
   

A PRELIMINARY STUDY OF SOFTWARE TRACEABILITY REFERENCE 

MODEL USING FEATURE MODELING 

 

 

 

 

 

 

 

 

MUHAMMAD IRSYAD BIN ABDULLAH 

 

 

 

 

 

 

 

 

This Project Report Submitted In Partial Fulfillment of the Requirement for the 

Degree in the Master of Computer Science (Real Time Software Engineering) 

 

 

 

 

 

 

Faculty of Computer Science & Information System 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

 

NOVEMBER, 2007 

 

 



  iii 

Special dedication to... 

 

 

 

 

My family, as a token of love and appreciation 

 

To my loving parents… who placed me on the right path and taught me the value of 

knowledge  

 

To Haliyusswanee, wife, friend, inspiration and blessing. 

 

And to all my unforgettable friends 

 

 

 

 

 

“THANK YOU FOR BEING PART OF MY LIFE”



  iv 

ACKNOWLEDGEMENT 

 

 

 

 

“BISMILLAHIRRAHMANIRRAHIM” 

 

 

Special thanks to my supervisor, En Mohd Nazri Kama who gave lots of 

supports for me in preparing this report and also giving me so much precious 

experiences and guiding me to the success of delivering the research. To all CASE 

lecturers for serving with software engineering knowledge that definitely benefit me 

in my future profession. Their views and tips are useful indeed. Unfortunately, it is 

not possible to list all of them in this limited space. I am grateful to all my family 

members.  

 

THANKS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  v 

ABSTRACT 

 

 

 

 

 Traceability, a key aspect of any engineering discipline, enables engineers to 

understand the relations and dependencies among various artifacts in a system. It is a 

well-known fact that even in organizations and projects with mature software 

development processes, software artifacts created as part of these processes end up to 

be disconnected from each other. From a software engineer’s perspective, it therefore 

becomes essential to establish and maintain the semantic connections among these 

artifacts. The missing traceability among software artifacts becomes a major 

challenge for many software engineering activities. As a result, during the 

comprehension of existing software systems, software engineers have to spend a 

large amount of effort on synthesizing and integrating information from various 

sources to establish links among these artifacts. Existing research in software 

traceability focuses on reducing the cost associated with this manual effort by 

developing automatic assistance in establishing and maintaining traceability links 

among software artifacts. This research is based on the premise that a more effective 

and unified solution to manage traceability semantic link information can be 

achieved by considering a feature model as the traceability reference model. The aim 

of this research is to propose a software traceability reference model that can store 

traceability links information using the concept of feature modeling. It identifies the 

traces of software components of various software artifacts such as design and 

requirements and stores them in hierarchical form. 



  vi 

ABSTRAK 

 

 

 

 

 

 Jejakan adalah salah satu kunci utama dalam mana-mana bidang kejuruteraan 

yang membolehkan jurutera memahami hubungan dan kebergantungan pelbagai jenis 

artifak perisian dalam sesebuah sistem. Satu fakta yang jelas iaitu dalam mana-mana 

organisasi atau projek, untuk proses pembangunan perisian yang  matang, artifak 

perisian yang terhasil dari proses ini pada akhirnya akan terpisah di antara satu sama 

lain. Dari perspektif seorang jurutera perisian, adalah sangat penting untuk 

menghasikan dan mengekalkan hubungan semantik di antara artifak ini. Kehilangan 

jejak di antara artifak perisian telah menjadi cabaran utama dalam kebanyakan 

aktiviti kejuruteraan perisian.  Oleh itu, dalam fasa analisis, jurutera perisian terpaksa 

menggunakan usaha yang banyak untuk membuat sintesis dan integrasi terhadap 

maklumat dari pelbagai sumber dalam sistem yang sedia ada untuk menghasilkan 

hubungan antara artifak ini. Penyelidikan yang sedia ada dalam bidang jejakan 

perisian lebih memfokus kepada pengurangan kos yang berkaitan dengan usaha 

manual ini dengan membangunkan bantuan secara automatik dalam menghasilkan 

dan mengekalkan hubungan jejak di antara artifak perisian. Penyelidikan ini 

berdasarkan kajian bahawa penyelesaian yang lebih efektif dan teratur boleh tercapai 

