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ABSTRACT

Retrofit of structures often is an inevitable task especially when buildings are not 
designed for seismic actions or their design has followed older design codes. Many retrofit 
strategies have been proposed and practiced by previous researchers. Usage of fiber 
reinforced polymer [FRP], steel jacketing and reinforcement jacketing are among the most 
common retrofitting methods. For reinforcement jacketing, carbon steel has been widely 
employed by engineers, however, only a few applications of inoxydable reinforcements can 
be found in the literature. Moreover, when it comes to reinforcement jacketing, connection 
between the interface of original column and the jacket plays an important role and has 
attracted the attention of many researchers. Load transfer mechanism between original 
column and jacket is another field of study which has not been addressed in previous 
research. In this study application of inoxydable rebars for seismic retrofit of Reinforced 
Concrete (RC) columns was investigated. Two new connectors were used to increase the 
integrity between the original column and jacket. Load transfer mechanism between original 
column and jacket is another topic addressed in this research. This study included 
experimental and numerical analysis. For experimental study, 8 full scale RC columns were 
constructed and retrofitted with different reinforcement jacketing configurations. Numerical 
studies investigated the effect of different axial forces on the obtained results from 
experimental test. Results indicated that regardless of the employed retrofit configurations, 
the retrofitted columns have higher initial stiffness and ultimate strength compared to un
retrofitted columns. However, the retrofitted columns showed significantly lower ductility 
ratio when compared with un-retrofitted columns. All the retrofitted columns displayed a 
brittle failure mode in which spalling of concrete at the base of columns occurred without 
yield or buckling of reinforcements. Results indicated that confined jackets have higher 
ultimate strength and stiffness compared to un-confined jackets. However, they showed a 
lower ductility ratio when compared with un-confined jackets. It was observed that, when 
internal angle connection was used for retrofit, the highest ultimate strength, post-yield 
stiffness and effective stiffness were achieved. Monitoring the strain distribution between 
jackets and original columns revealed that confinement in jackets reduced the strain in the 
longitudinal reinforcement of original columns more than un-confined jackets. Strain values 
in the stirrups of confined jackets were significantly smaller than that of un-confined jackets. 
Strain ratios on the surface of concrete of confined jackets were larger than that of un
confined jackets. It is concluded that the proposed connectors have improved the ultimate 
strength of retrofitted columns as compared to conventionally retrofitted column, as they 
were unable to elevate the ultimate strengths to the level of a monolithic column.
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ABSTRAK

Pengubahsuaian struktur sering kali merupakan tugas yang tidak dapat dielakkan 
terutamanya apabila bangunan tidak direka untuk tindakan seismik atau reka bentuknya 
menggunakan kod reka bentuk yang lebih lama. Banyak kaedah pemulihan struktur telah 
dicadangkan dan diamalkan oleh penyelidik terdahulu. Penggunaan polimer bertetulang 
gentian [FRP], pembungkus keluli dan pembungkus tetulang adalah antara kaedah 
pengubahsuaian yang paling biasa. Untuk pembungkus tetulang, keluli karbon telah 
digunakan secara meluas oleh para jurutera, bagaimanapun, hanya beberapa aplikasi 
pembasmian anti-karat yang dapat ditemui dalam kajian terdahulu. Lebih-lebih lagi, untuk 
kaedah pembungkus bertetulang, hubungan antara tiang dan pembungkus memainkan 
peranan penting dan telah menarik perhatian ramai penyelidik. Mekanisma pemindahan 
beban antara tiang dan pembungkus konkrit merupakan salah satu bidang yang masih belum 
diterokai oleh penyelidik terdahulu. Dalam kajian ini, penggunaan keluli anti-karat untuk 
pemulihan tiang konkrit berterulang terhadap beban gempa bumi dikaji. Dua jenis 
penyambung telah digunakan untuk meningkatkan integriti antara tiang dan pembungkus. 
Mekanisma pemindahan beban antara tiang dan pembungkus konkrit merupakan salah satu 
topik yang turut dikaji dalam kajian ini. Kajian ini melibatkan kerja-kerja makmal dan 
analisis berangka. Untuk kajian eksperimen, 8 tiang konkrit berterulang berskala penuh telah 
dibina dan dipasang dengan konfigurasi pembungkus bertetulang yang berbeza. Analisis 
berangka mengkaji kesan penggunaan beban paksi yang berbeza terhadap keputusan yang 
diperolehi daripada kajian makmal. Keputusan kajian menunjukkan bahawa tanpa mengira 
konfigurasi baik pulih yang digunakan, tiang yang diubahsuai mempunyai kekukuhan awal 
yang lebih tinggi, kekuatan muktamad dan anjakan berbanding dengan tiang yang tidak 
diubahsuai. Walau bagaimanapun, tiang yang diubahsuai menunjukkan nisbah kemuluran 
yang rendah berbanding dengan tiang yang tidak diubahsuai. Semua tiang yang diubahsuai 
memaparkan sifat kerapuhan di mana pemisahan konkrit pada dasar tiang berlaku tanpa alah 
atau lengkokan pada tetulang. Keputusan kajian menunjukkan bahawa pembungkus 
terkurung mempunyai kekuatan dan kekukuhan yang lebih tinggi berbanding pembungkus 
tidak terkurung. Walau bagaimanapun, ia menunjukkan nisbah kemuluran yang lebih rendah 
jika dibandingkan dengan pembungkus terkurung. Telah diperhatikan bahawa, apabila 
sambungan sudut dalaman digunakan untuk kerja pengubahsuaian, kekuatan muktamad yang 
tertinggi, kekakuan pasca-lengkokan, dan kekakuan berkesan telah dicapai. Pemerhatian 
terhadap agihan terikan antara pembungkus dengan tiang mendedahkan bahawa 
pengurungan dalam pembungkus telah mengurangkan terikan dalam tetulang membujur 
lebih daripada pembungkus tidak terkurung. Nilai terikan pada tetulang pengikat dalam 
pembungkus terkurung adalah jauh lebih rendah daripada pembungkus tidak terkurung. 
Nisbah terikan pada permukaan konkrit untuk pembungkus terkurung juga lebih besar 
daripada pembungkus tidak terkurung. Dapat disimpulkan bahawa penyambung yang 
dicadangkan telah meningkatkan kekuatan muktamad tiang yang diubahsuai berbanding 
tiang yang dipasang secara konvensional, kerana penyambung ini tidak dapat meningkatkan 
kekuatan muktamad ke tahap tiang monolitik.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

