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Abstract: Landslides cause a considerable amount of damage around the world every year. Landslide 
susceptibility  assessm ents are useful for the m itigation of the associated potential risks to local 
econom ic developm ent, land use planning, and decision m akers. The m ain aim  of this study w as 
to present a novel hybrid  approach of bagging (B)-based kernel logistic regression (K LR ), nam ed 
the BK LR  m odel, for spatial prediction of landslides in  the Shangnan County, China. We first 
selected 15 conditioning factors for landslide susceptibility modeling. Then, the prediction capability 
of all conditioning factors w as evaluated u sing the least square support vector m achine m ethod. 
M odel validation and com parison w ere perform ed based on the area under the receiver operating 
characteristic curve and several statistical-based indexes, including positive predictive rate, negative 
predictive rate, sensitivity, specificity, kappa index, and root mean square error. Results indicated that 
the BKLR ensem ble model outperformed and outclassed the KLR and the benchm ark support vector 
machine model. O ur findings overall confirmed that a com bination of the meta model w ith a decision 
tree classifier based on a functional algorithm  can decrease the over-fitting and variance problem s of 
data, w hich could enhance the prediction pow er of the landslide model. The resultant susceptibility 
maps could be useful for hazard m itigation in the study area and other similar landslide-prone areas.

Keywords: landslide; m eta classifier; prediction power; China

1. Introduction

Landslides are one of the m ost im portant geological hazards w orldw ide [1] . N atural hazards 
and risks have becom e an im portant issue affecting hum an safety; the damage caused by these events
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to hum an life and the environm ent cannot be ignored [2] . D ue to the potential econom ic, social, 
environm ental, and health  im pacts of landslides, policy m akers pay attention to landslide hazard 
zonation m aps to identify sensitive areas and sustainable locations for future developm ent [3].

Globally, around 66  m illion people are living w ith in  the areas at h igh risk o f landslides [4] . 
For exam ple, in the United States, the annual financial losses by landslides is estimated about USD $1.5 
billion. M ost areas in China are m ountainous, so are susceptible to landslides, and direct and indirect 
econom ic losses induced by landslide account for m ore than ¥20 billion every year, endangering the 
lives of local people [5 ].

D ue to the dam age caused by  landslides, the first step in  landside hazard assessm ent is 
preparation of landslide susceptibility  m aps (LSM s) on a regional scale [6] . Statistical m odels are 
m ost com m only used in landslide susceptibility  m apping, w hich  are based  on the analysis of the 
relationships betw een influencing factors and existing landslides [7]. In these statistical approaches, 
bivariate and m ultivariate statistical techniques are used for landslide susceptibility  m apping 
throughout the w orld, including frequency ratio [8- 10], index of entropy [11- 15], bivariate statistical 
analysis [16], m ultivariate adaptive regression spline [17], analytical hierarchy process [18,19], statistical 
index [20,21], w eight of evidence [13,21], evidential belief function [22,23], certainty factor [24,25], and 
logistic regression [26- 29].

In  addition to the above m entioned developm ent of LSM s, various data m ining techniques 
have been  introduced for LSM , for exam ple, neuro-fuzzy [30- 32], artificial neural netw ork [33,34], 
kernel logistic regression [33,35], m ultivariate adaptive regression spline [19,36], decision trees [37- 40], 
support vector machines [41,42], random forest [23,43], adaptive neuro-fuzzy inference system [44- 46], 
and naive Bayes [47,48]. However, the best m ethod for creating LSM s is still under discussion.

Researchers have reported that hybrid m odels produce better outcomes than individual machine 
learning techniques, so they are thought to be best for creating the best LSM s [49,50]. Therefore, the 
aim  of this study w as to introduce a new  hybrid  bagging-based  tw o-class kernel logistic regression 
(BKLR) for landslides susceptibility m apping. The perform ance of this BKLR model is compared with 
the single KLR and the benchm ark support vector m achines (SVM).

