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This study focused solely on a paint manufacturing industry in Iran that will help managers to effectively
manage their enterprise. The goal of this paper is to integrate simulation modeling along with response
surface methodology (RSM) and design of experiments (DOE) in order to analyze and improve the pro-
ductivity in a selected continuous paint manufacturing industry. Computer simulation is developed to
propose different scenarios as the inputs of DOE. Based on the final results, the optimum productivity
was achieved at the point of 93.5, that is relevant to the number of labor (B) = 26 and failure time of lifter
(C) = 56.01 min. Moreover, the other two factors, A (service rate of delpak mixer) and D (number of per-
mil) should be located at a low level. Quality and production managers, engineers as well as academicians
can implement the results of the current study in other case studies. This approach can be generalized to
other manufacturing systems to improve their productivity in a timely and cost-effective manner.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the manufacturing industry, managers and engineers are
seeking to find methods in order to eliminate the common prob-
lems in production lines such as bottlenecks and waiting times.
This is because all these kinds of problems impose an extra cost
on companies (Zahraee et al., 2014b). In addition, manufacturing
companies are striving to sustain their competitiveness by improv-
ing productivity, efficiency, and quality of products. It can be
acquired by finding ways to deal with various industrial problems
which have affected the productivity of manufacturing systems
such as high lead time and Work in Progress (WIP) (Zahraee
et al., 2014d). Moreover, some parameters, such as machine capac-
ities and availability of resources have significant effects on aspects
such as throughput, cycle time and average delay in a continuous
production system. Some of them may have more considerable
effects on the system performance compared to the others
(Zahraee et al., 2014a). On the other hand, limitations of the use
of one or two machines or resources can lead to bottlenecks that
cause delays in the whole operation chain. Therefore, it is neces-
sary to handle the bottlenecks in order to enhance the system per-
formance by assessing different parameters that have considerable
effects on it. In this regard, it is difficult to find the root of the prob-
lem if the production line is plagued with difficulty related to
resource availability (Hatami et al., 2014). This can be achieved
by finding a suitable and cost-effective way to improve productiv-
ity as well as to decrease the occurrences of bottlenecks
(Jahangirian et al., 2010). In recent years, big efforts have been
done to show the different bottleneck definitions, results and
detection approaches. However, there is still no commonly
accepted definition or detection method. This is principal because
of the diversity of the bottlenecks in different application scenar-
ios. This proves to create challenges and problems in implementing
the theoretical results in real life applications. There are some
investigations which suggest that approaches, such as DOE help
engineers to deal with these problems by recognizing the impor-
tant factors affecting system productivity (Zahraee et al., 2015a).
By conducting experimental designs, engineers are able to predict
how changes in input factors affect the responses of an experiment
(Barton, 2013). Computer simulation is another suitable and popu-
lar approach for estimating the performance of complex systems
with complicated processes, especially systems that involve

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksues.2018.04.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jksues.2018.04.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:s_mojib_zahraee@yahoo.com
https://doi.org/10.1016/j.jksues.2018.04.003
http://www.sciencedirect.com/science/journal/10183639
http://www.sciencedirect.com


208 S.M. Zahraee et al. / Journal of King Saud University – Engineering Sciences 30 (2018) 207–217
random phenomena. Due to these reasons, simulation experiment
plays a leading role in projects that are done within time and bud-
get limits. This is because, in these projects, a considerable amount
of effort is allocated for developing and validating the model.
Hence, within a limited time or budget constraint, simulation will
help decision makers to simulate projects in a cost-effective and
timely manner (Sargent, 2005). According to a previous study
(Hatami et al., 1990), the applications of experimental
designs and simulation to improve productivity can lead to signif-
icant savings. Additionally, the result will be more credible and
reliable as all possible combinations of factors are examined. Fur-
thermore, it is easier to justify the recommendations because the
verification runs have validated the result of the model (Hatami
et al., 1990).

