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Abstract: The current study investigates an improved version of Least Square Support Vector
Machines integrated with a Bat Algorithm (LSSVM-BA) for modeling the dissolved oxygen (DO)
concentration in rivers. The LSSVM-BA model results are compared with those obtained using M5
Tree and Multivariate Adaptive Regression Spline (MARS) models to show the efficacy of this novel
integrated model. The river water quality data at three monitoring stations located in the USA are
considered for the simulation of DO concentration. Eight input combinations of four water quality
parameters, namely, water temperature, discharge, pH, and specific conductance, are used to simulate
the DO concentration. The results revealed the superiority of the LSSVM-BA model over the M5 Tree
and MARS models in the prediction of river DO. The accuracy of the LSSVM-BA model compared
with those of the M5 Tree and MARS models is found to increase by 20% and 42%, respectively,
in terms of the root-mean-square error. All the predictive models are found to perform best when all
the four water quality variables are used as input, which indicates that it is possible to supply more
information to the predictive model by way of incorporation of all the water quality variables.

Keywords: dissolved oxygen concentration; LSSVM-BA model; water quality management

1. Introduction

Assessment of river water quality is a challenging issue in field environmental modeling. Among
the river water quality parameters, dissolved oxygen (DO) is a critical one for decision-makers in
management of water quality and river ecology [1]. The level of DO concentration within a water
body (e.g., river and lake) is very important for aquatic organisms (e.g., fish and plants) as low and
high values of DO are harmful for the aquatic environment [2]. DO is released within a river through
diffusion or aeration processes and by photosynthesis of plants such as algae and phytoplankton [3].

Water 2018, 10, 1124; doi:10.3390/w10091124 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0003-3647-7137
https://orcid.org/0000-0001-9621-6452
https://orcid.org/0000-0001-5018-8505
http://www.mdpi.com/2073-4441/10/9/1124?type=check_update&version=1
http://dx.doi.org/10.3390/w10091124
http://www.mdpi.com/journal/water


Water 2018, 10, 1124 2 of 21

The sources for supplying DO are limited and, therefore, the conscious management of water quality
is very important for maintaining the DO level in water bodies [4].

The DO concentration in a river depends on many biotic/abiotic parameters such as the
amount of aquatic plants, nutrient concentrations, streamflow discharge, specific conductance, pH,
and water temperature [5], as well as their complex interactions [6]. Physical-based models such
as QUAL2K [7] and Water Quality Analysis Simulation Program WASP [8] are generally used
to mimic these physical processes in a simplified manner for the prediction of DO. However,
the physically based models developed using deterministic equations often fail to predict DO
concentration with reasonable accuracy. This is due to several causes: (1) knowledge of many of
the biotic/abiotic processes responsible for DO concentration in water bodies is still not clear and the
data/information required for modeling many of the interactions are difficult to acquire; (2) many of
the biotic/abiotic processes are highly nonlinear and cannot be described perfectly with mathematical
equations and (3) hydro-biological data are often prone to errors which cause high uncertainties
in prediction [9,10]. However, it has been noticed that many of these processes follow a stochastic
behavior. The DO concentration in water bodies changes with time with a sequential relationship
between two consecutive values. This encouraged the development of stochastic models in which
statistical methods are used to find a relationship between input and output.

The DO concentration in a water body fluctuates on an annual, monthly, daily, or even hourly
scale with respect to the water temperature and other features of the water body [4]. Studying the
daily and hourly fluctuations of DO concentration might be of interest for particular water bodies with
shallow water depth as the concentration of DO fluctuates significantly within a very short period
due to high dynamics of physical, chemical, and biological processes in water bodies with shallow
depth [9,10]. On the other hand, fluctuation of DO concentration in a river is not significant at the
hourly or daily scale. Furthermore, the monthly DO concentration provides seasonal variation of
this important water quality parameter which is more useful for management of river water quality
and ecology. Therefore, models have been developed in this study for the prediction of the monthly
concentration of DO in river.

Regression models are most widely used for modeling stochastic behavior of DO concentration in
water bodies [5,11]. Zounemat-Kermani and Scholz (2014) used stepwise regression for the selection
of influential parameters for prediction of DO concentration. Khan and Valeo (2015) introduced
fuzzy linear regression to predict DO from abiotic factors [5]. Li et al. (2017) employed linear
regression for estimation of DO from multiple water quality parameters [12]. However, the capability
of conventional regression-based models is limited in simulating highly nonlinear and nonstationary
behavior. The time series of DO concentration is often found to be highly stochastic in nature, which
is not possible to simulate using conventional regression models. With the advances of artificial
intelligence (AI)-based methods, the application of AI in the development of stochastic models has
gained significant attention. In recent years, a large number of AI approaches such as artificial
neural networks (ANNs), support vector machines (SVMs), fuzzy methods, and model trees (MTs)
have been widely used for prediction of different hydrological phenomena such as rainfall [13,14],
temperature [15,16], evaporation [17], streamflow [18–20], and water demand [21]. Despite various
limitations, the AI-based models have been found to provide hydrological prediction in an efficient
way. The AI-based models have simple structure and a low number of mathematical parameters but
can consider a large number of predictors. The computational time of AI-based models is much less
compared with physical-based models. Furthermore, the AI-based approaches have been found to be
highly adaptable to different hydrological and ecological conditions [19]. All these traits give the AI
techniques great potential for the modeling of river DO concentration [20].