melalui penggunaan model ciri-ciri sebagai rujukan model jejak. Tujuan 

penyelidikan ini adalah untuk membuat usul terhadap satu rujukan perisian jejak 

yang boleh menyimpan maklumat hubungan jejak dengan menggunakan konsep 

model ciri-ciri. Ianya akan mengenalpasti jejak komponen perisian dari pelbagai 

artifak perisian seperti fasa rekabentuk dan fasa keperluan dan menyimpan ianya 

dalam bentuk hirarki. 

 



  vii  

 

 

 

 

 

 

TABLE OF CONTENTS 

 

 

 

 

CHAPTER   TITLE       PAGES 

    

    

   STUDENT’S ADMISSION     ii 

   DEDICATION      iii 

   ACKNOWLEDGEMENT     iv 

   ABSTRACT       v 

   ABSTRAK       vi 

   LIST OF FIGURES      x 

 

 

 

 

CHAPTER 1   INTRODUCTION      1 

 

 

1.1 Introduction      1 

1.2 Introduction to Requirement Engineering  1 

1.3 Background of the Problem    2 

1.3.1 Inconsistencies of Traceability Information  3 

1.3.2 Excessive Traceability    3 

1.4 Statement of the Problem    4 

1.5 Objectives of the Study    4 

1.6 Importance of the Study    4 

1.7 Scope of Work     5 

1.8 Thesis Outline      6 

 

 

 

 

 

 



  viii  

 

CHAPTER 2  LITERATURE STUDY     7 

 

 

1.1 Introduction      7 

2.2 Software Requirement Engineering   7 

2.3 Requirements’ Management Challenge  8 

2.4 Requirements’ Traceability    9 

2.5 Requirements’ Traceability: Purpose   10 

2.6 Requirements’ Traceability: Standard  10 

2.7 Requirements’ Traceability: Available Tools, 

Techniques and Metrics    11 

2.7.1 Basic Techniques     11 

2.7.2 Tools       12 

2.8 Feature Models     13 

2.9 Feature Models as an Effective Communication 

Medium      14 

 

 

 

 

CHAPTER 3  RESEARCH METHODOLOGY    16 

 

 

3.1 Introduction      16 

3.2 Research Design     16 

3.3 Operational Framework    17 

3.4 Formulation of Research Problems   18 

3.4.1 Investigate the State-of-Art of Requirement 

Traceability Approaches    19 

3.4.2 Establish Communications Within a Project  19 

3.5 Some Research Assumptions    19 

3.6 Summary      20 

 

 

 

 

 

 



  ix  

 

CHAPTER 4  THE PROPOSED TRACEABILITY MODEL  21 

 

 

4.1 Introduction      21 

4.2 Traceability Link Discovery    21 

4.3 Classification Technique    24 

4.4 Reference Model     25 

 

 

 

 

CHAPTER 5  INITIAL RESULT      28 

 

 

5.1 Introduction      28 

5.2 Traceability Link     28 

5.3 Benefits of Using Feature Model   29 

 

 

 

 

CHAPTER 6  CONCLUSION      30 

 

 

6.1 Introduction      30 

6.2 Research Summary and Achievements  30 

6.3 Summary of the Main Contributions   31 

6.4 Research Summary and Future Works  32 

 

 

 

   REFERENCES      34 



  x  

 

 

 

 

 

LIST OF FIGURES 

 

 

 

 

FIGURE  TITLE         PAGES 

 

 

Figure 3.1  Formulation of Research Problems    18 

Figure 4.1  Sample of Use Case and a Sequence Diagram  22 

Figure 4.2  Matching the class name and class method   23 

Figure 4.3  A Decision Tree Example     25 

Figure 4.4  Feature modeling      26 

Figure 5.1  Feature model of a digital VDR product line (partial) 28 

Figure 5.2  Traceability links between use cases and design elements via  

                                    features       28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

 

 

 

 

CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

  

  

 This chapter provides an introduction to the research work presented in this 

thesis. It describes the research overview that motivates the introduction of a 

preliminary study of software traceability reference model using feature modeling. 