RSM is another novel statistical method, its combination with
computer simulation and DOE can be applied to develop a model
that can assess the impact of important factors on manufacturing
system. Suggesting a simulation-RSM model for the goal of evalu-
ating production line and productivity rate can be useful and
advantageous because; (1) Making key decisions is a significant
issue to top management in any manufacturing industries, (2) Pro-
ductivity of manufacturing industry should be exactly evaluated
because of major limitations in labor, time and cost, and (3) Apply-
ing different techniques to improve processes deprived of inter-
rupting the operations of the system as well as to assess their
effect before implementation (Kouritzin et al., 2014). So in this
paper, computer simulation is developed to propose different sce-
narios as the inputs of DOE. This paper aims at presenting a new
idea for using response surface methodology along with the com-
puter simulation experiment to fill the gap in order to improve
the productivity of a selected paint production line with a contin-
uous and complex process in Iran’s paint industry in a cost-
effective and timely manner.
2. Computer simulation and design of experiments applications

Computer simulation is one of the most effective approaches
that can be used to deal with the operational difficulties to
increase productivity in different fields, such as production line
(Zahraee et al., 2014a), port and transportation industry
(Shahpanah et al., 2014), supply chain management
(Golroudbary and Zahraee, 2015), healthcare system (Zahraee
et al., 2015b) as well as construction industry (Zahraee et al.,
2014c), all of which are not easy to model. Computer simulation
has a significant effect on financial and operational parameters by
saving monetary cost of investment, decreasing process cycle
time, increasing resource utilization and enhancing throughput
(Zahraee et al., 2014a). Moreover, Tsai (2002) claimed that com-
puter simulation plays a vital role in solving the problems related
to the integrated manufacturing systems as well as analyzing,
designing and scheduling the production systems instead of
applying complicated mathematical model equations. Benefits of
simulation modeling are (Kikolski, 2017):

� to organize a type of system with experiments implemented on
the investigated model.

� to deal with large and complicated decisional issues that cannot
be handled with the application of other approaches.

� to prepare decisions quickly as a result of analyzing the impact
of experiments carried out for many periods.

� to find an answer to the ‘‘what-if. . .?” questions – simulation
experiments help to assess different decisional alternative
scenarios.

� to analyze correlations of the effects of factors of a model that
can affect the decision selected in different conditions.
There are many companies whose manufacturing systems are
subjected to a stochastic behavior (e.g. random arrival of orders)
and where frequent changes occur, for example due to fluctuation
in the customers’ demands. For such types of systems, the starting
time and completion times of jobs can be unpredictable (Ferjani
et al., 2017).

DOE is a statistical approach that can create a correlation
between the significant parameters and the response of a process
(Sadeghifam et al., 2015). The adoption of DOE helps to manage
the process inputs for optimizing the output of a process (Steibel
et al., 2009; Tack and Vandebroek, 2002), hence, several investiga-
tions had used DOE and computer simulation to predict a system’s
behavior. In this light, thanks to a large number of input factors and
the high cost of experiments, computer simulation can be a useful
and powerful tool for doing experimental tests in cost-effective
and reliable conditions (Wang and Halpin, 2004; Ebrahimy et al.,
2011; Hassan and Gruber, 2008). Tsai (2002) used DOE, along with
computer simulation to assess and optimize the operation of a
joined manufacturing system. In another research, Baesler et al.,
(2004) developed a computer simulation model of sawmill factory
in Chile to enhance the productivity of the wood industry by
decreasing bottlenecks. Consequently, a DOE experiment was con-
ducted to present the minimum number of physical resources and
human that are essential to satisfy the demands. The final results
showed that by using this combined approach, productivity was
improved by 25%. Furthermore, Nazzal et al. (2006) selected a
semiconductor company as a case study to accommodate an easier
decision-making process by combining DOE, computer simulation,
and economic analysis. Meanwhile, Zahraee et al. (2014d) applied
DOE and simulation to find the optimal set of parameters that have
a considerable influence on the process productivity in the paint
industry. Hatami et al. (2014) assessed the importance of different
parameters on a production line using simulation and DOE to
improve productivity. Final results showed that the number of
workers and failure time of lifter machines have the most consid-
erable impact on performance (Hatami et al., 2014). In another
study, the statistical Taguchi method and computer simulation
were combined to investigate the impacts of main and uncontrol-
lable parameters on the overall production output in the paint fac-
tory. It was cited that the optimum value of productivity will be
obtained when the values of main variables, like the service rate
of the delpak machine, number of labor, inspection time and num-
ber of permil, were equal to UNIF (30, 40), 14, 120 and 5, respec-
tively (Zahraee et al., 2015a). Based on these investigations, the
technique has improved the productivity of manufacturing pro-
cesses and reduced trials and errors to find the best solution
(Montevechi et al., 2007). Dengiz et al. (2016) showed how the
combination of regression meta-modeling techniques and simula-
tion modeling can be applied to design and improve a real automo-
tive manufacturing system.

