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ABSTRACT 

 

 

 

 
In recent years, extensive research has been carried out on the synthesis of anionic water-

soluble porphyrin, meso-tetrakis(4-sulphonatophenyl)porphyrin (TSPP) due to the potential 

applications in photodynamic therapy, sensors, optical devices and catalysis. However, the information 

on anion recognition properties of free-base TSPP and performance of TSPP metalloporphyrin 

complexes in heterogeneous catalytic oxidation are relatively scarce. Hence, this research is divided 

into two main parts. Firstly, free-base TSPP was utilized as chromogenic reagent for recognition of 

acetate and citrate ions in aqueous solutions and the optical properties were characterized by ultraviolet-

visible (UV-Vis) and fluorescence spectroscopies. The interaction of TSPP with the acetate and citrate 

ions was quantitatively analyzed at pH 4 using different acids (H2SO4, HCl, HNO3, H3PO4 and 

CH3COOH) for the pH adjustments. The anion sensing mechanism was based on protonation of the 

imino nitrogens of TSPP porphyrin core in the presence of acids (pH~4), whereby the optical changes 

observed in the absorption and emission spectra of the pH 4 TSPP solution were the effects of pH 

changes induced by acetate or citrate anion during deprotonation of TSPP. The Stern-Volmer constant 

based on the fluorescence quenching spectra revealed that the sensitivity of pH 4 TSPP was almost 

unaffected by the different acids used for the pH adjustment. For the UV-Vis spectroscopy method, the 

lowest limit of detection (LOD) of acetate ion (5.61  106 M) was obtained using nitric acid, while for 

the fluorescence spectroscopy method, the LOD (4.66  106 M) of acetate ion was obtained when 

sulphuric acid was used. Detection of citrate ion was only possible when acetic acid was used for the 

pH adjustment, with LOD of 9.59  106 M and 9.79  106 M for UV-Vis and fluorescence 

spectroscopies, respectively. Matrix anions (chloride, nitrate, phosphate, carbonate and sulphate ions) 

effects on the acetate and citrate detection were also studied. The linear range of the fluorescence 

detection was wider (2–19 × 10–5 M) as compared to the UV-Vis detection (4–18 × 10–5 M). Besides, 

no significant matrix anion effect could be observed in the fluorescence spectra. The microspecies 

distributions of TSPP, acetate and citrate ions were simulated using the Marvin Bean ChemSketch® 

analysis. The results suggested that the pH of the TSPP solution was instantaneously increased upon the 

addition of acetate or citrate anion. Consequently, the –2 charge TSPP was converted to –4 charge TSPP, 

accompanied with significant optical changes. In the second part of this work, TSPP was coordinated 

to Mn(III), Fe(II), Co(II) and Cu(II) ions to yield the meso-tetrakis(4-sulphonatophenyl)porphyrinato 

metal complexes (TSPP-M) for catalytic oxidation of benzyl alcohol to benzaldehyde with tert-butyl 

hydroperoxide as oxidant. The neat TSPP-M showed superior catalytic performance (~60% conversion) 

as compared to that of free-base TSPP (4.8% conversion). Subsequently, TSPP-M was immobilized on 

the mesoporous silica support Santa-Barbara Amorphous-15 (SBA-15) via post-synthesis method to 

afford the heterogeneous catalysts TSPP-M/SBA-15 (M: Mn, Fe, Co and Cu). The TSPP-M/SBA-15 

catalysts exhibited high BET (Brunauer-Emmett-Teller) surface areas > 150 m2 g−1 with average pore 

diameters > 5 nm. The effects of reactant to oxidant molar ratio, reaction temperature, solvent, and 

reaction time were further investigated. Under the optimal conditions, the catalytic trend was in the 

order: Mn(III) > Fe(II) > Co(II) > Cu(II). The TSPP-Mn/SBA-15 catalysts gave > 99% selectivity and 

turn over frequency of 665 h−1 after 3 hours of reaction. In addition, all the TSPP-M/SBA-15 catalysts 

could be reused up to three recycles without significant loss of catalytic activity. The catalytically active 

species leached out of TSPP-M/SBA-15 surface was extremely small and generally, can be considered 

negligible. Findings of present studies are significant because the anionic free-base TSPP was reported 

for the first time as chromogenic reagent for anion recognition. Furthermore, the TSPP-M/SBA-15 has 

great potential as an environmental friendly heterogeneous catalyst that offers the prospect of 

commercialization in the production of chlorine-free benzaldehyde. 

 

 



vii 
 

 

 

 

 

 

ABSTRAK 

 

 

 

 
 Sejak tahun kebelakangan ini, penyelidikan meluas telah dijalankan ke atas sintesis porfirin 

anionik terlarut dalam air, meso-tetrakis(4-sulfanatofenil)porfirin (TSPP) disebabkan oleh potensi 

aplikasinya dalam terapi fotodinamik, sensor, peranti optik dan pemangkinan. Namun begitu, maklumat 

mengenai sifat pengecaman anion TSPP bebas logam dan prestasi kompleks metaloporfirin TSPP dalam 

pengoksidaan pemangkinan heterogen secara relatifnya jarang ditemui. Maka penyelidikan ini terbahagi 

kepada dua bahagian utama. Pertamanya, TSPP bebas logam telah digunakan sebagai reagen 

kromogenik bagi pengecaman anion asetat dan sitrat dalam larutan akueus dan ciri optik telah dicirikan 

menggunakan spektroskopi ultralembayung-nampak (UV-Vis) dan pendafluor. Interaksi antara TSPP 

dan ion asetat dan sitrat telah dianalisis secara kuantitatif pada pH 4 dengan menggunakan asid yang 

berlainan (H2SO4, HCl, HNO3, H3PO4 dan CH3COOH) bagi pelarasan pH. Mekanisme pengecaman 

anion adalah berasaskan protonasi nitrogen imino pada teras porfirin TSPP dengan kehadiran asid 

