
HIGH LEVEL DATAFLOW NETWORK PARTITIONING USING STOCHASTIC

ALGORITHMS

WOO YIT WENG

UNIVERSITI TEKNOLOGI MALAYSIA



Replace this page with form PSZ 19:16 (Pind. 1/07), which can be
obtained from SPS or your faculty.



Replace this page with the Cooperation Declaration form, which can be
obtained from SPS or your faculty. This page is OPTIONAL when your
research is done in collaboration with other institutions that requires
their consent to publish the finding in this document.]



HIGH LEVEL DATAFLOW NETWORK PARTITIONING USING STOCHASTIC

ALGORITHMS

WOO YIT WENG

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Computer and Microelectronic System)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

JUNE 2018



iii

ACKNOWLEDGEMENT

Throughout the duration of conducting my final year project, I have been

blessed with assistance from multiple parties. There were many obstacles that needed

to be overcome and without the sound advice from these parties, this project would not

have come to fruition.

First of all, I would like to express my utmost gratitude to my project

supervisor, Dr. Ab Al-Hadi bin Ab Rahman, as a source of guidance and motivation

while conducting this project. By generously sacrificing his time, his efforts had

stimulated me to find solutions to problems that arose. The suggestions and

encouragement that was provided truly made a difference in order for this project to

achieve completion. Sincere appreciation is also given to members of the examiners

for their constructive comments in order to improve this project even further.

My appreciation also goes to my family members and friends that have

provided encouragements throughout the whole journey. Without their direct or

indirect support, this project would not have progressed as smoothly. Sincere gratitude

is given to all others that have helped me throughout. Apologies to those that have

given me assistance but have not been acknowledged by name. Just know that your

help and support is greatly appreciated all the same.



iv

ABSTRACT

A dataflow actor network is a method of representing a design, showing

clearly how data moves from one actor to another in graph form, suitable to represent

designs such as a video streaming application. The design representation is written

in the CAL Actor Language and the intent is to eventually implement the design

in hardware, more specifically, Field Programmable Gate Arrays (FPGA). Instead

of using a large FPGA to fit the entire design, the design is seperated into smaller

blocks to be implemented in multiple smaller FPGAs. This has multiple advantages

such as savings in cost and time as well as allowing more flexibility according to

the design need and available resources. The caveat of this design approach is that

the connections between FPGAs would incur some latency and noise. As such, the

actors in the design need to be partitioned accordingly to minimize these inter-FPGA

connections. This project will be investigating two partitioning algorithms, namely the

Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) algorithms,

to see which of these stochastic algorithms is better at partitioning the target design.

Traditionally, partitioning is done using the cut cost as the optimized metric. While

this would lead to less physical wires going across FPGAs, this could result in critical

connections being compromised as it needs to traverse FPGAs. As such, this project

will also investigate the feasibility of using communication rate as the partitioning

criterion to better ensure that the connections between FPGAs are not critical such

that the penalty can be tolerated. This project will use the profiles of a basic FIR

Digital Filter as well as larger HEVC Decoder and MPEG-4 AVC Decoder test cases.

The partitioning algorithms will be written in Java, using information regarding the

actors and connections that are in the profile of each design. The results are analyzed

to determine which algorithm is more suited to separate the design into balanced

partitions as well as whether communication rate is a better partitioning criterion than

cut cost for certain applications. The results obtained will also be compared with

results obtained using the deteministic Fiduccia-Mattheyses (FM) algorithm.



v

ABSTRAK

Rangkaian pelakon aliran data adalah kaedah mewakili reka bentuk,

menunjukkan dengan jelas bagaimana data bergerak dari satu pelakon ke yang lain

dalam bentuk grafik, sesuai untuk mewakili reka bentuk seperti aplikasi streaming