Previous investigations in this area indicated that to analyze a
system, the simulation outputs can be applied as inputs to the
experimental design. Compared to other recent research, this
paper presents a novel approach as it implements the response
surface methodology to fill the gap, as well as to deal with the bot-
tleneck problems related to the Iran’s paint industry which has
never been done before.
3. Material and methods

3.1. Case study

For the case study in this research, a paint factory that has a
continuous and complex process was selected. This company is
one of the primary and most reputable industrial and construction
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paint manufacturers in Iran. Managers and engineers in this paint
industry sector, try to maintain their competitiveness by suggest-
ing high quality, premium products to the customers. This com-
pany has a long-term plan to enhance productivity by eradicating
the root of bottlenecks. This company fulfills its orders based on
customers’ demand, and its factory layout was designed according
to the job shop system. All of the production units, such as indus-
trial paint, plastic paint, stone putty, and thinner are located sepa-
rately from the packaging section and laboratory. In order to
simulate the production line, the industrial paint production unit
was selected as it has the largest number of machines and
processes.
Table 1
Probability distributions fitting of collected data.

Machine Expression St. Dev Min Value

Permil 1 TRIA(2.18, 3.33, 3.72) 0.475 2.31
Permil 2 0.65 + 0.11 * BETA(0.983, 0.698) 0.0427 0.66
Permil 3 0.71 + 0.291 * BETA(0.477, 0.428) 0.123 0.74
Permil 4 1.9 + 0.09 * BETA(0.759, 0.804) 0.0495 1.91
Permil 5 UNIF(1.05, 2.59) 0.202 3.61
Delpak Mixer 0.01 + LOGN(0.0657, 0.0403) 0.0354 0.03
Big mixer 20 + WEIB(0.408, 0.238) 5.16 20
Preparation CONT (0.5, 71, 1.0, 74) 2.12 71

Fig. 1. Logic view of simulation
3.2. Computer simulation

Data collection is the first step for developing a simulation
model. In this paper, data collection was done in the factory by
observing the production line. Furthermore, the stop-watch
approach was adopted in gathering some of the desired informa-
tion. It is clear that to construct the simulation model, there is a
need to determine the necessary data as the inputs for the devel-
oped model. Then, a probability distribution function was fitted
for each activity duration. To develop the model, it is necessary
to determine different resources in the manufacturing process
along with their relationship, duty and activity duration. Table 1
Max Value Mean Unit Number of points Square error

3.59 3.08 Minute 5 0.054851
0.75 0.718 Minute 4 0.106855
1 0.83 Minute 4 0.113645
1.98 1.94 Minute 2 0.227148
4.04 3.08 Minute 4 0.08
0.13 0.075 Minute 10 0.01142
30 24 Minute 10 0.18136
74 72.5 Second 2 0.05

model of production line.



Fig. 1 (continued)

Table 2
Factors and Levels.

FACTOR LEVEL

Low (�1) Center (0) High (1)

Service rate of DELPAK
Mixer1 (A)

UNIF(20, 40) UNIF(25, 40) UNIF (30, 40)

Number of Labor (B) 14 17 20
Failure time of lifter2 30 min 45 min 60 min
Number of Permil 3 4 5

1 Service Rate: The rate of doing a process.
2 Failure time of lifter: the time is spent to repair the lifter.
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shows some samples for probability distributions fitting of the col-
lected data. In this paper, the Arena 13.9 simulation software was
used to construct the simulation model. Fig. 1 indicates the logic
view of the simulation model.

3.3. Experiment design

The experimentation is focused on identifying any parameters
that have a considerable effect on the process productivity, hence,
there is a need for a systematic approach for analyzing and answer-
ing the above question. DOE is a statistical technique for analyzing
and organizing the experiments. Consequently, in DOE, the factors
comprise different parameters which are controlled by the
researcher, meanwhile the response represents the dependent
variable, which in this case, refers to productivity. The 2k factorial
design is one of the very useful type of DOE approaches, and, each
of the factors is allowed to take on two values or levels, High and
Low. It has been investigated to be economical and effective in
indicating interaction effects (Montgomery, 2009). Therefore, this
paper used the 2k factorial design to assess the effects of several
parameters on productivity.