2. Study Area and D ata Used

Shangnan County, Shaanxi Province, C hina (Figure 1) regularly  suffers a great deal o f dam age 
from  landslides, so w as selected as a suitable site for evaluating landslide susceptibility  m odels. 
The altitude in the area ranges from 189 to 2050 m above sea level (a.s.l.), and the area and m axim um  
slope angle are approxim ately 2307 km 2 and 65°, respectively. The average tem perature for the whole 
county is 14.6 °C, ranging betw een 11.1 and 15.0 °C for various regions. The spatial distribution of air 
temperature is affected by altitude. The temperature is low in the northern and southern mountainous 
areas, and high in the central and D anjiang River areas.

Topographically, Shangnan C ounty is a m ountainous terrain in the Eastern Q inling M ountains. 
The altitudes in the northern and southw estern areas are higher than in the m iddle and southeastern 
areas. The study area can be divided into three geom orphological units: (I) H illy areas w ith altitudes 
below  500  m  and a relative height difference o f less than 200  m ; (II) low -relief areas w ith  altitudes 
between 500 and 1000 m and a relative height difference between 200 and 500 m; and (III) m id-mountain 
zones w ith altitudes above 1000 m and a relative height difference greater than 500 m.

G eologically, the study area is located at the border zone of the N orth  C hina and the Yangtze 
plates, and spans m ultiple stratigraphic regions from  north to south. Therefore, the lithologies of the 
stratum  are obviously different. The strata in the region are dom inated by the Archean to Ordovician 
periods, and D evonian and C arboniferous are partially  outcropped (Figure 2 ). Five m ajor faults 
divide the study area into distinct structural zones: (1) Shangnan-D anfeng fault (N W -SE  direction); 
(2) Zhulinguan-Taifenglou large fault (W -E direction); (3) Banyan-Yaolinghe fault (N W -SE direction); 
(4) Bailuchu-W eijiatai fault (N W -SE direction); and (5) Shiliping-Sanguanm iao fault (W -E  direction).
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Figure 1. Location of the study area and landslide inventory.

Landslide inventory is the basis for LSM . R eliable and accurate landslide inventory data are 
crucial for LSM  [51]. To enhance the reliability  and accuracy of landslide inventory m aps, a total of 
three techniques w ere used in the study: H istorical reports, interpretation of aerial photographs, and 
extensive global positioning system  (GPS) field surveys. A ccording to landslide inventory m aps in 
the region, a total of 348 landslides w ere identified (Figure 1) . From  these locations, 244 (70%) w ere 
random ly selerted for building the m odels, and 104 (30%>) were used for validating models.

Follow ing the developm ent of a landslide inventory, the foctors necessary to create the landslide 
susceptibility m aps m ust be determ ined [52]. The factors used in fhe rtudies evaluating landslide 
susceptibility can be categorized into three major groups: Topographical, environmental, and geological.
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Fifteen factors (11 continuous and 4 categorical) were chosen and produced from the digital topographical 
m aps at a 1:50,000 scale, LANDSAT-8 satellite im ages w ith a spati al resolution of 30 m, the compilation 
of geological m aps on a 1:200,000 scale, the com pilation of land use m aps on a 1:100,000 scale, and soil 
m aps on a 1:1,000,000 scale. The list of the factors used in this study are show n in Table 1. Altitude, 
plan curvature, profile curvcture, slope angle, slope aspect, topographic w etness index (TW I), stream  
power index (SPI), sediment transport index (STI), distance to roads, and distance to rivers factors were 
determ ined from topographical maps. D istance to Rault and lithology factors w ere produced from the 
geological maps. Normalized difference vegetation index (NDVI) was produced from tine* LANDSAT-8 
satellite im ages. Land use and soil factors w ere extracted from  land use and soil m aps, respectively. 
Finally, a 30 m  pixel size was choren for all the factor maRS (Figure 3 ).

Figure 2. Geological map of the area.

Table 1. Landslide conditioning factors.