video. Reka bentuk ditulis dalam CAL dan tujuannya adalah untuk melaksanakan

reka bentuk dalam perkakasan, lebih khusus, FPGA. Selain menggunakan FPGA

yang besar untuk keseluruhan reka bentuk, reka bentuk dibahagikan kepada blok

yang akan dilaksanakan dalam beberapa FPGA yang lebih kecil. Ini mempunyai

banyak kelebihan seperti penjimatan kos dan masa serta memberikan fleksibiliti

mengikut keperluan dan sumber yang ada. Kaveat pendekatan ini adalah bahawa

sambungan antara FPGA akan menimbulkan latensi dan bunyi gangguan. Oleh

itu, pelakon dalam reka bentuk perlu dibahagikan sewajarnya untuk mengurangkan

sambungan antara FPGA. Projek ini akan menyiasat dua algoritma pembahagian,

iaitu PSO dan ACO, untuk melihat algoritma stokastik mana yang lebih sesuai

untuk membahagikan reka bentuk. Secara tradisional, pembahagian dilakukan

dengan menggunakan kos potong sebagai metrik yang dioptimumkan. Walaupun ini

akan mengurangkan wayar fizikal yang merentasi FPGA, ini boleh mengakibatkan

sambungan kritikal dikompromi kerana ia perlu melintasi FPGA. Oleh itu, projek ini

juga akan mengkaji penggunaan kadar komunikasi sebagai kriteria pembahagian untuk

memastikan bahawa sambungan antara FPGA adalah tidak kritikal supaya penalti

boleh diterima. Projek ini menggunakan profil penapis Digital FIR serta penyahkod

HEVC dan penyahkod MPEG-4 AVC. Algoritma ditulis dalam Java, menggunakan

maklumat pelakon dan sambungan yang ada dalam profil setiap reka bentuk. Datanya

dianalisis untuk menentukan algoritma mana yang lebih sesuai untuk membahagikan

reka bentuk ke dalam partition yang seimbang serta sama ada kadar komunikasi adalah

kriteria pembahagian yang lebih baik untuk aplikasi tertentu. Data yang diperoleh juga

dibandingkan dengan data yang diperoleh menggunakan algoritma deterministik FM.



vi

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

ABSTRAK v

TABLE OF CONTENTS vi

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS x

LIST OF APPENDICES xi

1 INTRODUCTION 1

1.1 Problem Background 1

1.2 Problem Statement 2

1.3 Project Objective 3

1.4 Project Scope 4

1.5 Thesis Organization 4

2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Dataflow Actor Network 6

2.3 Field Programmable Gate Array 7

2.4 Partitioning Algorithms 7

2.4.1 Fiduccia-Mattheyses Algorithm 8

2.4.2 Particle Swarm Optimization 9

2.4.3 Ant Colony Optimization 10



vii

2.5 Partitioning Optimization Criteria 11

2.6 Research Gap 12

3 RESEARCH METHODOLOGY 14

3.1 Introduction 14

3.2 Project Flow 14

3.3 Test Cases 15

3.4 Partitioning 17

3.4.1 Stochastic Algorithms 17

3.4.1.1 Particle Swarm Optimization 19

3.4.1.2 Ant Colony Optimization 20

3.4.2 Optimization Criteria 22

3.5 Data Collection and Benchmarking 22

4 RESULTS AND DISCUSSION 24

4.1 Introduction 24

4.2 Profiles of Test Cases 24

4.2.1 FIR Digital Filter 25

4.2.2 HEVC Decoder 25

4.2.3 MPEG-4 AVC Decoder 26

4.3 Partitioning Results 27

4.3.1 FIR Digital Filter 27

4.3.2 HEVC Decoder 28

4.3.3 MPEG-4 AVC Decoder 30

5 CONCLUSION 34

5.1 Research Outcomes 34

5.2 Contributions to Knowledge 35

5.3 Future Works 36

REFERENCES 38

Appendices A – C 41 – 46



viii

LIST OF TABLES

TABLE NO. TITLE PAGE

3.1 Information of Test Cases 17

3.2 PSO variable settings 20

3.3 ACO variable settings 21

4.1 FIR Digital Filter partitioning results 28

4.2 HEVC Decoder partitioning results 29

4.3 MPEG-4 AVC Decoder partitioning results 31



ix

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Particle Swarm Optimization Flow 10

