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ABSTRACT 

 

 

 

The gear system is a critical component in the machinery and predicting the 

performance of a gear system is an important function. Unpredictable failures of a 

gear system can cause serious threats to human life, and have large scale economic 

effects. It is necessary to inspect gear teeth periodically to identify crack propagation 

and, other damages at the earliest. This study has two main objectives. Firstly, the 

research predicted and classified specific film thickness (λ) of spur gear by Artificial 

Neural Network (ANN) and Regression models. Parameters such as acoustic 

emission (AE), temperature and specific film thickness (λ) data were extracted from 

works of other researchers. The acoustic emission signals and temperature were used 

as input to ANN and Regression models, while (λ) was the output of the models. 

Second objective is to use the third generation ANN (Spiking Neural Network) for 

fault diagnosis and classification of spur gear based on AE signal. For this purpose, a 

test rig was built with several gear faults. The AE signal was processed through pre-

processing, features extraction and selection methods before the developed ANN 

diagnosis and classification model were built. These processes were meant to 

improve the accuracy of diagnosis system based on information or features fed into 

the model. This research investigated the possibility of improving accuracy of spur 

gear condition monitoring and fault diagnoses by using Feed-Forward Back-

Propagation Neural Networks (FFBP), Elman Network (EN), Regression Model and 

Spiking Neural Network (SNN). The findings showed that use of specific film 

thickness has resulted in the FFBP network being able to provide 99.9% 

classification accuracy, while regression and multiple regression models attained 

73.3 % and 81.2% classification accuracy respectively. For gear fault diagnosis, the 

SNN achieved nearly 97% accuracy in its diagnosis. Finally, the methods use in the 

study have proven to have high accuracy and can be used as tools for prediction, 

classification and fault diagnosis in spur gear. 
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ABSTRAK 

 

 

 

Sistem gear ialah komponen penting dalam sesebuah jentera manakala 

meramal prestasi sistem gear merupakan fungsi utama. Kegagalan sistem gear yang 

tidak diduga boleh menyebabkan ancaman berat kepada kehidupan manusia dan 

membawa kesan ekonomi skala besar. Adalah perlu untuk memeriksa gigi gear 

secara berkala bagi mengenal pasti perambatan retak dan kegagalan lain pada 

peringkat awal. Kajian ini mempunyai dua objektif utama. Pertama sekali kajian ini 

meramal dan mengelaskan ketebalan saput tertentu (λ) gear taji dengan Rangkaian 

Neural Buatan (ANN) dan Model Regresi. Parameter seperti pengeluaran akustik 

(AE), suhu dan data ketebalan saput tertentu (λ) disaring daripada hasil kajian 

penyelidik lain. lsyarat pengeluaran akustik dan suhu digunakan sebagai input bagi 

ANN dan model Regresi manakala (λ) merupakan output model tersebut. Objektif 

kedua adalah untuk menggunakan generasi ketiga ANN (Rangkaian Neural 

Berpaku) bagi mendiagnosis kegagalan dan pengelasan gear taji berdasarkan isyarat 

AE. Rig ujian dibina dengan beberapa kegagalan gear bagi tujuan ini. lsyarat AE 

diproses melalui pra-pemprosesan, penyarian sifat dan pemilihan kaedah sebelum 

diagnosis ANN dan pengelasan model dibangunkan. Proses-proses tersebut 

bertujuan untuk meningkatkan ketepatan sistem diagnosis berdasarkan maklumat 

atau sifat yang dibekalkan ke dalam model. Kajian ini mengkaji kemungkinan untuk 

meningkatkan ketepatan pemantauan keadaan gear taji dan diagnosis kegagalan 

dengan menggunakan Suapan-Depan ke Belakang­ Rangkaian Neural Perambatan 

(FFBP), Rangkaian Elman (EN), Model Regresi dan Rangkaian Neural Berpaku 

(SNN). Dapatan kajian ini menunjukkan bahwa penggunaan ketebalan saput tertentu 

menghasilkan rangkaian FFBP yang mampu memberikan ketepatan pengelasan 

sebanyak 99.9% manakala ketepatan pengelasan bagi model regresi dan regresi 

berganda masing-masing hanya mencapai 73.3% dan 81.2%. Bagi diagnosis 

kegagalan gear pula SNN mencapai ketepatan hampir 97% dalam diagnosisnya. 

Akhir sekali kaedah yang digunakan dalam kajian ini membuktikan bahawa terdapat 

ketepatan yang tinggi dan dapat digunakan sebagai alat ramalan, pengelasan dan 

diagnosis kegagalan gear taji. 
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CHAPTER 1  

 

 

 

INTRODUCTION 

 

 

 

The gearboxes are very important part of any rotating machine. It is a type of 

transmission mechanism which provides the torque and the speed conversions from 

the rotating power source (e.g., electric motor) to the devices with respect to their 

gear ratio. A lot of research has been conducted on the field performance of the 

gearbox, which is characterized by its availability, reliability, and its maintainability, 

due to the numerous challenged faced by the industry regarding the design of the 

gearbox and its operation and maintenance [1].  