Category Factors GIS Data Type Scale or Resolution

Topographic factors Altitude 
Plan curvature 

Profile curvature 
Slope angle 
Slope aspect 

TWI 
SPI 
STI

ARC/INFO GRID 
ARC/INFO GRID 
ARC/INFO GRID 
ARC/INFO GRID 
ARC/INFO GRID 
ARC/INFO GRID 
ARC/INFO GRID 
ARC/INFO GRID

30 X 30 m 
30 X 30 m 
30 X 30 m 
30 X 30 m 
30 X 30 m 
30 X 30 m 
30 X 30 m 
30 X 30 m

Environmental factors Distance to rivers 
Distance to roads 

NDVI 
Land use 

Soil

ARC/INFO GRID 
ARC/INFO GRID 
ARC/INFO GRID 

ARC/INFO polygon coverage 
ARC/INFO polygon coverage

30 X 30 m 
30 X 30 m 
30 X 30 m 
1:100,000 

1:1,000,000
Geological factors Lithology 

Distance to faults
ARC/INFO polygon coverage 

ARC/INFO GRID
1:200,000 
30 X 30 m
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Figure 3. Cont.
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Figure 3. Landslide conditioning factors: (a) Altitude; (b) plan curvature; (c) profile curvature; (d) slope 
angle; (e) slope aspect; (f) topographic wetness index (TWI); (g) stream power index (SPI); (h) sediment 
transport index (STI); (i) distance to rivers; (j) distance to faults; (k) distance to roads; (l) normalized 
difference vegetation index (NDVI); (m) land use; (n) lithology and (o) soil.
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3. M odeling Approaches

3.1. Bagging

Bagging is based on the concepts of bootstrapping and aggregating, and is one of the most popular 
ensem ble algorithm s [53]. In bagging, the training set is random ly sam pled n tim es with replacement, 
producing n training sets w ith sizes equal to the original training set [53].

In  this study, w e considered a learning set C consisting of n independent observations [54,55]. 
H ere, they are landslide conditioning factors, so w e have C =  { (Xi, Yi), i =  1 , 2 , . . .  n } . Firstly, set 
Cb (b = 1,2, . . .  , n) denotes the b-th bootstrap sam ple of the training set C obtained by  draw ing 
w ith  replacem ent n elem ents of C. Secondly, com pute the bootstrapped estim ator g  * (■) by  the 
plug-in principle: g  * (■) =  hn ((X * , Y * ), . . .  (Xn, Y* ))(■). Finally, repeat the above step m tim es, w here 
the m is often defined as 50 or 100, y ield ing g*k (■ )(k =  1 , 2 , . . . ,  m ). So, the bagged estim ator is

m
E g*k()

g Bag ( 0  =  i~Lm .
In theory, the bagged estim ator is described as follow s:

■ ) = *  [g * (■)], (1)

w here the theoretical quantity corresponds to m ^  ro and the finite num ber m in practice governs the 
accuracy of the M onte C arlo approxim ation.

3.2. Kernel Logistic Regression

K LR  is a pow erful and flexible d iscrim inative m ethod, w hich  possesses the ability to provide 
the confidence of class prediction [56]. A  conventional logistic regression m odel w as constructed in 
high-dimensional feature space and proposed by a M ercer kernel [57]. Given the labelled training data:

D =  { ( x i ,y i ) } , i =  1 ,x i e  X  e  Rd, yi e  [0,1], (2)

where xi is the landslide conditioning factor, and K : X x X ^  R evaluates the inner product between
the im ages of input vectors in the feature space.

The kernel function used in this study is the isotropic radial basis function (RBF):

K (x, x! ) =  e{ ?Hx-x/ll } (3)

Then, a conventional logistic regression m odel w as constructed in the feature space as follows:

plo g it {h (x ) } =  f (x ) +  c, lo g it (p ) =  log -——— , (4)
1 -  p

w here (w,c) are the optim al m odel param eters.