3.3.1. Choosing the factors, levels and response variable
In order to select the factors, at first, the company’s managers

and executives discussed to evaluate and analyze different param-
eters that could potentially help to improve the productivity of
production line. The influential factors were selected from previous
investigations and production engineer’s feedbacks. Then, all
selected factors were assessed and reviewed to be finalized. Lastly,
the managers agreed to choose four most potential factors which
were service rate of delpak mixer (A), number of labor (B), failure
time of lifter (C) and number of permil (D). Table 2 shows the fac-
tors and their levels.

Consequently, the response variable investigated was process
productivity that can be determined as follow:

Process Productivity ð%Þ ¼ ðTotal unit out=Total unit inÞ � ð100Þ
3.4. Response surface methodology

The response surface approach uses the designs and models to
assess continuous treatments to determine the optimum solution
or to describe the response (Owolabi et al., 2016; Farouk et al.,
2017). Therefore, the main goal of response surface approach is
to determine the optimal response. If there are more than one
response, it is essential to identify the compromised optimum that
does not optimize one result (Krishnaiah et al., 2015). In addition,
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RSM, as an important issue in DOE, comprises mathematical and
statistical approaches which are useful to model and analyze a sys-
tem to determine whether a response is affected by a variety of fac-
tors. In this light, its main goal is to optimize this response by
finding the best setting for the controllable factors (Kleijnen,
Table 3
Result of simulation experiment.

Run order Service rate of Delpak mixer
(A)

Number of labor
(B)

Failure ti
(C)

1 1 14 30
2 1 20 30
3 �1 14 30
4 �1 20 60
5 1 14 30
6 1 20 60
7 �1 14 60
8 1 20 30
9 �1 14 30
10 1 20 60
11 �1 20 30
12 �1 20 60
13 �1 14 60
14 1 14 60
15 �1 20 30
16 1 14 60
17 0 17 45

Table 4
Analysis of variance (ANOVA) for productivity.

Source DF Seq SS A

Main Effects 4 1113.93 1
2-Way Interactions 6 148.22 1
3-Way Interactions 4 144.59 1
4-way Interaction 1 73.66 7
Curvature 1 1577.05 1
Residual Error 18 851.24 8
Pure Error 18 851.24 8
Total 34 3908.68

Fig. 2. Normal Plot of the
2008). In the meantime, sequential experimentation can be done
by starting a full factorial design to find the significant factors. As
a result, a regression model was developed for the response and
the path of steepest ascent was followed to maximize the response
(Montgomery, 2008).
me of Lifter Number of permil
(D)

Response (Productivity * 100)

Replicate 1 Replicate 2

5 43.51 50.10
3 49.24 62.45
5 57.50 54.20
3 73.30 75.26
3 50.20 58.30
3 71.08 60.08
5 60.31 53.22
5 63.22 61.20
3 48.12 55.00
5 57.20 72.34
5 74.10 57.32
5 73.08 55.10
3 73.10 60.90
3 62.00 52.36
3 72.12 62.50
5 61.50 60.30
4 83.28 84.01 86.54

dj SS Adj MS F P

113.93 278.48 5.89 0.003
48.22 24.70 0.52 0.784
44.59 36.15 0.76 0.562
3.66 73.66 1.56 0.228
577.05 1577.05 33.35 0.000
51.24 47.29
51.24 47.29

Standardized Effects.
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3.4.1. Steps of conducting RSM
These following steps can be taken to implement RSM (Farouk

et al., 2017):

1. Brainstorming and screening experiments.
2. Improving the process by using the Path of Steepest Ascent

(POSA).
3. Finding the optimum result (Center Composite Design (CCD)).

Inherently, the execution of these three steps has helped to
identify the optimum combination and value for the significant
factors.
Fig. 3. Paret

Fig. 4. Residual vers
4. Results and discussion

4.1. Simulation experiment results

After determining the factor settings and experimental condi-
tions, data collection was conducted by running the simulation
experiment. As mentioned earlier, a full factorial design was cho-
sen. This design included 16 experiments with two replicates,
which were done to decrease potential errors. Additionally, three
center points were considered to analyze the curvature of the sug-
gested model. In all, 35 experiments were conducted by running
the simulation model.
o Chart.

us fitted value.



Fig. 5. Normal Plot of the Standardized Effects.