This is followed by a discussion on the research background, problems statements, 

objectives and importance of the study. Finally, it briefly explains the scope of work 

and structure of the thesis. 

 

 

 

 

1.2 Introduction to Requirement Engineering 

 

 

 Systematic requirements analysis which is also known as requirements 

engineering is critical to the success of a development project (Pierre Bourque, 

Robert Dupuis, 2005). The primary measure of success of a software system is the 

degree to which it meets the purpose for which it was intended. It is the process of 

discovering that purpose, by identifying stakeholders and their needs, and  

documenting these in a form that is amenable to analysis, communication, and 

subsequent implementation. There are a number of inherent difficulties in this 

process. Stakeholders (including paying customers, users and developers) may be 

numerous and distributed. Their goals may vary and conflict, depending on their 

perspectives of the environment in which they work and the tasks they wish to 

accomplish. Their goals may not be explicit or may be difficult to articulate, and, 



  2  

 

inevitably, satisfaction of these goals may be constrained by a variety of factors  

outside their control. Conceptually, requirements analysis includes five types of 

activity (Bashar Nuseibeh, Steve Easterbrook, 2000): 

 

1) eliciting requirements, 

2) modelling and analyzing requirements, 

3) communicating requirements, 

4) agreeing requirements, and 

5) evolving requirements. 

 

Requirement Engineering is not only a process of discovering and specifying 

requirements, it is also a process of facilitating effective communication of these 

requirements among different stakeholders. The way in which requirements are 

documented plays an important role in ensuring that they can be read, analyzed, (re-) 

written, and validated. What is increasingly recognised as crucial, however, is 

requirements management – the ability, not only to write requirements but also to do 

so in a form that is readable and traceable by many, in order to manage their 

evolution over time. However there are challenges in which requirements traceability 

is a crucial approach to address this issue. It is another major factor that determines 

how easy it is to read, navigate, query and change requirements documentation.  

 

 

   

 

1.3 Background of the Problem 

 

 

 Software traceability is fundamental to both software development and 

maintenance. It shows the ability to trace information from various resources that 

requires special skill and mechanism to manage it. In this research problem, it 

focuses on software traceability reference model to support traceability semantic 

discovery and classification. Following are some major issues to the research 

problem which related to traceability link information. 

 

 

 

 



  3  

 

 

 

1.3.1 Inconsistencies of Traceability Information 

 

 

Software traceability linkage or traceability link is a relationship between two 

or more artifacts or entities. It usually contains traceability information which can be 

used to describe the link’s semantics. Links are classified as certain types in order to 

facilitate and enhance the understanding of the use of a link. However, the capture 

and use of traceability information of different perspectives will cause wide 

variations in the format and content of traceability information. In addition, 

semantics of a given linkage as viewed by different stakeholders would also have 

different meaning and understanding. This will lead to the inconsistencies of 

traceability information.  

 

 

 

 

1.3.2 Excessive Traceability 

 

 

Appleton as described by Jane Cleland-Huang has identified nine specific 

problems with traditional traceability practices and labeled them as ‘gripes.’ These 

gripes included the unnecessary creation of trace artifacts and the almost inevitable 

failure to accurately maintain them (Jane Cleland-Huang, 2006); the focus on upfront 

activities and comprehensive documentation which meant that the important task of 

writing code and delivering executable product was delayed and had a negative 

impact on production performance; creating an illusion that real work is being done 

while in fact time is being wasted developing the trace matrix; focusing on 

comprehensive documentation rather than the real deliverable of working software; 

creation of overhead to the change process itself which actually makes change more 

difficult to implement. 

