g
− S3p

)
p cotα; (A.3)

L14 = 2S15np cscα
d

dX
+ S15

g′

g
np cscα; (A.4)

L15 = S15
d2

dX2
+

(
S15

g′

g
− S16p

)
d

dX
+(

S16p+ S16n
2p csc2α− S15

g′

g

)
p; (A.5)

L21 = (S2 + S10)np cscα
d

dX
+(

S10
g′

g
+ S10p+ S3p

)
np cscα; (A.6)

L22 = S10
d2

dX2
+ S10

(
g′

g
+ p

)
d

dX
+(

−S10
g′

g
− S10p− kS13 cot2α+ S3pn

2 csc2α

)
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λ2; (A.7)

L23 = (S3 + kS13)p2n cscα cotα; (A.8)
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d2
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L31 = − S2p cotα
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2 cotα; (A.11)

L32 = (−S3 − kS13)p2n cscα cotα; (A.12)
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The quantities Si (i = 1, 2, . . . , 14) are defined by

S2 =
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A11
; S3 =

A22

A11
; S7 =

D11
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