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A B S T R A C T

This study investigated the generation of Q-switched pulse in fibre laser operation at 1550 nm wavelength region using silver nanoparticles (Ag NPs) as passive
saturable absorber (SA). The Ag NP SA was prepared through the electron beam evaporation method with a thickness of 10 nm on pure polyvinyl alcohol (PVA) film.
The average size of the Ag NPs was around 50 nm and the existence of silver element had been investigated by using the energy dispersive spectroscopy (EDS)
technique. The modulation depth of the developed silver-based passive SA was 19% with saturation intensity of 170.26 mW/cm2. The laser was operated at 1560 nm
centre wavelength with 3 dB spectral bandwidth of 1.3 nm. The pulsed laser was able to generate pulse energy of 146.4 nJ with peak power of 20.5 mW at a
maximum pump of 90.4 mW. A signal-to-noise ratio (SNR) value of 67.5 dB was obtained at the repetition rate of 65.4 kHz for maximum input pump power.

Introduction

Noble metal nanoparticles (NPs), including gold (Au), silver (Ag),
and copper (Cu), have garnered vast attention, especially in the pho-
tonics field, due to their attractive optical properties. Metal NPs possess
the advantage of broadband saturable absorption induced by surface
plasmonic resonance (SPR) from visible to infrared region, which make
them suitable to be applied as SA for pulse fibre laser generation at
various wavelength operations [1,2], although they are highly influ-
enced by the size, shape, and dielectrics of NPs [3]. Besides, metal NPs
have large third-order nonlinearity, especially gold (Au), when com-
pared to graphene or carbon nanotubes [4]. Third-order nonlinearity is
responsible for the absorption properties that are important for the
change of light that propagates via SA [5]. Rapid growth in the SA
technologies from dyes to two-dimensional (2D) materials is almost
parallel with the advancement of the fibre laser itself. 2D materials,
such as graphene [6], topological insulators [7,8], transition metal di-
chalcogenides [9], and black phosphorus [10] utilise bandgap size as an
important characteristic for SA selection to determine the absorption
ability at a desired operation wavelength range. In the case of 2D ma-
terials [11], the saturable absorption of photons occurs with energy
larger than the respective SA bandgap energy at high intensity that
generates an electron-hole interaction. The SA with larger bandgap and
weak electron-hole interaction is introduced due to long distance

conduction and valance band separation [11]. Nevertheless, in metal
NPs, there are two possibilities of saturable absorption [1]. One is the
intensity-dependent shift of the plasmon resonance that leads to strong
saturation behaviour [12], while the other refers to the ground state
plasmon bleaching related to intrinsic electron dynamics [13].

Several studies have investigated Ag NP as an SA for 1550 nm fibre-
pulsed generation. Ahmad et al., reported a Q-switched EDFL by
sandwiching the SA between the fibre ferrules [14]. Besides, Ahmad
et al. also reported the silver-based passive SA at less than 2 µm region
using Thulium-doped fibre as a gain medium [15]. The Ag NP SA was
prepared by mixing the Ag NP with methyltrimethoxylane (MTMS) as
the host polymer [14]. The saturable absorption of the Ag NP SA was
reported at around 31.6%, indicating that the Ag NP embedded in
MTMS displayed high potential to serve as SA [14]. The stable pulse
started at a relatively low pump power threshold with maximum pulse
energy of 8.17 nJ [14]. Guo et al. proposed a Q-switched laser using
photodeposition techniques [16]. The Ag NPs were prepared by using
the solvothermal reduction method and fibre connector was immersed
in the Ag NP aqueous solution for 5min. The saturable absorption of the
SA was approximately 18.5%. The Q-switched pulsed laser was gener-
ated at low pump power of 19.9 mW with pulse energy of 133 nJ at
maximum pump power of 139mW [16]. Both the aforementioned
studies exhibit positive results in terms of short-pulsed width Q-swit-
ched generation. Nevertheless, the techniques utilised by Ahmad et al.
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[14,15] generate silver sulphide (Ag2S) due to usage of sulphuric acid
in preparing MTMS polymer [17]. Additionally, the optical deposition
method reported by Guo et al. [16] suggested low repeatability and
required tedious work [18,19].

In this work, Q-switched EDFL was generated by using Ag NP SA.
The silver-based passive SA was fabricated via electron beam deposition
techniques coated on pure polyvinyl alcohol (PVA) film. Then, the Ag
NP SA was deposited in between the fibre ferrules to pulsed fibre laser
generation.