It is well known that many buildings designed based on older codes may be 

susceptible to severe damage during strong earthquakes. Older buildings have been 

structurally designed for much lower seismic actions compared to buildings that are 

designed today. This is because the relevant seismic codes have been continually 

revised as knowledge about seismic behavior has increased.

Many reinforced concrete frame structures that are built prior to the 1970's 

were designed for either gravity loads alone, or combination of gravity loads and 

wind loads. Seismic loads often were not considered in the design of these structures. 

Reinforcing details used in these structures are now recognized as the cause of low- 

ductile failure modes under seismic loading. As a result, poor performance of these 

structures is anticipated and observed under moderate to severe seismic loading.

Columns as structural members that transfer gravity loads to foundations play 

significant role in structural stability. However, due to the poor reinforcing details, 

and lack of consideration of seismic loads in the initial design, columns are often 

found to be vulnerable in low-ductile reinforced concrete structures.

In addition to the above mentioned reasons, column retrofitting are necessary 

and inevitable due to changes in building's functionality, changes in architectural 

plans and designs that have not considered forces attributed to collision or explosion.
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Jacketing is a method often used to retrofit reinforced concrete columns. 

Columns may be jacketed through addition of reinforced concrete, steel plates, or 

various types of fiber reinforced polymer (FRP) materials. Jackets may be used to 

restore (in the case of damaged or deteriorated columns), maintain, or increase axial 

load capacity, flexural capacity, and/or shear capacity. Figure 1.1 displays a 

schematic view of three different retrofit methods for columns. Among retrofit 

methods of columns, reinforced concrete jacketing has received increasing attention 

especially for practical application. Low cost, simplicity and reliability are the most 

important factors for such widespread application in real projects. Figure 1.2 shows 

some real retrofit cases where RC jacketing is employed for retrofit of columns. 

Previous studies indicated significant increase in strength and stiffness of retrofitted 

RC elements through jacketing.

Figure 1.1 Retrofitting methods for columns (a) reinforced concrete jacketing, (b) steel 
jacketing, (c) FRP wrapping.
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(a) (b)

Figure 1.2 Reinforced concrete jacketing; a) jacketing of columns and beams (Sabu and 
Pajgade, 2012), b) jacketing of columns and foundations (ENUICA et al.)

In spite of advantages that RC jacketing offers, application of this retrofit 

strategy has privilege for normal environmental condition. Conventional carbon steel 

used in reinforcing bars is a corrodible material, therefore, in a harsh environmental 

condition, like piers of bridges or columns constructed inside sea water undergoes a 

rapid decay. One solution to this problem is the usage of inoxydable rebars that can 

resist against corrosion even under a harsh environmental condition.

Despite having higher strength and higher ductility compared to the 

conventional carbon steel, the usage of inoxydable steel for jacketing has not yet 

being explored. In fact, the application of this type of reinforcement is still new in the 

construction industry and limited study has been conducted. It is noteworthy that so 

far conducted research on RC jacketing (Dritsos, et. al., 1997; Julio, et. al., 2003; 

Julio, et. al., 2005; Kaliyaperumal & Sengupta, 2014; Vandoros & Dritsos, 2008) 

has only utilized the conventional carbon steel as the longitudinal bars.