2.2 Ant Colony Optimization Flow 11

2.3 Basic Partitioning 12

3.1 Project Flow Chart 15

4.1 FIR Digital Filter dataflow actor network 25

4.2 FIR Digital Filter actor and edge information 25

4.3 HEVC Decoder dataflow actor network 26

4.4 MPEG-4 AVC Decoder dataflow actor network 27

4.5 ACO converging (optimizing communication rate) 30

4.6 PSO converging (optimizing cut size) 33

A.1 HEVC Decoder actor and edge information 42

B.1 MPEG-4 AVC Decoder actor and edge information 45

C.1 Run Log Example 47



x

LIST OF ABBREVIATIONS

ACO - Ant Colony Optimization

ASIC - Application Specific Integrated Circuit

AVC - Advanced Video Coding

CAL - CAL Actor Language

CPU - Central Processing Unit

FIFO - First-In, First-Out

FIR - Finite Impulse Response

FM - Fiduccia-Mattheyses

FPGA - Field Programmable Gate Array

HDL - Hardware Description Language

HEVC - High Efficiency Video Coding

IC - Integrated Circuit

IDE - Integrated Development Environment

KL - Kernighan-Lin

KPN - Kahn Process Network

MoC - Model of Computation

MPEG - Moving Picture Experts Group

NP - Nondeterministic Polynomial time

ORCC - Open RVC-CAL Compiler

PSO - Particle Swarm Optimization

RTL - Register-Transfer Level

RVC - Reconfigurable Video Coding

VLSI - Very Large Scale Integration

XDF - eXtensible Design Format



xi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A HEVC Decoder actor and edge information 41

B MPEG-4 AVC Decoder actor and edge information 43

C Run Log Example 46



CHAPTER 1

INTRODUCTION

1.1 Problem Background

Semiconductors have been shaping the modern world with its wide usage

throughout multiple industries with its influence growing each day. Its use in

electronics means that it is able to be used in virtually any field in the current Internet

of Things. Complying with Moore’s Law, semiconductors allow the miniturization of

electronic devices making electronic devices more powerful as well as more affordable

for consumers. Since the first integrated circuit (IC) was invented, technology has not

looked back since and we now have very large scale integration (VLSI) circuits built

such as the central processing unit (CPU) being used in just the palms of our hands

within smartphones.

Starting from simple building blocks, designs have been getting increasingly

more complex to satisfy the demands of consumers. As such, proper methods of

representing the designs have also become increasingly important. High levels of

abstraction are needed to just see the big picture but still being able to look in deatil

into the individual building blocks of a design. This gives rise to dataflow actor

networks and all its accompanying languages. The added benefit of this representaion

is the aspect of parallelism available, exactly as it appears in hardware, making this

representation highly suitable for use when designing for hardware.

With competition at an all-time high, companies are looking for ways to

produce application specific integrated circuits (ASIC) designs quickly to beat out

other competitors, leading to the rapid advancement of use of FPGAs. These devices



2

are, as its name implies, programmable, meaning that the function that is implemented

on them can be changed on a whim by the users. This is done by simply altering the

Register-Transfer Level (RTL) code to be downloaded onto the FPGA. This versatile

technology has become very prominent in the industry for prototyping designs in order

to achieve the quickest possible time-to-market.

Currently, designs are still becoming larger and more complex, such that a

single FPGA is unable to sustain the whole design anymore, compromising the ability

to prototype. The solution? Use multiple FPGAs for the same design, increasing the

number of available resources and allowing flexibility. This then becomes a question

of how the design is to be divided in order to be implemented in FPGAs separately.

This is where partitioning plays a huge role, breaking down designs in the right way,

ensuring that the design itself is not compromised by the connections that need to

traverse multiple FPGAs. A good partitioning algorithm will reduce the need for these

connections, allowing a smooth implementation in hardware.

1.2 Problem Statement

Partitioning is getting more and more important with the increase in size of

designs. In this project, the aim is to partition designs to be implemented in multiple

FPGAs. As such the inter-FPGA connections will be penalized with extra latency and

external noise. Therefore, it is imperative that the designs are partitioned correctly,

so that the latency and noise can be tolerated. Low quality partitions could lead to

the design not working as intended, which illustrates the importance of using a good

partitioning algorithm to separate the designs.

Reducing cut size is the usual obective of partitioning. However, since this

approach does not understand the concept of critical paths, it could lead to undesirable

results in some designs. For instance, in data driven designs, doing this could lead

to critical paths with high communications rates as one of the paths that needs to

traverse FPGAs. The latency and noise incurred on the critical path could render the

entire design to be compromised and non-functioning. In order to ensure that this is



3

less likely to happen, the connections are weighted by its communication rate when

partitioning is conducted to optimize this metric between FPGAs.