The AI techniques used for modeling DO concentration can be broadly divided into four
groups [22,23]: (i) ANN [1,12,24–33]; (ii) SVM [22,34–37]; (iii) fuzzy logic [5,38–41] and (iv) heuristic
models [37,42–45]. Among these, the ANN-based models have been most widely utilized compared
with others for the prediction of river DO concentration. Heddam [33] utilized a generalized
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regression neural network (GRNN) for predicating DO concentration. He compared the performance
of GRNN with multiple linear regressions (MLR) and showed the better prediction capability of
GRNN compared with MLR. Nemati et al. [43] compared the performance of an adaptive neuro-fuzzy
inference system (ANFIS) and genetic programming (GP) for prediction of DO concentration in a
river in Hong Kong and found ANFIS to be more efficient compared with GP in predicting DO
concentration. Mohammadpour et al. [45] used a feedforward backpropagation neural network
(BPNN) for the prediction of DO concentration. They improved the model performance through
optimization of BPNN parameters using particle swarm optimization (PSO) and compared the results
with those obtained using SVM. Based on the root mean square error (RMSE) values, they reported
that ANN-PSO has higher prediction capability than SVM. Heddam [32] compared the performance
of a multilayer perceptron neural network (MPNL) with SVM and least square SVM (LSSVM) for
the estimation of river DO concentration and showed superior performance of MPNL compared
with SVM and LSSVM. Ay and Kisi [28] and Akkoyunlu et al. [27] used multilayer perceptron neural
networks (MLPNNs) and radial basis function neural networks (RBFNNs) to predict DO concentration
in USA and Turkey, respectively, and showed their efficiency. Bayram et al. [29] compared the
regression and teaching–learning-based optimization approaches to estimate DO concentration in
Turkey by employing temperature of air and water as predictors and indicated improvement in
model performance through optimization. Kisi et al. [42] assessed the performance of MLPNN, GP,
and ANFIS in predicting DO concentration and showed that GP is more capable than others in terms
of prediction accuracy.

Besides ANNs, SVMs have also been extensively employed for prediction of river DO
concentration [46–48]. Liu et al. [34] optimized the parameters of SVM using PSO to develop an
SVM-PSO model for the prediction of DO concentration. They compared the results of SVM-PSO
with those of ANN and GP and reported better performance of SVM-PSO. Liu et al. [35] improved
the accuracy of LSSVM in the prediction of DO concentration by developing an LSSVM-PSO model
and showed that the LSSVM-PSO is more accurate than LSSVM in prediction of DO concentration.
Malek et al. (2014) assessed the performance of SVM in the prediction of DO concentration in two
different lakes in Malaysia and reported that SVM models using dichotomized values of DO can
provide high prediction accuracy [49]. Jadhav et al. compared the performance of LSSVM and GP for
estimation of DO concentration in a lake in India and reported similar capabilities of both GP and
LSSVM in prediction [37]. An excellent employment of LSSVM for prediction of DO in crab ponds of
China was conducted by [50]; the authors found higher accuracy of LSSVM compared with RBFNN.
Recently, a new study compared the performance of LSSVM, multivariate adaptive regression splines
(MARS), and M5 model trees in the prediction of DO concentration and reported the performance of
LSSVM as being very close to that of MARS [51].

The studies revealed the superiority of different AI methods in predicting DO concentration under
different environmental conditions. Most of the SVM-based approaches revealed LSSVM as a useful
method for estimation of the water quality parameters. However, all the studies reported that the
efficiency of LSSVM models significantly depends on the values of the kernel (σ) and regularization (γ)
parameters. These hyper-parameters can be considered as decision variables and should be determined
accurately by optimization algorithms for better performance of LSSVM models. A number of studies
employed different optimization techniques for estimation of optimum values of LSSVM parameters
including heuristic optimization approaches such as GA [52–54], PSO [34,55–59], and Colony [60,61]
algorithms. In this study, the hyper-parameters of LSSVM were optimized using the Bat algorithm
(BA). The proposed hybrid metaheuristic LSSVM-BA algorithm is used for the prediction of DO
concentration. The BA has been widely utilized for parameter optimization of the model used in
forecasting climatological variables [62,63] and reservoir operation [64,65]. The studies reported BA as
an efficient optimization technique. Therefore, it is expected that optimization of LSSVM parameters
using BA would significantly improve the prediction capability of LSSVM and the LSSVM-BA model
can be used for better prediction of DO concentration in water bodies.
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The main objective of this study is to evaluate the capability of the hybrid metaheuristic
LSSVM-BA model in the estimation of monthly DO concentration at three locations of the USA,
which has been previously investigated using different AI-based approaches [24,32,33]. The results
obtained using LSSVM-BA are compared with those obtained using M5 and MARS. M5 and MARS
have been used for the comparison of the performance of LSSVM-BA as they have been found to
be highly efficient in the prediction of hydrological variables in a number of recent studies [51,66].
Heddam and Kisi (2018) employed both MARS and M5 for the prediction of DO concentration at the
same locations to compare their performance with LSSVM [51]. Therefore, comparison of performance
of LSSVM-BA with MARS and M5 will help to assess the improvement of the performance of LSSVM
after integration with BA.

2. Materials and Methods

2.1. LSSVM

LSSVM [59] is an edited version of SVM [67]. The SVM acts based on a set of quadratic
programming problems [68] while the LSSVM acts based on linear programming and linear equations
to improve the performance of the SVM. A nonlinear mapping function is used in LSSVM (Figure 1)
which is based on following Equations (1) and (2) [69]:

f (x) = wT ϕ(x) + b (1)

where ϕ(x) is a nonlinear function used for the mapping of the input variables to a higher-dimensional
space, wT is the weight vector, and b is the bias term. The values of b and wT are computed using the
following cost function:

CF =
1
2

wTw +
1
2

γ
N

∑
i=1

e2
i (2)

The following constraints are considered for the cost function:

yi = wT ϕ(xi ) + b + ei (3)

where γ is the regularization parameter; N is the number of datapoints; xi and yi are the parameters
which are defined as input parameter (pH, temperature, depth sensor, and other parameters) and
output parameter (DO concentration), respectively; and ei is the residual vector for the input data.
A kind of convex optimization problem is generated based on Equations (3) and (4) which is solved by
the Lagrange Multipliers method based on the following equation:

L(w, b, e, α) =
1
2

wTw +
1
2

γ
N

∑
i=1

e2
i −

N

∑
i=1

αi

(
wT ϕ(xi) + b + ei − yi

)
(4)

where α is the Lagrange Multiplier and the following equation is computed based on the partial
derivative of Equation (5) with consideration of w, b, e, α [69]:

y =
N

∑
i=1

αi ϕ(x)ϕ(xi) + b =
N

∑
i=1

αi(ϕ(x)ϕ(xi)) + b (5)

The kernel function is defined based on the following equation:

K(x, xi) = ϕ(x)T ϕ(xi), i = 1, . . . , N (6)
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Then, Equation (7) is inserted into Equation (6) and the following equation is generated:

K(x, xi) = exp
(
−‖x− xi‖

2σ2

)
(7)

y =
N

∑
i=1

αik(x, xi) + b (8)

There are several kinds of kernel functions which can be used. Previous studies showed that the
radial basis function has the better performance [24] and, thus, it is used in this study:

K(x, xi) = exp
(
−‖x− xi‖

2σ2

)
(9)

The σ and γ are important parameters which have a significant impact on the final results. In the
present study, the values of these parameters are inserted into the bat algorithm as decision variables
in order to obtain the optimum values.
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Figure 1. Diagram showing the structure of a typical Least Square Support Vector Machine
(LSSVM) model.

2.2. Bat Algorithm

The bat generates a loud sound which is returned back through reflection from surrounding
objects including its prey. Based on this echolocation ability, the bat can identify its prey. The following
assumptions are considered in the bat algorithm [70]:

i All bats use the echolocation ability for the identification of prey based on received sounds from
the surroundings.

ii Each bat has random velocity (vl) at the position yl and the loudness, wavelength, and frequency
of received sounds are Ao, λ, and fmin, respectively.

iii The loudness varies from a large positive value to a minimum value.

The bats have the pulsation rate which varies from 0 to 1, where 0 means the pulsation rate has
reached its minimum, while 1 means it has reached its maximum. The velocity, frequency, and position
values for bats are updated based on the following Equations (10)–(12):

fl = fmin + ( fmax − fmin)× β (10)

vl(t) = [yl(t− 1)−Y∗]× fl (11)
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yl(t) = yl(t− 1) + vl(t)× t (12)

where, yl(t− 1) is the position at time t− 1, β is a random vector between 0 and 1, fmin is the minimum
frequency, fmax is the maximum frequency, Y∗ is the best location for bats, t means time step, and vl(t)
indicates the velocity for bats. Then, local search based on a random walk is considered based on the
following equation:

y(t) = y(t− 1) + εA(t) (13)

where A(t) is loudness and ε is a random number between −1 and 1.
The loudness and pulsation rate are updated at each level. When the bats find the prey, the

loudness value decreases and the pulsation rate increases based on Equation (14):

rt+1
l = r0

l [1− exp(−γt)]At+1
l = αAt

l (14)

where γ and α are constant parameters.

2.3. LSSVM-BA Algorithm

The bats’ positions are considered as decision variables and the values of σ

and γ are the LSSVM parameters which need to be optimized based on an objective function such as
RMSE estimated from simulated DO and measured DO values. The improvement of LSSVM in the
current study is done based on the following steps:

• The initial values for the random parameters in the bat algorithm and σ and γ parameters are
initialized in the first level.

• A counter number is considered for this level, such as in Figure 2.
• The kind of kernel function and the inputs and output are selected and the correlation between

inputs and output is measured to determine the effective combination of inputs.
• The model is trained, and the performance of the method is evaluated based on objective function

such as RMSE.
• The stop criterion is checked and if it is satisfied, the algorithm is shifted to the validation and

testing phases and the results based on extracted parameters of γ and α are considered for making
a decision on the continuation of the method.

• The values of γ and α as initial positions of bats are inserted into the bat algorithm. In fact, they are
considered as decision variables.

• If rand > rl is considered, the positions based on objective functions are evaluated; otherwise,
the random fly is considered and shifted to the next level.

• If rand < Al and f(yl) < f(Y∗) is considered, the rl is increased and Al is decreased; otherwise,
the bats’ situations are evaluated and switched to next level.

• One number is added to the counter and then switched to the third level.

The simulation process for the modeling of DO concentration is considered for the first level.
Then, the objective function is computed, and the convergence criteria are checked. The unknown
parameters are added to the bat algorithm as decision variables and, subsequently, the objective
function is computed. The unknown values of the parameters are considered as bats’ positions. There
are two constraints in this level. The least DO with its minimum and maximum values, which are
considered as the lower and upper bounds of the computed value of DO, are supplied to the model.
The model computes the value of DO based on these constraints. If these constraints cannot be satisfied,
the penalty functions are applied on the objective function of the bat algorithm so that the algorithm
understands not to exit from the permissible domain. Therefore, the model acts for different conditions
so that the application of the constraints can produce reliable results in critical conditions.
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2.4. M5 Tree

One of the successful models in simulation applications in water engineering and hydrology is
M5 [66,69,71]. The M5 tree acts based on tree classification [72], which can be used for generating
relationships between independent and dependent variables. This model is a combination of linear
regression and a tree model which can be used for any kind of qualitative or quantitative data.
The domain of data in the M5 model is divided into subsets which are known as leaves. The linear
regression equation is given to leaves in contrast to the tree regression model which gives numerical
labels to the subsets. The model can predict the continuous variables well. Each decision-making tree
has a structure like a tree which including roots, branches, nodes, and leaves. The root as the first node
is located in the upper section and the chain of branches and nodes reaches to the leaves. Each node is
considered as a predicative variable. The generation of the model is considered based on two levels.
The decision tree is generated based on the standard deviation reduction (SDR) criterion in the child
node with the branching of data:

SDR = sd(T)−∑
|Ti|
|T| sd(Ti) (15)

where T is number of samples in each node, Ti is the number of subsets which is generated based
on splitting of each node, sd is the standard deviation, and SDR is the reduced standard deviation.
The model selects the branch which has the least SDR. The classification process in the tree can cause
a larger structure due to a large number of generations of branches. The second level is known as
pruning, which substitutes the subtrees with the linear regression function, pruning the big tree;
the tree model divides the sample space among the subtrees and a tree region model is generated in
each subtree.
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2.5. Multivariate Adaptive Regression Spline (MARS)

The MARS is a simple tool which is widely used for hydrological simulations for better
accuracy [69,73,74]. The structure of MARS before modeling is not specific and, thus, it is a
nonparametric model. This method can model the nonlinear relationship between predicator variables
and an objective decision. In fact, this method divides the data into subsets and then fits the functions
as a basis function which corresponds with the complexity of data. Adaptive regression for the model
is based on the following equation:

Y = f (x) = ψo +
M

∑
m=1

ψmBm(x) (16)

where Y is the dependent variable, ψo is a constant term, Bm is the basis function, ψm is the coefficient
of the Mth basis function, and m is the number of the nonzero terms or the terms by which the basis
functions are divided in these nodes.

The first level of the model is related to the forward stage. The model starts from a constant term
and then the basis functions are added to this term gradually. The model adds the basis functions
which can decrease RMSE. The forward stage causes overfitting of data, which means that the model
fits data which have been involved in the modeling process, but does not provide a good fit for the
data which have not participated in the modeling process. When the model can have a good fit
for all data, the backward stage is considered for the modeling process. In fact, the backward stage
means the pruning of the basis functions which have the least effect in the modeling process. Thus,
the determinant of such models is computed based on the generalized cross validation (GCV):

GCV(M) =
1
N ∑N

i=1(yi − f (xi))
2(

1− c(M)
N

)2 (17)

where M is the number of basis functions, N is the number of datapoints, yi is the true value at xi, f (xi)

is the forecasted value, and c is the complexity function. The value c(M) is a complexity penalty which
is computed based on following equation:

c(M) = M
(

d
2
+ 1
)
+ 1 (18)

where d is the penalizing factor.

3. Case Study

Three stations located in Washington County (USGS 14206950), Summit County (USGS 10133800),
and New Jersey (USGS 01463500) of the USA are considered as the case study (Figure 3). The water
quality data recorded at those three stations for the period January 2002 to December 2016 were
extracted from the United States Geological Survey (USGS) website (USGS, 2017). In fact, data for
several water quality monitoring stations are available on the USGS website that could be used
for the development of model. Nevertheless, the data for all the water quality parameters are not
available or not reliable for the selected duration at most of the stations. In addition, as can be
observed from Figure 3, the three selected stations are located at different regions which can allow us to
examine the performance of the proposed models under different geographical and climatic conditions.
Furthermore, Heddam and Kisi (2018) developed a model for the prediction of DO concentration
at the same stations [51]. In order to carry out a rational comparison with the previous research
findings, the proposed models are developed for the prediction of DO concentration at the same
selected stations.
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Figure 3. The locations of the three case study sites in Washington (USGS 14206950), Summit (USGS
10133800), and New Jersey (USGS 01463500), USA.

The observed data were divided into three sets for the training (2002–2010), validation (2011–2013),
and testing (2014–2016) of the models at USGS 10133800 and USGS 01463500, while data for the period
2003–2010 was used for training at USGS 14206950 as data are available only from 2003 at this
station. More details of the geographical information and historical data division for the training,
validation, and testing of the model are given in Table 1. The water quality parameters including water
temperature (WT), discharge (Q, cfs), pH (sd, unit), specific conductance (SC, µS/cm), and DO (mg/lit)
are used in the present study. Table 2 shows the statistical information of the water quality parameters.
The Pearson coefficient based on the following equation is used to measure the correlation of different
parameters with DO:

ρx,y =
cov(X, Y)

σXσY
=

E
[
(X− µx)

(
Y− µy

)]
σXσY

(19)

where cov is the covariance between quantitative X and Y; σX and σY are the standard deviations of X
and Y, respectively; µx and µy are the averages of X and Y, respectively; and E is the expectation value.

Table 1. Geographical information and division of historical data into the training, validation, and
testing periods.

Description USGS 14206950 USGS 10133800 USGS 01463500

Latitude 45◦24′13′ ′ 40◦45′35′ ′ 40◦13′18′ ′

Longitude 122◦45′13′ ′ 111◦33′48′ ′ 74◦46′41′ ′

Begin Date 01/01/2003 01/01/2002 01/01/2002
End Date 31/12/2016 31/12/2016 31/12/2016

Training period 2003–2010 2002–2010 2002–2010
Validation period 2011–2013 2011–2013 2011–2013

Test period 2014–2016 2014–2016 2014–2016
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Table 2. The statistical properties of the water quality variables used in this study at the three
investigated monitoring stations.

Station Data Unit Xmean Xmax Xmin Sx Cv

USGS 14206950

WT ◦C 12.619 24.800 0.100 5.190 0.411
pH - 7.281 7.900 6.500 0.177 0.024
SC µS/cm 200.769 461.00 61.000 54.889 0.273
Q cfs 47.368 1410.000 0.990 87.995 1.858

DO mg/lit 12.619 24.800 0.100 5.190 0.411

USGS 10133800

WT ◦C 9.179 22.00 0.300 6.148 0.670
pH - 7.961 8.600 6.800 0.233 0.029
SC µS/cm 1224.585 3530.00 453.000 313.211 0.256
Q cfs 32.927 371.000 2.20 40.722 1.238

DO mg/lit 9.076 12.80 4.70 1.369 0.151

USGS 01463500

WT ◦C 13.344 30.300 −0.200 8.984 0.673
pH 7.893 9.800 6.300 0.492 0.062
SC µS/cm 193.572 448.00 74.00 43.264 0.223
Q cfs 13940.65 230000 2370. 14626.481 1.049

DO mg/lit 11.056 16.900 5.40 2.263 0.205

Note: Xmean: mean; Xmax: maximum; Xmin: minimum; Sx: standard deviation; Cv: coefficient of variation;
cfs: cubic feet per second; µS/cm: micro Siemens per centimeter, mg/lit: milligrams per liter.