4. Results

4.1. Selection o f Landslide Conditioning Factors

There is no global guideline for the selection of landslide conditioning factors, but they should be 
selected based on the characteristics of the case study area, data availability, and literature review [58]. 
O ne of the m ost im portant steps in spatial prediction m odeling is the selection of appropriate and 
effective conditioning factors am ong all available factors. N ot all conditioning factors have an equal 
im pact on landside occurrences; thus, the m ost and least im portant conditioning factors m u st be 
identified and the least effective factors should be rem oved from  m odeling, as they can reduce the 
prediction pow er of the models.
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In the present study, the least support vector m achine (LSSVM ) [59] and average m erit (AM) 
criteria [60,61] w ere app lied for the selection of the proper conditioning factors as well as determ ining 
their importance. The results showed that all selected conditioning factors have an im pact on landslide 
occurrences in the Shangnan area, China. Aliitude has the greatest im pact on landslide occurrences (AM 
= 14.5), follow ed by distance tea road (A M  = 23), diatance (o fault (AM  = 12.°), lithology (AM  = 12.6), 
land use (AM  = 11.1), distance; to river (A M  = 10.5), STI (AM  = 8.5), SPI (AM  = 7.2), TW9 (A M  = 6.7), 
profile curvature (AM = (5.1), slcpe angle (AM = 4.7), NDVI (AM = 4.15), soil (AM = 3.7), plan curvature 
(AM  = 3.2), and slope aspect (AM  = 1.5) (Fipure p). Thus, the m ost effective conditioning factors are 
altiOude, dfotance to raad, and disdance tea fault, w hich aligno w ith  results of Tien Bui et al. [a3] and 
Chen et al. [319]. As all 15 landslide conditioning f9ctord positively contribute in the study area, all were 
used for furtheranslysis.

Slope aspect 

Plan curvature 

Soil 

NDVI 

Slope angle 

Profile curvature 

TWI 

SPI 

STI

Distance to rivers 

Landuse 

Lithology 

Distance to faults 

Distance to roads 
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Figure 4. Importance of conditioning factors.

4.2. Generation o f Landslide Susceptibility Maps

The final m odel results produce a landslide susceptibility m ap, which can be used as an effective 
tool for m anaging futurs landslide occurrences. These m aps w ere constructed follow ing these; steps. 
Firstly, the whole study aeea w as converted to pixels using ArcGIS (Esri, CA, USA) software. Then, ihe 
training dataset w as trainee. in a training phase, then all pixels w ere predicted biased on the learned 
trend arid aesigned in unique indexes. N ext, all indexes w ere classified based on the natural breaks 
(Jenks) classification scliom e [62,63]. Finally, these indexes for the three m odels w ere clastified  into 
four classes: Low, m oderate, high, and very h i°h  susceptibility (Figures 5- 7). The dercentage o . area 
covered try law, moderate, high, and -very high susceptibility for the three m odels is shown in Figure 8 . 
For she BLRK  m odel, these areas hre 28.94% , 26.86% , 23.58% , and 20.63% , respectively. Four the KLR 
m odel. they Eire 17.68%, 32.03% , 32.53% , and 17.77%, respectively, and for SVM , the area percentages 
are 24.59%, 28.29%, e2.50%, arid 19.62%, respectively.
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Figure 5. Landslide susceptibility map using the bagging-based two-class kerne l logistic regression 
(BKLR) model.

Figure 6. Landslide susceptibility map using the kernel logistic regression (KLR) model.
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Figure 7. Landslide susceptibility map using the support vector machines (SVM) model.
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Figure 8. Distribution of landslide susceptibility zones.

