Al-Samman, A. M. and Rahman, T. A. and Hindia, M. H. D. N. and Daho, A. and Hanafi, E. (2018) Path loss model for outdoor parking environments at 28 GHz and 38 GHz for 5G wireless networks. Symmetry, 10 (12). ISSN 2073-8994
|
PDF
2MB |
Official URL: http://dx.doi.org/10.3390/sym10120672
Abstract
It has been widely speculated that the performance of the next generation Internet of Things (IoT) based wireless network should meet a transmission speed on the order of 1000 times more than current wireless networks; energy consumption on the order of 10 times less and access delay of less than 1 ns that will be provided by future 5G systems. To increase the current mobile broadband capacity in future 5G systems, the millimeter wave (mmWave) band will be used with huge amounts of bandwidth available in this band. Hence, to support this wider bandwith at the mmWave band, new radio access technology (RAT) should be provided for 5G systems. The new RAT with symmetry design for downlink and uplink should support different scenarios such as device to device (D2D) and multi-hop communications. This paper presents the path loss models in parking lot environment which represents the multi-end users for future 5G applications. To completely assess the typical performance of 5G wireless network systems across these different frequency bands, it is necessary to develop path loss (PL) models across these wide frequency ranges. The short wavelength of the highest frequency bands provides many scatterings from different objects. Cars and other objects are some examples of scatterings, which represent a critical issue at millimeter-wave bands. This paper presents the large-scale propagation characteristics for millimeter-wave in a parking lot environment. A new physical-based path loss model for parking lots is proposed. The path loss was investigated based on different models. The measurement was conducted at 28 GHz and 38 GHz frequencies for different scenarios. Results showed that the path loss exponent values were approximately identical at 28 GHz and 38 GHz for different scenarios of parking lots. It was found that the proposed compensation factor varied between 10.6 dB and 23.1 dB and between 13.1 and 19.1 in 28 GHz and 38 GHz, respectively. The proposed path loss models showed that more compensation factors are required for more scattering objects, especially at 28 GHz.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | 28 and 38 GHz, 5G, D2D, IOT, MmWave, Path loss, Propagation |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering |
Divisions: | Electrical Engineering |
ID Code: | 79638 |
Deposited By: | Fazli Masari |
Deposited On: | 28 Jan 2019 04:58 |
Last Modified: | 28 Jan 2019 04:58 |
Repository Staff Only: item control page