Methodology

Fabrication and characterisation of Ag NP SA

The PVA substrate-based film was selected as a supporting polymer
in this experiment due to its low optical absorption at 1030 nm and
1558 nm wavelengths. The polyvinyl alcohol (PVA) has high flexibility,
high strength, and easy to integrate onto the fibre ferrule [20]. Before
depositing the Ag NP on the PVA film, the pure PVA film was prepared
by dissolving 1 g of PVA powder (40,000MW, Sigma Aldrich) into
120ml of de-ionized (DI) water. At 145 °C, the mixture was stirred until
the powder was completely dissolved. Then, 5ml of PVA solution was
carefully poured into a petri dish and left to dry in an ambient condition
for 3 days. A thin layer of Ag NP was deposited on the top surface of
PVA polymer composites using electron beam evaporation (EB43-T,
KCMC). The PVA film was inserted in a vacuum chamber pressurised at
1.0× 10−4 mbar. Within the stabilised chamber, the filament was
turned on at voltage 7 kV and current 120mA to generate the electron
beam. When the constant deposition rate was achieved in 20min, the
main shutter was opened for 5 s to get approximately 10 nm thickness
of Ag NP coating. This thickness was controlled by opening the main
shutter located inside the vacuum chamber. The fabricated Ag NP SA
was kept and sealed in a vacuum bag, and placed in a humid cabinet to
prevent Ag oxidation.

The material composition of Ag NP SA was characterised by using
Energy-dispersive spectroscopy (EDS), while the surface morphology of
Ag NP coated on PVA film was captured by using focused ion beam
scanning electron microscopy (FiB-SEM) (Helios Nanolab G3 UC, FEI).
A three-dimensional (3D) measuring laser microscope (OLS 4000,
Olympus) was used to measure the thickness of PVA film with the de-
posited silver Nano particles. In order to study the nonlinear optical
response of Ag NP SA, balanced twin techniques were carried out. Fig. 1
shows the experimental setup for the nonlinear response measurement.
The setup consisted of a self-made mode-locked input source with a
repetition rate of 1MHz and pulse width of 3.41 ps. The mode-locked
laser was amplified by using an Erbium-doped amplifier (EDFA). Next,
50% of laser light was tapped out from the Ag NP SA deposited FC/PC
fibre ferrule, while another 50% was channelled to the ferrule without
SA deposition. The data were collected by constantly reducing the at-
tenuator input, while the output powers of with and without SA were
measured using an optical power meter. The curve was fitted by using
the transmission fitting equation as given in Eq. (1):
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where αs is modulation depth, I refers to input intensity, Isat denotes
saturation current, and αns reflects non-saturable absorption.

Fibre laser ring cavity setup

Fig. 2 illustrates the ring cavity of the proposed passive Q-switched
fibre laser. The cavity was pumped by a 980 nm laser diode with
maximum power of 160 mW through wavelength division multiplexing
(WDM). A total of 2.4 m Erbium-doped fibre (I-25, FiberCore) with a
peak absorption 45 dB/m at 1531 nm was used as the gain medium to
generate 1.55 µm region pulse fibre laser. An isolator was employed
into the cavity to ensure unidirectional light propagation. The output
was tapped out by 80:20 optical coupler, where 80% of light was kept
oscillating in the cavity, and the remaining 20% was used for output
measurement to observe the pulse train, the signal to noise ratio (SNR),
and the optical spectrum. The operating wavelength of the generated
pulsed was observed through an optical spectrum analyser (Yokogawa,
AQ6370B) with a resolution of 0.02 nm. The pulse train and the SNR
were recorded by using 500MHz Digital Oscilloscope (GW Instek, GDS
3352) and radio frequency spectrum analyser (RFSA) (Anritsu,
MS2683A), via 1.2 GHz InGaAs photodetector. The Ag NP SA with the
dimension of 1mm2×1mm2 was sandwiched between two FC/PC
fibre ferrules and integrated into the ring cavity for pulsed laser gen-
eration, as portrayed in Fig. 2. The total length of the laser cavity was
approximately 13.4 m.

Results and discussion

In order to verify the presence of silver (Ag) element on PVA, EDS
was performed and the analysis is as shown in Fig. 3(a). The high peak
of Ag at 3 keV corresponded to high weight percentage of Ag, which
was 85.99%. This was followed by carbon (C) and oxygen (O) at weight
percentages of 9.44% and 4.57%, respectively, which most probably
derived from the host polymer composition (PVA) and the use of carbon
for attachment of sample onto the specimen holder. Fig. 3(b) illustrates
the image of Ag NP deposited on the PVA film with area of 1 cm2. The
surface morphology of Ag NP on PVA was characterised via FiB-SEM at
magnification of 40 kX, as shown in Fig. 3(c). The Ag NPs were com-
posed of several diameters, ranging from 14.28 nm until 171.36 nm
with an average diameter of 50.49 nm. The image also portrays the high
density and distribution of Ag NP on PVA film without any aggregation.
The thickness of the SA, including PVA and Ag NPs, was measured at
approximately 55 µm using 3D measuring laser microscope, as shown in
Fig. 4.