Partitioning, as with most optimization problems, can be solved or

approximated with deterministic or stochastic algorithms. Deterministic algorithms

are those that are determined by the parameters set and the initial conditions

whereas stochastic algorithms have an inherent randomness. Deterministic partitioning

algorithms include the FM algorithm as well as the Kernighan-Lin (KL) algorithm

which take an initial state of partitions and perturbs it by swapping if it results in

a better partitioning solution. The drawback of this approach is that, due to the

greediness of the algorithms and the heavy reliance on initial conditions, it could

lead to deterministic algorithms getting locked onto local optimums and this becomes

more and more apparent in large test cases due to partitioning being a nondeterministic

polynomial time (NP) complete problem.

1.3 Project Objective

The objectives that this project aims to meet are as follows:-

1. To develop, implement and analyse the performance of stochastic

partitioning algorithms, Particle Swarm Optimization (PSO) and Ant Colony

Optimization (ACO).

2. To investigate the use of communication rate as the optimized metric as

opposed to the traditional cut size when performing partitioning.

3. To analyse the improvement of using stochastic partitioning algorithms over

deterministic algorithms.



4

1.4 Project Scope

Partitioning is a very large area of study and as such, this project will need its

limits clearly defined. First, is that this project is limited to test cases which are part

of a video processing design that are written in the CAL Actor Language (CAL). The

test cases are an FIR Digital Filter, which is small testcase used more as a proof of

concept to test the partitioning algorithms before moving to larger HEVC Decoder and

the MPEG-4 AVC Decoder test cases.

The partitioning algorithms used in this project are meant to be stochastic in

nature. Therefore, the algorithms that are chosen are the PSO and ACO algorithms.

These algorithms were made to be used for different kinds of optimization problems

and are not inherently used as partitioning algorithms. As such, these algorithms will

need to be adapted to fit the problem at hand. The algorithms are written in the Java

programming language.

The partitioning in this project will only be separating the designs into two

partitions (bipartitioning). The algorithms will need to include a mechanism in order

to balance the size of the partitions produced. In terms of partitioning criteria, this

project will only optimize either the traditional cut size or the communication rate

to see if data driven designs like the given test case will benefit from this different

approach.

1.5 Thesis Organization

This thesis is organized as follows. In chapter one, the project is defined by

establishing the problems to be solved as well as exploring the background of these

problems. For each problem stated, the project objectives are defined. The scope

is given to limit the project within well defined bounds. In chapter two, literature

related to the problem are reviewed which include methods and algorithms used for

partitioning designs as well as those giving further insight on usage of FPGAs and

CAL that the design is written in. The following chapter then illustrates the flow



5

that this project will undergo to achieve its objective along with the approaches taken

throughout the different parts of the project. Chapter four will then go into results

obtained from each testcase after first presenting each test case in a more quantitative

manner. The results are tabulated and analysed while conclusions are drawn. In

the final chapter, the conclusions drawn are consolidated and the contributions of the

project are documented. Before the end of the thesis, possible future works that could

be done based on or extending this project are given.



REFERENCES

1. Kahn, G. The Semantics of a Simple Language for Parallel Programming.

Information Processing. 1974. 471 – 475.

2. Ab. Rahman, A. A.-H. Optimizing Dataflow Programs for Hardware

Synthesis. Ph.D. Thesis. ÉCOLE POLYTECHNIQUE FÉDÉRALE DE

LAUSANNE. 2013.

3. Eker, J. and Janneck, J. CAL Language Report : Specification of the CAL

Actor Language. Technical report. University of California-Berkeley. 2003.

4. Gorin, J., Raulet, M. and Prêteux, F. MPEG Reconfigurable Video Coding:

From specification to a reconfigurable implementation. Signal Processing:

Image Communication, 2013. 28(10): 1224 – 1238.

5. Traskov, B. Hardware/Software Partitioning of Dataflow Programs : Rapid

Prototyping of Computer Systems in the CAL Actor Language. Master’s

Thesis. KTH Royal Institute of Technology. 2011.

6. Tai, T. Y. Open RVC-CAL Compiler (ORCC) Guide. http://

u1403182299-blog.logdown.com/posts/207201-orcc-guide, 2014. Accessed:

2018-05-24.

7. Bezati, E., Yviquel, H., Raulet, M. and Mattavelli, M. A Unified

Hardware/Software Co-Synthesis Solution for Signal Processing Systems.

Design and Architectures for Signal and Image Processing. 2011. 1 – 6.