The studied variables should be normalized to have the same scale so that the mean equals 0 and
the standard deviation equals 1. The Z score method is used for this issue [75]:

xn,ik =
xi,k −mk

Sdk
(20)

where xn,ik is the normalized parameter, mk is the mean value, and Sdk is the standard deviation.
The following indices are used for the evaluation of the different models:

R =


1
N ∑ (Oi −Om)(Xi − Xm)√

1
N

N
∑

i=1
(Oi −Om)

√
1
N

N
∑

i=1
(Xi − Xm)

 (21)

RMSE =

√√√√ 1
N

N

∑
i=1

(Oi − Xi)
2 (22)

MAE =
1
N

N

∑
i=1
|Oi − Xi| (23)

where Oi: observed DO, Om: average of observed DO, Xi: predicated value of DO, Xm: average
predicated value of DO, N: number of datapoints, MAE: mean absolute error, RMSE: root-mean-square
error, and R: determination of coefficient [76,77].

4. Results and Discussion

4.1. The Correlations between DO and Other Water Quality Parameters

Table 3 presents the correlation coefficient between DO and other water quality parameters.
The highest correlation of DO is found with WT followed by SC at all three monitoring stations.
The least value of correlation coefficient at all three stations was found for pH. Different input
combinations were constructed based on the correlation analysis presented in Table 3. Table 4 shows
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different input combinations based on four water quality parameters, namely, WT, SC, Q, and pH.
Two combinations are considered without WT to determine the effectiveness of other parameters in the
absence of WT in predicting DO. Besides this, two combinations of three variables and one combination
of four variables were suggested for investigating the optimum input variables for prediction of DO.

Table 3. The correlation coefficients between DO and other water quality parameters.

Parameter DO Q SC pH WT

USGS 14206950

DO (mg/lit) 1 - - - -
Q (cfs) 0.196 1 - - -

SC (µS/cm) −0.678 −0.612 1 - -
pH 0.112 −0.561 0.378 1 -

WT (◦C) −0.981 −0.224 0.614 −0.024 1

USGS 10133800

DO (mg/lit) 1 - - - -
Q (cfs) 0.187 1 - - -

SC (µS/cm) 0.312 −0.525 1 - -
pH 0.111 0.311 −0.374 1 -

WT (◦C) −0.944 −0.054 −0.444 −0.212 1

USGS 01463500

DO (mg/lit) 1 - - - -
Q (cfs) 0.223 1 - - -

SC (µS/cm) −0.281 −0.565 1 - -
pH 0.109 −0.320 −0.606 1 -

WT (◦C) −0.912 −0.264 0.238 0.194 1

Table 4. The input combinations used for the development of prediction models.

Models Input Combinations

LSSVM-BA 1 M5 Tree 1 MARS 1 WT SC pH Q
LSSVM-BA 2 M5 Tree 2 MARS 2 WT SC Q -
LSSVM-BA 3 M5 Tree 3 MARS 3 WT SC pH -
LSSVM-BA 4 M5 Tree 4 MARS 4 SC pH - -
LSSVM-BA 5 M5 Tree 5 MARS 5 SC Q - -
LSSVM-BA 6 M5 Tree 6 MARS 6 WT pH - -
LSSVM-BA 7 M5 Tree 7 MARS 7 WT Q - -
LSSVM-BA 8 M5 Tree 8 MARS 8 WT SC - -

4.2. Sensitivity Analysis of Bat Algorithm Parameters

The root-mean-square error is considered as the objective function for the evaluation of results.
The evolutionary nature-inspired algorithms have parameters with random natures and, thus,
sensitivity analysis is necessary to determine the accurate values of these parameters. The parameter
values are varied, and the sensitivity of the parameters is computed against the variations of the
objective function. When the RMSE is selected as the objective function, the aim of the problem
is to minimize the objective function to compute the best value of different parameters. The first
combination of inputs is selected for the explanation of the sensitivity analysis. The results of the
sensitivity analysis using other input combinations are not provided in order to avoid repetition.

An important point to report here is that there are some parameters such as the maximum
frequency, minimum frequency, and loudness that drive bats in the optimized path. The decision
variables are bats’ positions or unknown parameters of LSSVM. The parameters such as maximum
frequency, minimum frequency, or loudness are mathematical or physical parameters that lead the
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bats or solution to the best position or best solution. Therefore, these parameters adjust the sounds
and the bats are led to the best position for finding the food (or the best solution).

Table 5 shows the results of sensitivity analysis of the bat algorithm at all the three investigated
water quality monitoring stations. The population size for the bat algorithm was varied from 20 to
80. The objective function was found to have the least value (0.882 mg/lit) for the population size
60 at the USGS 14206950 station. The minimum frequency was varied from 0.1 to 0.4 and the best
value was obtained as 0.2. The maximum frequency was varied between 0.30 and 0.90 and the least
value (0.882 mg/lit) of the objective function was found for 0.7 Hz. The least value of the objective
function was found for the maximum loudness of 5 dB. The maximum number for the basis function
for the MARS model at all the stations is considered as 130. The backward stage based on the condition
of the problem and inputs are considered for tree pruning in order to have the maximum pruning.
The M5 Tree model does not require any user-defined parameters. The process continues for the M5
Tree model until the SDR value is smaller than the expected value. All the methods have the same
complexity, in terms of computation time.

Table 5. The sensitivity of the parameters of the bat algorithm at the three investigated water quality
monitoring stations.