Fig. 1. Twin balanced detector setup for nonlinear
transmission analysis of Ag NP SA.

Fig. 2. Experimental setup of the proposed Q-switched fiber laser.
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The nonlinear transmission analysis of Ag NP SA in transmission
ratio as a function of power intensity is presented in Fig. 5. By fitting
the data from Eq. (1), the modulation depth of the SA was about 19%
with non-saturable absorption of 56%. The initial transmission ratio
was around 25% and the saturation current of 170.26MW/cm2 was at a
transmission ratio of 37.5%. This larger modulation depth was required
for a stable Q-switched laser operation and strong pulse shaping [21].
The modulation depth of 19% acquired from this study conforms to
those reported in prior studies, such as Guo et al. [16]. The non-sa-
turable absorption of Ag NP was relatively high, most probably due to
the low repetition rate of mode-locked pulse laser source that could

induce high power losses by the SAs. This problem can be resolved by
using a femtosecond mode-locked source in order to reduce the non-
saturable loss. Inset of Fig. 5 shows the insertion loss of the Ag NP SA,
which was about 1.82 dB using 1550 nm amplitude spontaneous emis-
sion (ASE) light source with input pump power of 40mW.

The lasing threshold was obtained at 12.7 mW and the stable Q-
switched operation was achieved at threshold pump power of 29.4 mW.
The low laser threshold displayed low cavity losses in the ring cavity
during the continuous wave (CW) operation. In fact, the reported
threshold pump power for pulse generation appeared to be lower than
the other reported works based on several other materials that served as
SAs, such as carbon nanotubes, graphene, and topological insulators
[22–25]. The self-started Q-switched operation was also operated at
low pump power to indicate that low intensity of light can saturate the
electron transition from the valence band to the conduction band. The
stable Q-switched pulse train was observed from 29.4 mW until
90.4 mW pump power with decreasing pulse width. The pulses started
to get distorted and disappeared when the pump power exceeded
90.4 mW, only to reappear when the pump power was tuned within the
range of 29.4 mW until 90.4 mW. This shows that the Ag NP SA was not
damaged by the thermal accumulation as it has high damage threshold
and the distorted pulse was due to the over-saturation of Ag NP SA at
higher pump power [22]. During the experiment, no mode-locking ef-
fect was observed. This was probably due to the large cavity loss [26].
The CW was operated at 19.7 mW, while the Q-switched operation was
achieved at pump power 29.4 mW. This large difference was due to the
loss that suppressed the number of oscillating longitudinal modes,
which seemed unfavourable to the mode-locking operation [26].

In order to confirm that the Q-switched pulses were associated to Ag
NP, the SA was removed from the ferrule and no pulse was detected
even when the pump power was tuned over a wider range. The pure
PVA film was tested in the laser cavity and no pulse was generated. This
shows that the Ag NP SA was subjected to Q-switched operation. Fig. 6
shows the typical oscilloscope trace of the Q-switched pulse train at
29.4 mW and 90.4 mW. The pulses show asymmetric shape in each
envelope and no amplitude modulation can be observed in the pulse
train, indicating that the pulse produced was stable. The pulse width at
full width at half maximum (FWHM) decreased as the pump power
increased, as depicted in the inset of Fig. 6. The shortest pulse width at

Fig. 3. (a) Energy Dispersive Spectroscopy (EDS) analysis of Ag NP SA, (b)
image of Ag NP deposited on the PVA film and (c) is the surface image of Ag NP
SA using focused ion beam scanning electron microscopy (FiB-SEM) at mag-
nification 40 kX.

Fig. 4. Thickness measurement using 3D laser microscope. The thickness of the
SA is around 55 µm.

Fig. 5. Nonlinear transmission characteristic of Ag NP SA using twin balanced
detector methods and inset is the insertion loss of Ag NP SA using 1550 nm light
source.