Table 5
Responses at new design points.

Steps xb xc E1 E2 Response

Origin 0 0 17 45 82.2
D = Step Size 1 0.734
Origin + 1 D 1 0.734 20 56.01 83.5
Origin + 2 D 2 1.468 23 67.03 86.1
Origin + 3 D 3 2.202 26 78.04 84.5
Origin + 4 D 4 2.936 29 89.06 78.1
Origin + 5 D 5 3.67 32 100.07 69.2

Table 6
New levels and center point.

Factor Symbol Levels

�1 (0) +1

Number of labor B 20 23 26
Failure time of lifter C 56.01 67.03 78.04
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In summary, the experimental conditions are explained as fol-
lows: Number of Factors: 4; Number of Levels: 2; Number of Repli-
cates: 2; Number of Center points: 3; Number of experiments = 24

* 2 (replicates) + 3 (Center Points) = 35. Table 3 shows the results of
the simulation experiment.
Fig. 6. Result of (PO
4.2. Statistical analysis

Minitab is one of the software used for conducting statistical
analyses, and the results of ANOVA for productivity are presented
in Table 4. As observed, P-value is an important parameter that was
used to identify statistically significant factors which indicate that
they have a significant influence on productivity. As a result, all
factors with P-values that are less than 0.05, are considered as sig-
nificant. In contrast, factors with P-values that are greater than
SA) approach.



Table 7
Responses based on the new center point.

Run order Coded Variables Natural Variables Responses (Productivity * 100)

XB XC EB EC

Number of labor Failure time of lifter Number of labor Failure time of lifter

1 0 �1.4142 23 51.45 88.1
2 0 0 23 67.03 86.2
3 0 0 23 67.03 85.82
4 0 0 23 67.03 86.93
5 0 0 23 67.03 87
6 �1 1 20 78.04 79.45
7 �1.4142 0 18.76 67.03 75.28
8 0 1.4142 23 82.60 80.5
9 1 �1 26 56.01 93.5
10 1 1 26 78.04 84.67
11 1.4142 0 27.24 67.03 89.35
12 0 0 23 67.03 84.25
13 �1 �1 20 56.01 80.1

Table 8
ANOVA for response surface quadratic model.

Source Sum of Squares DF Mean Square F Value Prob > F Remarks

Model 271.77 5 54.35 48.06 <0.0001 significant
B 185.45 1 185.45 163.97 <0.0001 significant
C 51.15 1 51.15 45.22 0.0003 un significant
B2 17.41 1 17.41 15.39 0.0057 significant
C2 2.42 1 2.42 2.14 0.1872 unsignificant
BC 16.73 1 16.73 14.79 0.0063 significant
Residual Error 7.92 7 1.13
Lack-of-Fit 2.93 3 0.98 0.78 0.5630 unsignificant
Pure Error 4.99 4
Cor Total 279.69 12

Table 9
Model accuracy.

Std. Dev. 1.06 R-Squared 0.9717
Mean 84.70 Adj R-Squared 0.9515
C.V. 1.26 Pred R-Squared 0.8977
PRESS 28.60 Adeq Precision 23.792
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0.05, are deemed as not significant (Montgomery, 2009). Based on
Fig. 2, the main factors B (number of labor) and C (failure time of
lifter) are considered as significant which show that they have con-
siderable effects on productivity. Furthermore, Table 4 presents
that the curvature is significant, which shows that there is a non-
linear correlation between the factors and productivity. The
sequencing of statistical significance of both the main and interac-
tion effects is also shown in the Pareto chart as depicted in Fig. 3.

Residual versus predicted value plot and normal probability
plot of residuals are two graphical approaches that are used to
check the validity of a regression model (Montgomery, 2009).
Residual versus predicted value plot shows the difference between
the predicted values and the observed values. If the residuals have
an obvious pattern, it will infer that the suggested model is not
adequate (Montgomery, 2009). As can be seen in Fig. 4, the resid-
Table 10
Estimated regression coefficients for productivity.

Factor Coefficient DF

Intercept 86.04 1
B-Number of labor 4.81 1
C-Failure time of lifter �2.53 1
B2 �1.58 1
C2 �0.59 1
BC �2.04 1
uals have a constant pattern. So it indicates that the suggested
model is not adequate and it creates a need to obtain the second
order regression model. Moreover, residuals in the normal proba-
bility plot should be laid in a straight line (Montgomery, 2009).
As can be seen in Fig. 5, it can be claimed that the model is not
adequate.