4.3. Validation and Comparison of Models

The last and final step in landslide susceptibility m odeling is validation of the achieved results 
and m aps, as the results of m odeling have no scientific significance w ithout validation [64,65] . M odel 
perform ance and validation in  training and testing phases w ere evaluated using statistical criteria 
(positive predictive rate (PPR), negative predictive rate (NPR), sensitivity, specificity, accuracy, kappa 
index, and RM SE), the results of w hich are show n in Tables 2 and 3 . The results of the m odel 
perform ance evaluation show s that BK LR  perform ed the best (PPR = 0.785) in  term s of positive 
predictive rate, follow ed by  SV M  (PPR = 0.718) and K LR  (PPR= 0.692). In  the case of the negative 
predictive rate, BK LR  (N PR = 0.777) w as superior to SVM  (N PR = 0.699) and K LR  (N PR = 0.681). 
The highest sensitivity was found for BKLR (0.774), with 77.4% of the landslide positions were classified
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as landslides, follow ed by  SV M  (0.686) and K LR  (0.672). BK LR  had the highest specificity (0.788), 
follow ed by SVM  (0.730) and K LR  (0.701). The BK LR  m odel classified 78.8%  of the non-landslide 
locations as non-landslide classes. In term s of accuracy, BK LR  (0.781) w as superior to SV M  (0.708) 
and KLR (0.686). The BKLR model correctly classified 78.1% of the landslide and non-landslide pixels. 
In term s of the kappa index, the BK LR  m odel perform ed best (0.56), dem onstrating a substantial to 
alm ost perfect agreement between prediction and observation, followed by SVM (0.41) and KLR (0.37). 
In term s of the R M SE, BK LR  had the low est value (0.31), follow ed by SVM  (0.46) and K LR  (0.50). 
G enerally, the BK LR  m odel, in term s of all criteria, had the best perform ance in the training phase, 
followed by SVM  and KLR. The m odel evaluation in testing phase is shown in Table 3 . Generally, the 
results show that BKLR, for both the training and testing phases, perform ed the best, followed by the 
SVM  and KLR m odels.

Table 2. Model performance comparison.

Parameter
Model

BKLR KLR SVM

True positive 189 164 167
True negative 192 171 178
False positive 52 73 66
False negative 55 80 77

Positive predictive rate (%) 0.785 0.692 0.718
Negative predictive rate (%) 0.777 0.681 0.699

Sensitivity (%) 0.774 0.672 0.686
Specificity (%) 0.788 0.701 0.730
Accuracy (%) 0.781 0.686 0.708
Kappa index 0.562 0.372 0.416

RMSE 0.391 0.500 0.463

Table 3. Model validation.

Model
Parameter

BKLR KLR SVM

True positive 67 56 62
True negative 90 76 90
False positive 14 28 14
False negative 37 48 42

Positive predictive rate (%) 0.826 0.667 0.814
Negative predictive rate (%) 0.708 0.614 0.680

Sensitivity (%) 0.644 0.542 0.593
Specificity (%) 0.864 0.729 0.864
Accuracy (%) 0.754 0.636 0.729
Kappa index 0.509 0.371 0.458

RMSE 0.439 0.506 0.470

In  the present research, the prediction capability  of the three m odels and their results w ere also 
investigated using a popular technique: Receiver operating characteristics (ROC). The main advantage 
of this technique is that it determ ines the prediction pow er of the m odels quantitatively using area 
under the R O C  curve (A U C) [66,67]. The A U C  result using the training dataset show s that all three 
m odels have good and reasonable prediction power. The BK LR  m odel had the h ighest prediction 
pow er (A U C  = 0.852), follow ed by  SV M  (A U C  = 0.768) and K LR  (A U C  = 0.764) (Figure 9 ). As the 
achieved m aps were built using the training dataset, the ROC result using the training dataset cannot 
be considered alone for comparison. The testing dataset, which was not used for model building, must 
be considered for m odel validation and com parison. The results show  that BK LR (AUC = 0.770) had 
the highest prediction power, follow ed by SV M  (A U C  = 0.759) and K LR  (A U C  = 0.720) (Figure 10). 
According to Yesilnacar [68], all the m odels have good and reasonable prediction power.
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Figure 9. Receiver operating characteristics (ROC) curves using the training dataset: (a) BKLR model, 
(b) KLR mo del, (c) SVM model.