In addition to the superior mechanical properties as compared to carbon steel, 

inoxydable rebar has an inherent anti-corrosion characteristic which priorities its 

usage for harsh environment (Alih & Khelil, 2012).
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Currently, there are six standards used for inoxydable rebar, namely US: 

ASTM A955/A955M -  03b, France: XP A35-014 France, Denmark: National 

Standards & Official Admissions DS 13080 & DS 13082, UK: BS6744: 2001, 

Finland: SFS -  1259, and Germany and Italy codes. In construction works, the 

inoxydable steel is employed for several reasons. Not only it is resistant to corrosion, 

but also, it has a high ductility which increases the energy dissipation in cyclic 

loading cases. The austenitic type of this steel is investigated by researcher in order 

to identify their behavior as reinforcement bar in composite concrete beam. Various 

types of inoxydable steel are categorized in regard to thermal treatment and chemical 

compositions.

This research investigates the cyclic behaviour of retrofitted columns by RC 

jacketing using inoxydable steel. Ductility, energy dissipation capacity, yield and 

ultimate load bearing capacity of eight full-scale columns retrofitted with different 

configuration of connectors between original column and jacket were studied 

experimentally. Numerical studies were performed in order to investigate the effect 

of different gravity load on the seismic behavior of the retrofitted columns.

1.2 Problem statem ent and motivation for research

It can be shown that columns are in need of retrofit when one of the following 

conditions arises:

1. New structures that may include unsafe columns due to bad workmanship or 

due to errors in modeling and design. Such cases, although not very frequent, 

have to be dealt with taking into consideration the need to preserve the shape 

and size of the column without altering the intended functional use of the 

structure and at the same time without compromising to the structural 

integrity and safety of the structure.

2. The need to place additional loads on columns due to the change in building 

usage, this includes either the permission to add more floors, or the change of 

the allowed occupational use of the structure. Such changes are known to 

happen, especially in largely populated area.
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3. Aging of old structures due to deterioration of concrete, corrosion of 

reinforcing steel bars or both, which leads to the loss of strength of columns 

and the inability to carry design loads. These structures may be of historical 

or monumental values and could be considered as part of our heritage, or they 

could be ordinary structures that simply cost less to repair and maintain than 

to demolish and reconstruct.

4. Occasionally some structures, or part of them, are subjected to accidents, 

such as fire or a car collision with one or more of the columns in a car park or 

a highway bridge, which leads to reduction of column carrying capacity.

5. Buildings that have not been designed for seismic load or they have been 

designed based on older version of current seismic codes.

One popular solution to strengthen RC column is to place jackets around the 

structural elements. Jackets have been constructed using steel plates, reinforced 

concrete and fibre-reinforced polymer (FRP) composites.

FRP composites and steel plates are basically applied to increase shear 

capacity and ductility of column. These methods are very effective in avoiding 

columns bond failure with insufficiently lapped of longitudinal reinforcement, 

although, they offer little enhancement to the flexural and axial strength of an 

element. As well as, in appropriating if there is a requirement of considerable 

increase in stiffness. For such condition concrete jacketing has the privilege and can 

satisfy demand for increase in axial and flexural strength. Furthermore, in many 

countries, where reinforced concrete known as most used material for structures, 

engineers prefer the strengthening solution of adding new material such as concrete. 

The reason is engineers are more familiar with this type of construction and 

availability of local experienced contractors and personnel.

However, one of the beneficial construction practice is placing reinforced 

concrete jackets and a number of studies have been presented (Dritsos et al., 1997; 

Julio et al., 2003; Julio et al., 2005; Kaliyaperumal & Sengupta, 2014; Vandoros & 

Dritsos, 2008) there are many unresolved matters indicating the usage of RC 

jacketing. While the main aim of any retrofit method is to increase the structural 

capacity of elements, durability of the employed technique is also of great 

importance. One of the major concerns for RC jacketing is the corrosion of
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employed reinforcing rebars. Almost all of past studies have concentrated on the 

usage of normal reinforcement (i.e. carbon steel) and less attention has been paid to 

inoxydable rebars, which are durable for use in harsh environmental conditions like 

piers of bridges and columns constructed in seawater. Inoxydable rebars have higher 

yield and ultimate strength and their ductility is often more than normal 

reinforcements. Therefore, due to difference in the mechanical properties of 

inoxydable rebars compared to normal rebars, obtained results from past studies may 

not be applicable for jacketing using inoxydable steel rebars. This implies that, new 

studies are required to investigate dynamic behavior of RC columns retrofitted by 

inoxydable reinforcement.