 

 

 

 

 

 

 

 



  4  

 

1.4 Statement of the Problem 

 

 

 This research is intended to deal with the traceability link information 

problems as discussed above. The main question is “How to define a software 

traceability reference model that can provide a unified format for representing 

semantic information of traceability links?” 

 

The sub questions of the main research questions are as follows: 

 

i. Is there any references model to represent semantic information of 

traceability links? 

ii. What is the suitable format to be used for representing semantic 

information of traceability links? 

 

 

 

 

1.5 Objectives of the Study 

 

 

 The above problem statement serves as a premise to establish a set of specific 

objectives that will constitute major milestones of this research. The objectives of 

this research are listed as follows: 

 

1) To investigate current software traceability approach. 

2) To review state-of-the-art software traceability approach. 

3) To propose preliminary software traceability reference model as a way to 

represent semantic information of traceability links. 

 

 

 

 

1.6 Importance of the Study 

 
 

Any approach to traceability faces significant challenges. According to 

Ramesh et al. [3], the U.S. Department of Defense spends billions of dollars each 

year collecting and maintaining traceability information. Often without getting an 



  5  

 

adequate value for this money as traceability in many organizations is haphazard, the 

standards provide little guidance, and the models and mechanisms vary to a large 

degree and are often poorly understood. Not surprisingly, the market for 

requirements traceability tools is booming even though current tools support only 

rather simple traceability models and services. Previous models of requirements 

traceability focus on different aspects of requirements traceability. Version and 

configuration management systems focus on the source aspect (i.e., physical artifacts 

where traceability information is maintained), emphasizing the document 

management. Additionally, software development produces a highly heterogeneous 

set of software artifacts and it is difficult to create links that can span across multiple 

document formats. In addition, this heterogeneity of document formats is caused by 

the use of a heterogeneous set of document editors. Multiple editors make it difficult 

to automate the creation of traceability information because it is difficult to get all of 

the editors to work together. Indeed, traceability is generally acknowledged to be a 

highly manual, laborious process. 

As such, the focus of this research is to develop a unified reference model to 

store traceability information links. It can also aid the maintenance of this type of 

information by creating it in an organized fashion. 

 

 

 

 

1.7 Scope of Work 

 

 

 Software traceability can be applied to some applications such as 

consistency-checking, defect tracking, cross referencing and reuse (Ramesh and 

Jarke, 2001). The techniques and approaches used may differ from one another due 

to different objectives and feature requirements. Some of these approaches are 

geared toward system development while others are designed for system 

maintanence. 

 

In this scope of research, it needs to explore a software traceability 

specifically to discover and classifed tracebility link using a predetermined reference 

model. The proposed model and techniques used should allow the implementation of 

respository to support different software artifacts. It also is assumed that the software 



  6  

 

system feature has been identified. However, this research does not concern with the 

the implementation and testing of the proposed model. 

 

 

 

1.8 Thesis Outline 

 

 

 This thesis covers some discussions on the specific issues associated to 

software traceability for impact analysis and understanding how this new research is 

carried out. The thesis is organized in the following outline. 

 

Chapter 2: Discusses the literature review of the requirement engineering,  

traceability and feature modelling. Few areas of interest are identified from 

which all the related issues, works and approaches are highlighted. This 

chapter also discusses some current techniques of software traceability. Next, 

is a discussion on feature models as described by FODA method (Kang et 

al,1990) and by (Czarnecki et al, 2000).  

 

Chapter 3: Provides a research methodology that describes the research 

design and formulation of research problems and validation considerations. 

This chapter leads to an overview of data gathering and analysis. It is 

followed by some research assumptions. 

 

Chapter 4: Discusses the detailed model of the proposed software 

traceability reference model. A set of formal notations are used to represent 

the conceptual model of the software traceability. It is followed by some 

approaches and mechanisms to achieve the model specifications. 

 

Chapter 5: Presents the initial result based on the hypothetical analysis. 

. 

 

Chapter 6: The statements on the research achievements, contributions and 

conclusion of the thesis are presented in this chapter. This is followed by the 

research limitations and suggestions for future work. 