 

In the current commercial production industries, there is an increasing trend 

towards the need for a higher availability equipment that can work nonstop which 

means 24/7. Thus, any type of failure, even minor, cannot be accepted as it can 

greatly affect the cost and the production. Hence, a very accurate monitoring of the 

machine condition and a proper fault diagnosis of the machine failure is necessary. 

The machine fault diagnosis has seen a vast improvement since the time when the 

maintenance was provided only after the machine had developed a fault and affected 

the production. Thereafter it developed into preventive maintenance in the past few 

years before all the industries started using the condition-based maintenance, and still 

used. Preventive maintenance can be defined as providing maintenance before the 

machinery faces any faults. On the other hand, condition-based maintenance can be 

defined as providing maintenance depending on the data obtained from target 

measurements. The efficacy of this technique is measured depending on the accurate 

diagnostic tactics which are fulfilled.  
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For surviving in the current competitive market, the industries need to 

improve their product reliability and also reduce their production costs. The product 

reliability is more important for certain industries like the aviation, nuclear and the 

petrochemical industries where any failure can lead to very serious environmental 

disasters. For instance, the typical lifespan of a wind turbine is approximately 23 

years [2], however, there is a lot of commercial pressure to increase the lifespan and 

the productivity of the machine which can greatly require a better monitoring of its 

gearbox. Currently, industries have shifted from using the condition-based 

(predictive) approach to the maintenance-based approach depending on the trending 

and the data analysis from one or more parameters that indicate the development or 

the presence of known failures or faults. This can be managed by gathering 

information regarding the process parameters (pressure, temperature, power 

consumption, flow rate, etc.), along with other indicators like the Acoustic emission 

(AE), Noise, Vibration, and Current signature [3]. 

 

The effective machine condition monitoring technique must be able to 

determine the onset of any fault in its early stages and also provide an accurate 

diagnosis regarding the type of the fault and its location. Ideally, the condition 

monitoring technique must give an overall and a detailed accurate health assessment 

of the equipment. This technique usually applies advanced technology, however 

conventionally, it would include the aural and the visual inspection (applying all the 

human senses), temperature monitoring, oil analysis (known as the wear debris 

analysis), airborne sounds and the AE analysis, measurement of the vibrations and its 

analysis, and the motor current signature analysis. This also included the non-

destructive testing.  

 

The oil analysis can be very effective for using with many types of machinery 

like the bearings and the gear boxes of the wind turbines. A measurement of the 

amounts of the ferrous and the non-ferrous particles present in the lubricant provides 

useful information regarding the equipment condition. Also, trending helps in 

predicting the faults before the machine fails completely [4]. Using a correct type of 

lubricant helps in the smooth-running and a longer lifespan of the gear boxes. A gear 

box is a very vital component of the wind turbine and it is noted that using a proper 

lubricant helps in saving costs to the tune of $5,000 annually for every turbine that is 
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used. In one report, the author observed that experts who were working on different 

plants noted that an average of around 23 % of the gear box failures could be 

accredited to either a lack of any lubricant or using a wrong type of lubricant [2].  

 

Furthermore, Ribrant and Bertling surveyed the failures in the wind power 

plants in Sweden for 8 years ranging between1997-2004. They collected a huge 

amount of data which indicated that the gear boxes caused several of the breakdowns 

of the wind turbines. Generally, 20% of the wind turbine downtime was because of 

the gearbox failure, and the gearbox repairs tool on an average around 256 h [5]. All 

the different surveys published in the public domain have stated that a gearbox 

consists of the highest downtime for every failure for the onshore wind turbine sub-

assemblies [6]. Furthermore, state that the gearbox faults are responsible for around 

30% of the lost available onshore wind turbines.  

 

Since the past few years, use of AE has been increased for the monitoring of 

the gearbox condition. It has been seen to be very effective in the detection and the 

diagnosis of the fault formation at the rolling contact. This technique has a very high-

frequency content, which is higher than the background signals it is insensitive to 

background noise and is also very sensitive to any change in the machine conditions 

[7]. The condition indicators provide a very accurate data with respect to the 

different components at various damage levels (i.e., either initial, heavy or growing) 

[8]. 

 

Many researchers are still exploring the various techniques and their 

strengths, several of the researchers and scientists are not satisfied with only 

diagnosing the problem but also provide a prognosis regarding the remaining life 

span of the machine [9-10]. All these techniques help in creating new dimensions for 

the diagnosis of the machine faults for improving the reliability of the rotary 

machines. For detecting the failure of these machines, the technique of vibration 

monitoring is generally used [11-13]. It is seen that the acoustic emission level 

magnitude increases proportionally to the degradation of the machine. The acoustic 

emission signal is then analyzed using the signal processing. All the features of the 

acoustic emission signal are extracted through the time, frequency and the time-

frequency domains. Several of the parameters can be extracted by the processes like 
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the maximum, minimum, kurtosis, Root Mean Square (RMS), variance, skewness, 

and the crest factor [14]. Nevertheless, it is seen that not all the features are 

significant for representing the machine failure and machine degradation 

information. Hence, it is imperative to choose only the essential features and 

disregard the others. This is known as the feature selection process.  