4.3. Productivity optimization

4.3.1. RSM implementation
The path of steepest ascent (POSA) approach was implemented

to improve the process, and in return, enable the execution of RSM.
First, the step size for doing the experiments should be defined by
using macro programming in Minitab software. The result of macro
programming showed that the step sizes are equal to 1 and 0.734,
respectively. Then, the values were calculated by using Eqs. (1) and
(2). Consequently, the new series of simulation experiments were
conducted to achieve the maximum response. Table 5 shows the
result of experiments which indicates that the optimum point lies
between the highlighted areas. Meanwhile, Fig. 6 illustrates the
schematic view of the POSA result. The optimum point was calcu-
lated using the second order model which refers to the second
order response surface in the next step.
Standard Error 95% CI Low 95% CI High

0.48 84.92 87.16
0.38 3.93 5.70
0.38 �3.42 �1.64
0.40 �2.54 �0.63
0.40 �1.54 0.36
0.53 �3.30 �0.79
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Xb ¼ E1 � 17
3

; Bð14; 20Þ ð1Þ

Xc ¼ E2 � 45
15

; Cð30; 60Þ ð2Þ

In order to conduct new experiments by adding the new center
points (Table 6), the augmentation approach was used for fitting
the second order model. To do this, Central Composite Design
(CCD) was implemented by adding four points (x1 = 0, x2 =
�1:414) and (x1 = �1:414, x2 = 0) to the experiment. Table 7 shows
the result of the new experimental design.

As observed in Table 8, the result of ANOVA for the second order
model showed that there are three significant factors B, B2 and BC.
The Model F-value of 48.06 indicates that the model is significant.
Additionally, there is only a 0.01% chance that a ‘‘Model F-Value”
this large could happen because of noise, while the ‘‘Lack of Fit
F-value” of 0.78 shows that it is not significant relative to the pure
error. Moreover, there is a 56.30% chance that a ‘‘Lack of Fit F-
value” this large could happen due to noise. Finally, non-
significant lack of fit indicates that the model is fit (Montgomery,
2009).

Additionally, Table 9 verifies the model’s accuracy. A high deter-
mination coefficient (R-Squared = 0.9717) implies that the model
explains all of the variability of the response data around its mean.
In addition, Pred R-Squared of 0.8977 is in good agreement with
the Adj R-Squared of 0.89779 and the ‘‘Adeq Precision‘‘ measures
the signal to noise ratio, where a ratio greater than 4 is desirable.
Hence, the obtained ratio of 23.792 indicates an adequate signal
and this model can be used to navigate the design space. Moreover,
a very small value of Coefficient of Variation (C.V.) = 1.26, clearly
shows a very high degree of precision and a good reliability of
the experimental values (Montgomery, 2008).

4.3.2. Second order regression model
As the relationship between the independent factors and

response is generally unknown, a low order polynomial model is
suggested to explain the response surface. This model is a com-
monly reasonable approximation in a specific region of the
response surface. In this regard, both the first-order and second-
order models were used based on the approximation of the
unknown function. It should be noted that when the curvature is
significant, it can be concluded that the first-order model is not
sufficient. Therefore, a second-order model is effective and flexible
in approximating a part of the correct response surface with para-
bolic curvature (Montgomery, 2009). In this light, Design-Expert
software was used to calculate the coefficients of the regression
equation. Table 10 shows the regression coefficient of each factor
and Eqs. (3) and (4) were obtained:

Ŷ ¼ b0 þ b1X1 þ b2X2 þ b12X1X2 þ b11X
2
11 þ b22X

2
22 ð3Þ

Ŷ ¼ 86:04þ 4:81B� 2:04BC� 1:58B2 ð4Þ
Fig. 8. Normal Plot of Residuals.

Table 11
Result of confirmation test.

Factor (Coded) Predicted Value Actual Value Error%

Number of
labor (B)

Failure time
of lifter (C)

Base on Model Real test Percent

0 0 86.04 86.2 0.18%
1 1 87.23 84.67 2.93%
0 1.412 86.04 80.5 6.4%
4.3.3. Residual analysis
In order to evaluate the model validity, the residuals from the

least squares play an important role. As can be seen in Fig. 7, the
straight line confirms that the model is adequate and correct.
Moreover, the structure-less pattern of the residual versus pre-
dicted value confirms that the developed model is adequate and
has a constant error (Fig. 8).