Figure 10. ROC curves using the validation dataset: (a) BKLR model, (b) KLRmodel, (c) SVM model.
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5. D iscussion

In this study, a novel bagging-based kernel logistic regression classification m odel w as proposed 
and applied for landslide susceptibility in Shangnan County, C hina. A  total of 15  conditioning factors 
w ere selected to create landslide susceptibility m odels. The results show ed that all the conditioning 
factors had positive effects on landslide occurrence with different degrees of influence according to the 
A M  values based on L SSV M . A ltitude, distance to roads, and distance to faults received the highest 
A M  values, in agreem ent w ith  som e existing reports [33,39]. A ltitude com prehensive controls the 
local clim ate and vegetation developm ent characteristics [69], w hich  are related to the stability  of 
slopes [70] . The A M  values for lithology, land use, and distance to rivers w ere both  larger than 10.0 
as w ell. Generally, the strength of a slope body varies w ith  d ifferent lithology types [71]. For areas 
w ith  different land use types, the corresponding physical and m echanical characteristics of soils and 
rocks have notable differences [44]. Rivers can affect the hydro-geological conditions of slopes, w hich 
have strong connections with landslide occurrence [39]. O n the basis of relevant studies, STI, SPI, and 
TW I are usually  indispensable conditioning factors in landslide susceptibility  m odeling [23,66,72]. 
C urvature, w hich  includes profile curvature and plan curvature, can reflect the geom etric features 
of slopes, and the geom etric features can influence stress d istribution of slopes [30,73]. For slope 
angle, landslides generally occur in a certain range of slope angles, and slope angle is another critical 
conditioning factor [45] . The relationships between the other factors (NDVI, soil type, and slope aspect) 
and landslide occurrence have also been analyzed by  other researchers [74- 76].

To evaluate the performance of BKLR, KLR, and SVM m odels in landslide susceptibility mapping, 
R O C  curves and A U C  values of various m odels w ere obtained. The results confirm ed that all three 
m odels w ere reasonable for landslide susceptibility m apping, and the BK LR  m odel had the best 
accuracy and prediction capacity. The results also verified that bagging is an effective tool to increase 
the prediction accuracy of a single classifier by  creating an ensem ble learning classifier [77]. In this 
case, bagging im proved the stability of the conventional K LR  m odel using the RBF kernel function. 
The sensitivity of a single classifier to noise in a dataset could be decreased by bootstrap sam pling, so 
the variance of the classification m odel decreases correspondingly [53].

There are som e advantages of the BK LR : This m odel can produce class probabilities, w hereas 
SV M  is a determ inistic classifier. BK LR  is also recom m ended for future application to the study 
area w ith  new  techniques and m odels or new  hybrid m odels, and the m ost appropriate m odel can 
be selected for future m odeling. As a practical recom m endation, w e propose that the governm ent 
and decision m akers m u st com plete an extensive field survey to confirm  the results of the present 
study (and especially the areas that have h igh and very  h igh susceptibility to landslide occurrences). 
A ccording to case study characteristics, policy m akers can m ake an inform ed decision for future 
landslide hazard m itigation.

6. Conclusions

The m ain aim  of this study w as to construct a new  hybrid  m odel u sing bagging-based kernel 
logistic regression (KLR), called BK LR , for spatial prediction of landslides in the Shangnan area in 
China. The prediction capability of 15 conditioning factors w as assessed for the m odeling process 
using the LSSVM  algorithm . The perform ance of the new  hybrid m odel w as evaluated using several 
popular statistical m easures, including PPR, N PR, sensitivity, specificity, the kappa index, and RMSE. 
A  landslide susceptibility m ap w as produced using the hybrid m odel and it w as com pared w ith  the 
susceptibility m aps produced by the single KLR m odel and SVM  algorithm.

R esults indicated  that the BK LR  ensem ble m odel had the best goodness-of-fit and prediction 
pow er for landslide susceptibility m apping, follow ed by the SV M  and K LR  m odels. The BK LR 
ensemble model can be used as a promising technique for spatial prediction of landsides in the current 
study area, and can be applied to other sim ilar landslide prone areas for better landslide susceptibility 
m apping. H ybrid m odeling is an efficient technique for im proving the predictive capability of w eak 
individual classifiers.
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