Population
Size

Objective
Function
(mg/lit)

Maximum
Frequency

Objective
Function
(mg/lit)

Minimum
Frequency

Objective
Function
(mg/lit)

Maximum
Loudness

Objective
Function
(mg/lit)

USGS 4206950

20 0.944 0.30 0.934 0.10 0.921 3 0.910
40 0.921 0.50 0.921 0.20 0.882 5 0.882
60 0.882 0.70 0.882 0.30 0.914 7 0.889
80 0.912 0.90 0.914 0.40 0.955 9 0.901

USGS 0133800

20 0.956 0.30 0.921 0.10 0.931 3 0.954
40 0.916 0.50 0.899 0.20 0.916 5 0.892
60 0.892 0.70 0.892 0.30 0.892 7 0.912
80 0.901 0.90 0.912 0.40 0.912 9 0.916

USGS01463500

20 0.935 0.30 0.925 0.10 0.929 3 0.934
40 0.919 0.50 0.911 0.20 0.912 5 0.895
60 0.895 0.70 0.895 0.30 0.895 7 0.912
80 0.901 0.90 0.902 0.40 0.910 9 0.921

4.3. Modeling River Dissolved Oxygen Concentration

Table 6 shows the performance of the different predictive models with different input
combinations over the training, validation, and testing phases at USGS 14206950 station. The least
values of the absolute error are found for the first input combination for all the predictive models
(LSSVM-BA, M5 Tree, and MARS). This indicates that it is possible to supply more information to the
predictive model through incorporation of all the predictors. The worst performance is noticed for
LSSVM-BA 4 and LSSVM-BA 5 models during the training phase. Better performance of LSSVM-BA
compared with M5 Tree and MARS models is found consistently for all the input combinations.
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Table 6. The performance indicators of the predictive models during training/validation/testing
phases at USGS 14206950.

Models Training Validation Testing

MAE R RMSE MAE R RMSE MAE R RMSE

LSSVM-BA 1 0.9822 0.672 0.425 0.9755 0.689 0.587 0.9711 0.882 0.588
LSSVM-BA 2 0.9799 0.878 0.565 0.9743 0.894 0.812 0.9645 0.911 0.912
LSSVM-BA 3 0.9754 0.974 0.672 0.9658 0.999 0.878 0.9612 1.002 1.021
LSSVM-BA 4 0.9512 1.224 0.724 0.9549 1.512 1.312 0.9423 1.614 1.314
LSSVM-BA 5 0.9505 1.445 1.112 0.9582 1.572 1.472 0.9345 1.494 1.552
LSSVM-BA 6 0.9612 1.122 0.715 0.9554 1.212 1.211 0.9554 1.214 1.304
LSSVM-BA 7 0.9549 1.222 0.689 0.9449 1.225 1.212 0.9497 1.232 1.215
LSSVM-BA 8 0.9801 0.772 0.439 0.9712 0.694 0.589 0.9692 0.892 0.618

M5 Tree 1 0.9392 0.892 0.785 0.9391 0.912 0.918 0.9388 1.112 1.021
M5 Tree 2 0.9091 0.912 0.854 0.9024 1.024 0.945 0.9012 1.124 1.026
M5 Tree 3 0.8754 0.923 0.855 0.8665 1.112 0.924 0.8654 1.126 1.114
M5 Tree 4 0.8112 1.144 0.932 0.79112 1.524 0.987 0.8012 1.567 1.524
M5 Tree 5 0.8523 1.256 0.914 0.82231 1.544 0.989 0.8211 1.569 1.555
M5 Tree 6 0.8546 0.911 0.879 0.8423 1.212 0.944 0.8432 1.324 1.311
M5 Tree 7 0.8647 0.910 0.899 0.8541 0.999 0.924 0.8534 1.001 0.914
M5 Tree 8 0.9301 0.899 0.790 0.9301 0.925 0.914 0.9289 1.119 1.025

MARS 1 0.9191 0.945 0.939 0.9118 1.011 1.002 0.9075 1.021 1.041
MARS 2 0.8867 0.955 0.944 0.8765 1.112 1.108 0.8712 1.112 1.207
MARS 3 0.8654 1.012 1.002 0.8543 1.224 0.999 0.8423 1.226 1.112
MARS 4 0.8312 1.234 1.212 0.8124 1.244 1.112 0.8012 1.254 1.224
MARS 5 0.8224 1.245 1.234 0.8112 1.256 1.145 0.8011 1.259 1.155
MARS 6 0.8732 1.112 1.110 0.8643 1.145 1.008 0.8512 1.147 1.128
MARS 7 0.8701 1.102 0.998 0.8602 1.232 1.102 0.8545 1.234 1.222
MARS 8 0.9089 0.955 0.949 0.9121 1.102 1.106 0.9054 1.045 1.110

The least values of RMSE and MAE are found for the LSSVM-BA 1 during training (0.672 and
0.425 mg/lit), validation (0.689 and 0.912 mg/lit), and testing (0.882 and 0.588 mg/lit). The first input
combination is also found to be best in terms of correlation. The results in Table 6 demonstrate the
significance of WT in the prediction of DO. The LSSVM-BA 1 showed enhancement over M5 Tree 1 and
MARS 1 by 20% and 42% in terms of RMSE and 13% and 45% in terms of MAE, respectively, during
the testing phase. This clearly indicates the capability of the integrative model (LSSVM-BA) and the
potential of the nature-inspired algorithm for tuning LSSVM parameters.