 

 

1.1    Problem Statement  

 

The gear system is a crucial component for most of machine. Unpredictable 

failures to the gear system often produce terrible circumstance that could be the 

source of large disaster in financial and human losses. The modern machines are very 

complex and therefore they are known to produce several vibrations along with other 

noises [15]. It is necessary to identify the correct signals above the background noise 

for detecting the faults early, also lacking knowledge of neural networks and huge 

number of data and weak features lead to inaccurate fault diagnosis. 

 

The efficient, accurate condition monitoring (CM) and diagnosis of faults that 

are responsible for degrading the performance of gearbox are highly significant tools 

to guarantee good productivity and safe machine functionality. This mechanism 

possibly saves human and industries form catastrophic failures. Recently, there is a 

rising interest and need for high quality condition monitoring and speedy fault 

diagnosis in the gears for decreasing the downtime required for the production 

machines that can be due to failures. Hence, several studies have been conducted for 

condition monitoring and detecting the faults as soon as possible by analyzing their 

vibrational and acoustic emission signals.  

 

In this thesis, AE signals used the for prognosis, condition monitoring and 

fault diagnosis of the spur gear only appropriate feature sets that improve the 

reliability and the accuracy of the condition monitoring and the fault diagnosis used. 

Several models were applied for prediction, monitoring and fault diagnoses purposes 

ranging from statistical and artificial neural network models. 
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1.2  Research Objective  

 

This research program objectives is to identify the feasibility of Artificial 

Neural Network (ANN), Regression models and Acoustic Emission (AE) for spur 

gear condition monitoring and fault diagnosis. A two main objectives have been 

outlined for this research program which includes: 

 

1. Creating a monitoring models for spur gear specific film thickness (λ): 

a. Predicting the specific film thickness (λ) regime. 

b. Establishing relationship between spur gear specific film thickness (λ) 

and temperature and AE activity during spur gear mesh. 

c. Establishing relationship between spur gear specific film thickness (λ) 

and AE activity during spur gear mesh. 

d. Establishing a program to identify specific film thickness (λ) regime. 

 

2. Development of diagnosis and classification methods for spur gear faults. 

a. Development of Slantlet Transform (SLT) method for converting the 

AE signal from time to frequency domain.  

b. Development of effective features selection method. 

In order to offer effective features, it is required to create many 

features through feature extraction. Then the most significant thing is 

providing the useful features through features selection, for that 

reason a new signal pre-processing technique and feature selection 

methods is used. 

c. Development of diagnosis and classification methods based on new 

third generation ANN techniques for spur gear fault. 

d. Design user friendly Graphical User Interface for fault diagnoses and 

classification in spur gear. 
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1.3  Scope of Study 

 

Although the proposed methods is applicable to any type of rotating machine, 

this work implements the proposed models on spur gear only. Within the condition 

monitoring and fault diagnoses framework, this work covers four main parts: 

1. Monitoring lubricant regime to indicate the spur gear operating 

conditions. 

2. Predict the future progress of the specific film thickness (λ) (prognostics) 

using two methods: ANN and Regression. 

3. Identification of the most effective AE features. 

4. Diagnose the fault developed in spur gear through an ANN diagnostics 

system. 

 

 

1.4 Significance of Study 

 

The significance of this research can be described as follow; 

1. The methods to predict the specific film thickness (λ) regime of spur gear 

reliability can improve the machine safety and reliability and therefore adding value 

to the maintenance performs. 

 

2. The ANN and regression methods establishing a correlation between ANN, 

AE technology and the lubrication regimes to monitor where the gear is running with 

respect to its specific film thickness (λ). 

 

3. The suggested Slantlet transform (SLT) can improve the features extraction 

technique. 

 

4. The influential features selection will improve the optimization of ANN 

input data. The Information Gain supported with ANN can be used to choice the very 

important features to diagnose and classify the spur gear failure. 
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5. The proposed third generation of ANN (Spiking neural network method) 

can improve the spur gear failure diagnosis. 

 

6. The designed program to prognoses, diagnoses and classify spur gear 

failure can contribute to easy monitoring and low maintenance cost. 

 

 

1.5  Thesis Outline 

 

This thesis is constructed into 6 chapters. Chapter 1 presents general 

literatures review, research topic, objectives and significance of the research. 

Reviewing the most important literature on the spur gear condition monitoring and 

fault diagnoses, AI and AE. A comprehensive survey of experimental and theoretical 

findings pertaining to spur gear condition monitoring and fault diagnoses as a whole 

can be found in Chapter 2. Brief explanation of AE Technology, artificial neural 

network modeling, regression model, Slantlet transform (SLT), feature extraction 

and feature selection methods can be cited in chapter 3. The research methodology, 

experimental setup and experimental procedure in chapter 4. Whole the result and 

discussion is in chapter 5. Lastly chapter 6 the conclusion. 
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