In addition, a review of literature shows that, when it comes to RC jacketing, 

the load transfer mechanism between the original column and RC jacket has not been 

well researched. This issue is of great importance especially for retrofitted columns 

that suffer from inadequate lap splice. One more issue when using concrete jacketing 

for retrofit is the integrity between the original column and the jacket. An ideal 

retrofitted column should have axial force and bending moment capacities similar to 

a monolithic element. However, due to slippage between the body of jacket and 

original column, retrofitted columns have lower bending moment and axial force 

capacities compared to original columns. While research and practice engineers have 

suggested different connector to reduce the slippage rate, still new studies for 

developing better connectors are needed. Moreover, in this research, new connectors 

are introduced to increase the bond between the original column and concrete jacket.

1.3 Objectives of the study

The main aim of this study is to investigate dynamic behavior of RC columns 

retrofitted with inoxydable steel jackets. The main aim of this research is to address 

the above-mentioned problems through a series of experimental and numerical 

studies. The specific objectives of this research are as follow:
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a) To investigate seismic behavior (i.e. energy dissipation capacity, stiffness 

degradation and failure mechanism) of low ductile RC columns with 

inadequate overlap length.

b) To evaluate the effectiveness of inoxydable reinforcement jacketing for 

seismic retrofit of low ductile RC columns through numerical and 

experimental studies.

c) To investigate the load transfer mechanism between original low ductile 

column and the surrounding jacket through and experimental studies.

d) To develop new connectors between original low ductile column and the 

surrounding jacket and examine their effectiveness through experimental 

studies.

1.4 Research Scope

The present study focuses on the retrofitting of concrete columns through 

reinforcement jacketing. Experimental works are conducted on eight full scale 

columns with the height of 2000mm and cross sectional size of 200mm by 200mm. 

The compressive strength of concrete used in this study range from 20MP to 30MPa. 

The yield and ultimate stress of employed ribbed reinforcement bars for 8,10 and 

20mm sizes are 508 to 533 N/mm and 598 to 700 N/mm2 respectively. The yield and 

ultimate stress of inoxydable reinforcement bars used in jackets are 346 and 

639N/mm2, respectively; however, the yield and ultimate stress of plain 

reinforcement bars used in retrofitted column are 371 and 454N/mm2, respectively. 

Plain reinforcement bars were used for the retrofitted columns. For jackets and 

foundations ribbed bars were used. In the retrofitted columns, the overlap length of 

reinforcement was selected based on the recommendation of British standard.

The cyclic loading applied to columns followed the load protocol suggested 

by the FEMA461. The axial force used in combination with the cyclic load amounted 

to 100 kN. Inoxydable steel rebars used for jackets were implanted into the 

foundation using epoxy glue of Hilty Company. The reinforcement bars used in 

jackets were inserted as per recommendation of Hilty Company. For numerical 

studies, Ansys software Ver. 16 was employed in this research.
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1.5 Significant of the research

This study deals with the retrofit of columns. The outcome of this research 

can be used to increase the life time of structures and prevent the possibility of 

sudden collapse due to seismic actions.

In addition, since this study is devoted to the use of inoxydable rebars for the 

purpose of retrofit, the findings of this research is of great importance for countries 

like Malaysia in which the environmental condition can easily corrode the normal 

reinforcement used for the retrofit of columns. This study also elevates our 

knowledge about dynamic behavior of retrofitted columns. The invented connectors 

in this study can be also used to improve the seismic behavior of retrofitted columns 

with inadequate lap splice. Since the application of inoxydable bars in the retrofit of 

columns has not been researched, this study provides new findings for practical 

application of inoxydable bar.

1.6 Outline of the Thesis

This thesis consists of six chapters. The organization of this thesis is as

below:

Chapter 1 describes an introduction to the work, describes research objectives 

and the scope of work, and explains significance and motivation of this research.

Chapter 2 presents a literature review on the dynamic behavior of retrofitted 

structures. The existing retrofit techniques are described in this chapter.

Chapter 3 describes the research methodology which is employed to achieve 

the defined objectives. It also describes research design procedure. The details of the 

selected retrofitted columns, performed tests and procedure in the numerical analysis 

are explained in this chapter.

Chapter 4 presents the obtained results of the proposed retrofit technique for 

column based on the experimental tests. The failure mechanism of columns, change
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in the stiffness and ductility of columns before and after retrofitting are explained in 

this chapter.

Chapter 5 describes a series of numerical analysis used to improve our 

understanding about dynamic characteristics of retrofitted columns. Calibration of 

finite element models are presented in this chapter. Moreover, the effect of different 

axial load on the cyclic behavior of retrofitted columns is presented in this chapter.

Chapter 6 summarizes the work of this thesis. The research finding, 

contribution of the thesis and the recommendations for future work are also 

described in this chapter.
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