Table 7 shows the performance of the LSSVM-BA, M5 Tree, and MARS models in prediction of
DO at USGS 10133800 station during all the modeling phases. From Table 7, it is clear that LSSVM-BA
performed better compared with the M5 tree and MARS. This can be elaborated through the results
of RMSE and MAE. The least values of RMSE and MAE are achieved for the LSSVM-BA 1 during
model training (0.712 and 0.525 mg/lit), validation (0.745 and 0.597 mg/lit), and testing (0.892 and
0.888 mg/lit). The performance of the LSSVM-BA model is evaluated against the best results obtained
using M5 Tree and MARS models. The prediction accuracy of LSSVM-BA model is found to improve
in term of RMSE and MAE by 27% and 27.4%, and by 32% and 27.5% for M5 Tree and MARS models,
respectively. The eighth input combination (LSSVM-BA 8), i.e., with two inputs, WT and SC, is found
to have a performance close to that of the best input combination (LSSVM-BA 1). This indicates an
alternative in the case of limited data. In such a condition, WT and SC only can be used for the
development of a DO prediction model.
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Table 7. The performance of the predictive models during training/validation/testing at USGS
10133800 station.

Models Training Validation Testing

MAE R RMSE MAE R RMSE MAE R RMSE

LSSVM-BA 1 0.9512 0.712 0.525 0.9296 0.745 0.597 0.9285 0.892 0.888
LSSVM-BA 2 0.9499 0.898 0.575 0.9143 0.911 0.814 0.8954 0.921 0.931
LSSVM-BA 3 0.9324 0.994 0.672 0.9131 1.002 0.898 0.8812 1.112 1.111
LSSVM-BA 4 0.9314 1.315 0.724 0.9041 1.626 1.314 0.8523 1.715 1.712
LSSVM-BA 5 0.9205 1.457 1.112 0.8812 1.672 1.475 0.8645 1.594 1.552
LSSVM-BA 6 0.9412 1.131 0.715 0.9154 1.532 1.312 0.8712 1.314 1.234
LSSVM-BA 7 0.9449 1.122 0.689 0.9041 1.443 1.435 0.8891 1.332 1.255
LSSVM-BA 8 0.9501 0.767 0.555 0.9209 0.898 0.675 0.8999 0.911 0.910

M5 Tree 1 0.9374 0.892 0.789 0.9024 0.954 0.928 0.8982 1.224 1.221
M5 Tree 2 0.9081 0.925 0.855 0.8912 1.025 0.955 0.8756 1.344 1.229
M5 Tree 3 0.8554 0.924 0.835 0.8465 1.222 0.964 0.8654 1.359 1.234
M5 Tree 4 0.8212 1.114 0.925 0.83112 1.529 1.116 0.8543 1.587 1.512
M5 Tree 5 0.8323 1.256 0.924 0.8214 1.578 1.257 0.8435 1.589 1.565
M5 Tree 6 0.8746 0.922 0.899 0.8712 1.342 0.946 0.8614 1.414 1.411
M5 Tree 7 0.8647 0.921 0.888 0.8841 1.021 0.936 0.8634 1.321 1.110
M5 Tree 8 0.8955 0.912 0.791 0.9012 1.020 0.930 0.8829 1.229 1.223

MARS 1 0.9292 0.975 0.949 0.8928 1.024 1.002 0.8795 1.321 1.225
MARS 2 0.8769 0.984 0.974 0.8765 1.114 1.112 0.8611 1.314 1.297
MARS 3 0.8524 1.010 1.012 0.8433 1.229 1.212 0.8323 1.336 1.295
MARS 4 0.8322 1.232 1.222 0.8111 1.254 1.220 0.8011 1.354 1.353
MARS 5 0.8214 1.241 1.244 0.8012 1.266 1.219 0.8002 1.356 1.311
MARS 6 0.8732 1.112 1.111 0.8542 1.143 1.116 0.8412 1.337 1.254
MARS 7 0.8721 1.102 0.998 0.8502 1.231 1.099 0.8245 1.339 1.229
MARS 8 0.9144 0.979 0.954 0.8934 1.102 1.001 0.8754 1.318 1.227

It is worthwhile to validate the current research with the literature. The comparison of the
results with those obtained in other studies showed that the LSSVM-BA can decrease RMSE in model
prediction by about 5–11% compared with classical SVM [36]. There are some critical observations of
Table 7. For example, all the three predictive models behave differently for the 5th input combination.
The reason for this is the uncertainty and low correlation of DO with the input. With respect to this,
a Bayesian method is considered for measuring the uncertainty of model parameters and their effect
on DO [57]. The results showed that the pH has the least weight or most uncertainty among all the
parameters. Thus, incorporation of more parameters does not guarantee the successful performance of
the models.

Table 8 shows the performance of LSSVM-BA, M5 Tree, and MARS models during different
modeling phases at USGS 01463500 station. Based on the statistical results presented in Table 8,
the LSSVM-BA accomplishes the best results over the other models. The best results in term of RMSE
and MAE are achieved for the first input combination and LSSVM-BA model during all the modeling
phases. The best RMSE and MAE are found to be 0.814 and 0.545 mg/lit during training, 0.823 and
0.697 mg/lit during validation, and 0.895 and 0.889 mg/lit during testing. The evaluation of the
proposed LSSVM-BA model compared with the best results obtained using the M5 Tree and MARS
models during the testing phase revealed the better prediction accuracy of LSSVM-BA in terms of
RMSE and MAE by 27.4% and 27.7% and 31.7% and 28.2% over the M5 Tree and MARS models.
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Table 8. The performance of the predictive models during training/validation/testing at USGS
01463500 station.