8. Wendling, M. and Rosenstiel, W. A Hardware Environment for Prototyping

and Partitioning Based on Multiple FPGAs. Proceedings of the Conference on

European Design Automation. 1994. 77 – 82.

9. Drayer, T. H., King, W. E., Tront, J. G., Connors, R. W. and Araman,

P. A. Using Multiple FPGA Architectures for Real-time Processing of

Low-level Machine Vision Functions. Industrial Electronics, Control, and

http://u1403182299-blog.logdown.com/posts/207201-orcc-guide
http://u1403182299-blog.logdown.com/posts/207201-orcc-guide


39

Instrumentation. 1995, vol. 2. 1284 – 1289.

10. Jaeger, J. Partitioning an ASIC Design into Multiple FPGAs. https://www.

eetimes.com/document.asp?doc_id=1274719, 2010. Accessed: 2018-05-24.

11. Fleming, K. E., Adler, M., Pellauer, M., Parashar, A., Mithal, A. and Emer, J.

Leveraging Latency-insensitivity to Ease Multiple FPGA Design. Proceedings

of the ACM/SIGDA International Symposium on Field Programmable Gate

Arrays. 2012. 175 – 184.

12. Kernighan, B. W. and Lin, S. An Efficient Heuristic Procedure for Partitioning

Graphs. The Bell System Technical Journal, 1970. 49(2): 291 – 307.

13. Fiduccia, C. M. and Mattheyses, R. M. A Linear-time Heuristic for Improving

Network Partitions. 19th Design Automation Conference. 1982. 175–181.

14. Tong, Q., Zou, X., Zhang, Q., Gao, F. and Tong, H. The Hardware/Software

Partitioning in Embedded System by Improved Particle Swarm Optimization

Algorithm. Fifth IEEE International Symposium on Embedded Computing.

2008. 43 – 46.

15. Kumar, K. S., Bhaskar, U. P., Chattopadhyay, S. and P., M. Circuit

Partitioning Using Particle Swarm Optimization for Pseudo-Exhaustive

Testing. International Conference on Advances in Recent Technologies in

Communication and Computing. 2009. 346 – 350.

16. Comellas, F. and Sapena, E. Applications of Evolutionary Computing,

Springer, chap. A Multiagent Algorithm for Graph Partitioning. 2006, 279

– 285.

17. Arora, M. and Lall, G. C. Circuit Partitioning in VLSI Design : An Ant Colony

Optimization Approach. International Journal of Advances in Engineering &

Technology, 2013. 6(1): 536 – 541.

18. Omeroglu, N. B., Toroslu, I. H., Gokalp, S. and Davulcu, H. K-Partitioning

of Signed or Weighted Bipartite Graphs. International Conference on Social

Computing. 2013. 815 – 820.

19. Chin, Y. H. Dataflow Actor Network Partitioning for Multiple FPGAs.

Master’s Thesis. Universiti Teknologi Malaysia. 2016.

20. Mohd. Asri, M. F. Dataflow Actor Network Bi-partitioning Algorithm for

https://www.eetimes.com/document.asp?doc_id=1274719
https://www.eetimes.com/document.asp?doc_id=1274719


40

Hardware Implementation. Master’s Thesis. Universiti Teknologi Malaysia.

2017.


	DECLARATION
	ACKNOWLEDGEMENT 
	ABSTRACT
	ABSTRAK
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF APPENDICES
	Introduction
	Problem Background
	Problem Statement
	Project Objective
	Project Scope
	Thesis Organization

	Literature Review
	Introduction
	Dataflow Actor Network
	Field Programmable Gate Array
	Partitioning Algorithms
	Fiduccia-Mattheyses Algorithm
	Particle Swarm Optimization
	Ant Colony Optimization

	Partitioning Optimization Criteria
	Research Gap

	Research Methodology
	Introduction
	Project Flow
	Test Cases
	Partitioning
	Stochastic Algorithms
	Optimization Criteria

	Data Collection and Benchmarking

	Results and Discussion
	Introduction
	Profiles of Test Cases
	FIR Digital Filter
	HEVC Decoder
	MPEG-4 AVC Decoder

	Partitioning Results
	FIR Digital Filter
	HEVC Decoder
	MPEG-4 AVC Decoder


	Conclusion
	Research Outcomes
	Contributions to Knowledge
	Future Works

	REFERENCES 