Fig. 6. Typical pulse train and pulse width at pump power (a) 29.4 mW and (b)
90.4 mW.
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around 6.7 µs was achieved at the maximum pump power of 90.4mW
with pulse-pulse separation of approximately 15.0 µs, which corre-
sponded to the repetition rate of 66.67 kHz. As portrayed in Fig. 6, the
separation between two pulses was closer when the pump power in-
creased. Micro-second duration pulse generation can be applied in
several applications, such as communications systems, optical sensing,
and micromachining [27]. Even shorter pulse duration is desirable for
its greater precision and wider applications in these real-world in-
dustrial applications.

Fig. 7 illustrates the optical spectrum of CW lasing (without SA) and
Q-switched pulses under varied pump power values. The CW lasing was
centred at the wavelength of 1560 nm, while the Q-switched laser was
operated in the 1558 nm centre wavelength with 3 dB spectral band-
width of 1.3 nm at maximum pump power of 90.4 mW. The spectrum
shifted when the SA was inserted in the laser cavity, indicating that the
transition of CW to Q-switching took place due to absorption of light by
SA. The nonlinear effects of the fibre and the SA also caused the
spectrum broadening to occur. As the Ag NP SA was inserted in the
cavity, the spectrum peak increased and slight spectral broadening
occurred when the pump power was increased due to reduction in pulse
width, which was induced by self-phase modulation (SPM). Fig. 8
portrays the signal to noise ratio (SNR) measured by using radio fre-
quency (RF) spectrum analyser fewer than 500 kHz span. The SNR can
be calculated from the difference between peak and pedestal power at
the first beat note. The SNR at maximum pump power at a fundamental
repetition rate of 65.53 kHz was 67.52 dB. This high SNR indicated that
the laser was operated at good stability. Ahmad et al. [14], reported an
SNR value of 35 dB, which is lower when compared to the result ob-
tained in this work, using the same starting material of Ag NPs in

generating Q-switched laser. No other external frequency component
was observed in the RF span, which approved good stability of the laser
operation.

Fig. 9(a) illustrates the repetition rate and pulse energy of the Q-
switched laser as a function of pump power. The repetition rate was
increased from 39.8 kHz to 65.4 kHz as the pump power increased from
29.4 mW to 90.4mW. The increment of the repetition rates showed that
the Q-switching operation can provide frequency tuning by adjusting
the level of input pump power. On the other hand, the pulse energy was
observed in a linearly increased fashion as the pump power was tuned
until the maximum power. At the maximum pump power, the pulse
energy was recorded at 146.4 nJ. This high pulse energy was caused by
the high modulation depth of Ag NP SA. The high pulse energy was also
higher than that reported by Ahmad et al. and Guo et al. [14,16], in
fact, considerably higher than most of the works that used SAs based on
carbon nanotubes and graphene [24,28,29]. Fig. 9(b) displays the pulse
width and the instantaneous peak power as a function of pump power.
The pulse widths were reduced from 11.6 µs to 6.7 µs as the pump
power increased, showing a typical feature of the Q-switched laser. The
value of the shortest pulse width, however, can be further reduced by
increasing the modulation depth of the SA, apart from reducing and
optimising the overall cavity length to reduce losses. The instantaneous
peak power at maximum pump power 90.4 mW was calculated at
20.5 mW.

In the proposed work, Ag NP deposited on PVA using electron beam
evaporation appears to generate Q-switched pulsed fibre laser with

Fig. 7. Optical Spectrum at 29.4, 57.1, and 90.4mW measured using an optical
spectrum analyzer (OSA).

Fig. 8. Radio frequency (RF) spectrum of signal to noise ratio (SNR) mea-
surement at frequency 65.33 kHz with SNR of 67.52 dB.

Fig. 9. Relationship between (a) repetition rate and pulse energy, and (b) pulse
width and peak power at different pump power.
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higher pulse energy and peak power, when compared to prior works
based on Ag NP SA. The comparison is presented in Table 1.

Conclusion

As a conclusion, Ag NP coated on the PVA thin film using electron
beam evaporation as passive saturable absorber demonstrated and
displayed the ability to generate a stable Q-switched pulse at a wave-
length of 1550 nm. The diameter of the Ag NP is around 50 nm after
being characterised by using FiB-SEM. The high peak of Ag composition
in EDS analysis verifies that Ag NP has been successfully deposited on
the PVA thin film. Besides, the high modulation depth of 19% proves
that Ag NP SA is a good candidate and has high potential to function as
saturable absorber. The Ag NPs based passive saturable absorber can
generate a pulse at low pump power stably ranging from 29.4 mW up to
90.4 mW. The Q-switched laser operates at the centre wavelength of
1558 nm with 67.52 dB SNR. The laser is also able to achieve high pulse
energy of 146.4 nJ with peak power of 20.5 mW.
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