Models Training Validation Testing

MAE R RMSE MAE R RMSE MAE R RMSE

LSSVM-BA 1 0.9112 0.814 0.545 0.9297 0.823 0.697 0.9117 0.895 0.889
LSSVM-BA 2 0.9099 0.878 0.595 0.8944 0.912 0.844 0.8923 0.935 1.232
LSSVM-BA 3 0.8968 0.934 0.683 0.8831 1.121 0.899 0.8712 1.116 1.224
LSSVM-BA 4 0.8799 1.317 0.715 0.8541 1.534 1.325 0.8432 1.727 1.816
LSSVM-BA 5 0.8756 1.467 0.914 0.8612 1.772 1.495 0.8545 1.693 1.759
LSSVM-BA 6 0.8912 1.231 0.711 0.8911 1.521 1.314 0.8602 1.316 1.734
LSSVM-BA 7 0.8987 1.132 0.689 0.8894 1.453 1.278 0.8891 1.342 1.755
LSSVM-BA 8 0.9102 0.822 0.555 0.9054 0.814 0.712 0.8998 0.914 0.912

M5 Tree 1 0.9074 0.911 0.799 0.9024 0.974 0.948 0.8892 1.233 1.230
M5 Tree 2 0.8881 0.949 0.867 0.8912 1.036 0.963 0.8656 1.319 1.314
M5 Tree 3 0.8754 0.953 0.854 0.8465 1.242 0.972 0.8455 1.379 1.375
M5 Tree 4 0.8622 1.124 0.915 0.83112 1.519 1.126 0.8343 1.592 1.587
M5 Tree 5 0.8223 1.266 0.945 0.8214 1.588 1.359 0.8235 1.599 1.594
M5 Tree 6 0.8735 0.951 0.889 0.8712 1.246 0.999 0.8514 1.410 1.399
M5 Tree 7 0.8749 0.943 0.878 0.8841 1.025 0.976 0.8734 1.321 1.302
M5 Tree 8 0.9071 0.912 0.801 0.9012 0.916 0.954 0.8890 1.237 1.233

MARS 1 0.9079 0.981 0.959 0.8925 1.037 1.102 0.8697 1.311 1.239
MARS 2 0.8859 0.994 0.994 0.8564 1.116 1.114 0.8543 1.324 1.299
MARS 3 0.8614 1.110 1.111 0.8231 1.231 1.102 0.8123 1.346 1.285
MARS 4 0.8222 1.332 1.312 0.8011 1.259 1.220 0.8010 1.363 1.361
MARS 5 0.8114 1.352 1.344 0.8014 1.289 1.212 0.8002 1.379 1.310
MARS 6 0.8632 1.212 1.211 0.8544 1.141 1.017 0.8312 1.327 1.269
MARS 7 0.8321 1.112 0.999 0.8512 1.229 1.014 0.8241 1.349 1.259
MARS 8 0.9044 0.989 0.979 0.8920 1.041 1.106 0.8612 1.314 1.242

In general, the results of the three investigated stations are found to collaborate well with previous
findings. Heddam and Kisi et al. (2017) showed that the regression methods without accurate
estimation of some unknown parameters in their structure have a weaker performance compared with
other AI methods such as ANN. Hence, the regression methods can be improved by the optimization
of model parameters [77–79]. Other studies in the literature have also showed that the application of
regression models with heuristic methods can improve model performance [80].

The performance of the models was also investigated using a scatter plot of observed and
simulated values of DO concentration. Figures 4–6 shows the scatter plots for all the three stations
during three modeling phases (i.e., training, validation, and testing). In general, the proposed
integrative model displays a better correlation performance compared with the M5 Tree and MARS
models. A closer examination revealed that the prediction was excellent for the whole range of
DO values (0.10–24.8 mg/lit) at USGS 14206950 station. Relatively lower performance for the DO
concentrations between 6.5–7.9 and 9.7–11.18 mg/lit is observed at USGS 10133800 station, particularly
during the testing phase. This can be justified through the lack of the input attribute information at
this particular station. Besides this, the concentration of dissolved oxygen may be affected by other
environmental influences at this station. Relatively better performance in prediction of all values of
DO concentration (5.4–16.9 mg/lit) is observed at USGS 01463500 station.
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5. Conclusions

Water quality is a major concern in water resource management. Among several water quality
variables, DO is the main concern in term of aquatic environment and ecology. The magnitude of
DO relies on several other water quality variables and interactions among the variables, and, thus,
the modeling of DO is an interesting but complex topic in environmental science. A novel modeling
strategy based on integration of a nature-inspired algorithm with LSSVM was proposed in this study
for the prediction of DO at three river water quality monitoring stations located in the USA. The results
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were compared with those obtained using MT5 and MARS models. The overall findings of the study
are as follows:

• The performance of LSSVM-BA 1 was found to be best among all the models based on higher
correlation (see Figure 4) and lower RMSE and MAE compared with the other models at all
three stations (see Tables 6–8). For instance, LSSVM-BA 1 for the USGS 14206950 station showed
better accuracy by 3.1%, 11%, 45%, 40%, 27%, 28%, and 29% than the LSSVM-BA 2, LSSVM-BA 3,
LSSVM-BA 4, LSSVM-BA 5, LSSVM-BA 6, LSSVM-BA 7, and LSSVM-BA 8 models.

• The MARS 1 and M5 Tree 1 models showed the lowest RMSE and MAE among all the MARS
and M5 Tree models at all three stations during all three modeling phases (training, validation,
and testing).

• The fourth and the fifth input combinations (without the WT parameter) showed the worst
performance among all the input combinations at all the three stations at all the three modeling
phases, which indicates the importance of WT in prediction of DO.

• All three predictive models (LSSVM, MARS, and M5 Tree) showed relatively better performance
when only WT and SC were used as input at two stations, namely, USGS 10133800 and USGS
01463500, which indicates that WT and SC can be used for reasonable prediction of DO when
other water quality data are not available.

Overall, the results showed better performance of the LSSVM-BA model compared with other
models. As further research, the nature-inspired algorithms used in the current research can
be considered for the improvement of other methods such as ANN and ANFIS. Furthermore,
the performance of LSSVM-BA against those improved models can be evaluated to find the best
model for river DO prediction. In addition, the improved models can be used for the prediction of
daily or hourly DO concentration in shallow water bodies to show their efficacy in prediction of DO
concentration under different environmental conditions.
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