  

 



  34  

 

 

 

 

 

 

REFERENCES 

 

 

 

 

Antoniou, G. (1998). The role of nonmonotonic representations in requirements 

engineering. International Journal of Software Engineering and Knowledge 

Engineering, 8(3): 385-399. 

 

Bashar Nuseibeh, Steve Easterbrook (2000). Requirements Engineering: A 

Roadmap, Proceedings of the Conference on the Future of Software 

Engineering, Ireland. 

 

Czarnecki, K., Eisenecker, U., Generative Programming: Methods, Tools, and 

Applications, Addison-Wesley, New York (2000) 

 

Frakes, W., Prieto-Diaz, R., Fox, C.: DARE: Domain Analysis and Reuse 

Environment, Annals of Software Engineering 5 (1998) 125-151 

 

Griss, M. L., Favaro, J., d’Alessandro, M.: Integrating Feature Modeling with the 

RSEB, Proc. Fifth International Conference on Software Reuse, Victoria, BC, 

Canada (1998) 76-85 

 

Griss, M.: Implementing Product-Line Features by Composing Aspects, In 

Proceedings of the First Software Product Line Conference (SPLC), August 28-

31, 2000, Denver, Colorado, USA, Patrick Donohoe (Eds.), Software Product 

Lines: Experience and Research Directions, Kluwer Academic Publishers, 

Norwell, Massachusetts (2000) 47-70 

 

Gotel, O. & Finkelstein, A. (1994). An Analysis of the Requirements Traceability 

Problem. 1st International Conference on Requirements Engineering (ICRE'94), 

Colorado Springs, April 1994, pp. 94-101. 



  35  

 

Hoffman, M.A. (2000). A methodology to support the maintenance of object-oriented 

systems using impact analysis. Louisiana State University: Ph.D. Thesis. 

 

Jacobson, I., Booch, G., and Rumbaugh, J. (1999). Unified Software Development 

 Process. USA: Addison-Wesley. 

  

Jane Cleland-Huang (2006), “Just Enough Requirements Traceability”, Proceedings 

of the 30th Annual International Computer Software and Applications 

Conference (COMPSAC'06), De Paul University. 

 

Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain 

Analysis (FODA) Feasibility Study, Technical Report CMU/SEI-90-TR-21, 

Pittsburgh, PA, Software Engineering Institute, Carnegie Mellon University 

(1990) 

 

Kwanwoo Lee, Kyo C. Kang, and Jaejoon Lee, (2000), Concepts and Guidelines of 

Feature Modeling for Product Line Software Engineering, Korea 

 

Lazaro M. and Marcos E. (2005). Research in Software Engineering: Paragidms and 

Methods. PHISE’05. 

 

Lee, K., Kang, K., Chae, W., Choi, B.: Feature-Based Approach to Object-Oriented 

Engineering of Applications for Reuse, Software-Practice and Experience 30, 9 

(2000) 1025-1046 

 

Marcus A. and Meletic J.I. (2003). Recovering ocumentation-to-Sourcce-Code 

Traceability Links Using Latent Semantic Indexing. Proceedings of the Twenty 

Fifth International Conference on Software Engineering. May 3-10. USA: IEEE 

Computer Society. 125-135. 

 

Pierre Bourque, Robert Dupuis (2005). Chapter 2: Software Requirements. Guide to 

the software engineering body of knowledge. Los Alamitos. 

 



  36  

 

Pashov, I.: Feature Based Method for Supporting Architecture Refactoring and 

Maintenance of Long-Life Software Systems. PhD Thesis, Technical University 

Ilmenau, 2004 (submitted). 

 

 

Ramesh, B.; Jarke, M.: Toward Reference Models for Requirements Traceability. 

IEEE Transactions on Software Engineering, Volume 27, Issue 1 (January 2001) 

pp. 58 – 93 

 

Orlena C. Z. Gotel & Anthony C. W. Finkelstein (1994). An Analysis of the 

Requirements Traceability Problem, International Journal of Software 

Engineering and Knowledge Engineering, 

 