4.3.4. Confirmation test
In this Section, 3 more verification runs were designed and

implemented for confirming the adequacy of the developed model
(Table 11). Moreover, the predicted values (obtained from Eq. (4))
and the actual values (obtained from the simulation model) were
compared and the percentage of error was calculated. Table 11
shows that the percentage of error for all three experiments was
less than 10%. Therefore, the result shows the accuracy of the
acquired quadratic model (Montgomery, 2008).

4.4. Discussion, 3D response surface, and contour plot

The analysis of optimum setting is essential after the develop-
ment of a second-order regression model. In this light, graphical
visualization plays a leading role in explaining the second-order
response surface, and as observed in Figs. 9 and 10, the 2D contour
and 3D response surface plots are the main graphical representa-
tion of the regression equation. The main role of these plots is to
show the optimal values of the factors so that the response can



Fig. 9. Contour Plot.

Fig. 10. 3D Surface Plot.

Table 12
Optimum setting of factors for maximum productivity.

Factor Result of RSM Current state of factory

Service rate of Delpak machine (A) UNIF (20, 40) UNIF (20, 40)
Number of labor (B) 26 20
Failure time of lifter (C) 56.01 (min) 60
Number of permil (D) 3 5
Productivity (%) 93.5% 73.08%

Productivity Improvement = 93:5�73:08
93:5 = 21.84%.

Implemented results = 16.5%.
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be maximized. At the highest level of the surface inclination in
Fig. 9, the maximum productivity was achieved at the highest level
of the number of labor (B) = 26 and failure time of lifter (C) = 56.01
min, based on the contour trend. As shown in Fig. 10, the maxi-
mum response occurred at the point of 93.5 that is relevant to
the number of labor (B) = 26 and failure time of lifter (C) = 56.01
min.

Finally, Table 12 shows the optimum value of each factor to
achieve the maximum productivity. The obtained results from this
research would improve productivity by approximately 21.84% in
comparison to the current state in the factory.
4.5. Implications

This paper contributes to show some implications and propose
that response surface methodology can be combined with simula-
tion modeling and DOE to improve the productivity of the manu-
facturing industry. The suggested approach helps the quality
managers, production managers and engineers to improve their
productivity in a timely and cost-effective manner without stop-
ping or changing the layout of production line or resources,
because it is not possible to end or delay the operating system or
replace the layout due to limitations of labor, time, cost and many
other parameters. It should be noted that the obtained optimal val-
ues have been applied in reality at the production line that cause a
16% increase in productivity of the factory. Hence, practitioners
and engineers working in the manufacturing industries can do
easily similar simulation-RSM approach for their companies.
5. Conclusion

Industrial problems, such as waiting times and bottlenecks in
manufacturing companies that have continuous and complex pro-
cesses, have a significant effect on productivity. In response, engi-
neers continuously try to solve them, as these kinds of problems
can increase production costs. This research chose a paint factory
with a continuous and complex process as the case study, and
based on the discussion with managers and engineers working in
the company, the research team believed that increasing produc-
tivity is an important research issue. So, in order to gain a high
level of profit, there is a need to implement a new approach by
considering time and cost factors. This present research is the first
research that implements the novel response surface methodology
to improve productivity. The main goal of this paper is to identify
how a new technique, specifically, the response surface methodol-
ogy can be combined with simulation modeling and experimental
design to improve the productivity in the paint industry in a cost-
effective and timely manner. After conducting the simulation
experiment, two factors, B (number of labor) and C (failure time
of lifter) were identified as significant factors. Next, the steepest
ascent method and response surface methodology were imple-
mented to determine the optimum setting of the significant fac-
tors. Based on the final results and the regression model, the
optimum productivity was achieved at the point of 93.5, that is rel-
evant to the number of labor (B) = 26 and failure time of lifter (C) =
56.01 min. Moreover, the other two factors, A (Service rate of del-
pak mixer) and D (number of permil) should be located at a low
level. This means that they are equal to UNIF (20, 40) and 3, respec-
tively. As this paper is focused on finding the local optimum, other
approaches like meta-heuristic algorithms can be used to find the
global optimum. Further studies can also be done by selecting
other response variables such as resource utilization, cycle time
and cost.
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