(pH~4), di mana perubahan optik yang dicerap dalam spekrum penyerapan dan pemancaran larutan pH 

4 TSPP adalah kesan perubahan pH yang diaruh oleh anion asetat atau sitrat semasa penyahprotonasi 

TSPP. Pemalar Stern-Volmer berdasarkan spekrum pelindapan pendarfluor mendedahkan bahawa 

kepekaan TSPP pH 4 hampir tidak terjejas dengan penggunaan asid berlainan untuk pelarasan pH. 

Untuk kaedah spektroskopi UV-Vis, had pengesanan (LOD) paling rendah (5.61  106 M) untuk ion 

asetat diperoleh dengan menggunakan asid nitrik, manakala bagi kaedah spektroskopi pendafluor, LOD 

(4.66  106 M) untuk ion asetat diperoleh apabila asid sulfurik digunakan. Pengesanan ion sitrat hanya 

dapat dilakukan apabila asid asetik digunakan untuk pelarasan pH, dengan LOD 9.59  106 M dan 9.79 

 106 M untuk spektroskopi UV-Vis dan pendafluor, masing-masing. Kesan anion matriks (ion klorida, 

nitrat, fosfat, karbonat dan sulfat) terhadap pengesanan asetat dan sitrat turut dikaji. Julat linear 

pengesanan pendafluor didapati lebih luas (2–19  10–5 M) berbanding dengan pengesanan UV-Vis (4–

18 × 10–5 M). Di samping itu, tiada kesan anion matriks yang ketara boleh diperhatikan pada spektrum 

pendafluor. Taburan mikrospesies TSPP, ion asetat dan sitrat telah disimulasi menggunakan analisis 

Marvin Bean ChemSketch®. Keputusan kajian mencadangkan bahawa pH larutan TSPP meningkat 

secara serta-merta semasa penambahan anion asetat atau sitrat. Akibatnya, cas –2 TSPP bertukar kepada 

cas –4 TSPP, disertai dengan perubahan optik yang jelas. Di bahagian kedua kajian, TSPP telah 

dikoordinasikan dengan ion Mn(III), Fe(II), Co(II) dan Cu(II) untuk menghasilkan kompleks logam 

meso-tetrakis(4-sulfanatofenil)porfirinato (TSPP-M) bagi pemangkinan pengoksidaan benzil alkohol 

kepada benzaldehid menggunakan tert-butil hidroperoksida (TBHP) sebagai oksidan. Mangkin TSPP-

M tulen menunjukkan prestasi pemangkinan yang cemerlang (penukaran ~60%) berbanding dengan 

TSPP bebas logam (penukaran 4.8%). Seterusnya, TSPP-M dipegunkan ke atas penyokong silika 

mesoliang Santa-Barbara Amorphous-15 (SBA-15) melalui kaedah pasca-sintesis bagi menghasilkan 

mangkin heterogen TSPP-M/SBA-15 (M: Mn, Fe, Co dan Cu). Mangkin TSPP-M/SBA-15 

mempamerkan luas permukaan BET (Brunauer-Emmett-Teller) yang tinggi > 150 m2 g−1 dengan purata 

diameter liang > 5 nm. Kesan reaktan terhadap nisbah molar pengoksida, suhu tindak balas, pelarut dan 

masa tindak balas telah dikaji. Di bawah keadaan optimum, tren pemangkinan ialah dalam turutan: 

Mn(III) > Fe(II) > Co(II) > Cu(II). Mangkin TSPP-Mn/SBA-15 memberikan kepilihan >99% dan 

frekuensi pusingan balik 665 h−1 selepas 3 jam bertindak balas. Di samping itu, kesemua mangkin TSPP-

M/SBA-15 boleh diguna semula hingga tiga kitaran tanpa kehilangan aktiviti pemangkinan yang 

signifikan. Spesies aktif mangkin yang larut lesap dari permukaan TSPP-M/SBA-15 juga didapati amat 

sedikit dan pada umumnya, boleh diabaikan. Hasil kajian ini adalah penting kerana TSPP anionik bebas 

logam julung kali dilaporkan sebagai reagen kromogenik untuk pengecaman anion. Tambahan pula, 

TSPP-M/SBA-15 sangat berpotensi sebagai mangkin heterogen mesra alam yang menawarkan prospek 

komersialisasi dalam penghasilan benzaldehid bebas klorin. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Research 

 

 

 Porphyrins are natural occurring compounds consisting of tetrapyrrolic 

macrocycle as shown in Figure 1.1 (a). Porphyrins are essential for living organism 

as they involve in various biological processes such as oxygen binding, electron 

transfer, biocatalysis and photochemical routes (Cragg, 2005). Metals in biological 

system are often bound to porphyrin forming metalloporphyrins. For example, 

magnesium binds to porphyrin to form chlorophyll (Figure 1.1 (b)) that plays the role 

as a light harvesting agent in the photosynthesis process. While iron binds to porphyrin 

to form haemoglobin (Figure 1.1 (c)) which is responsible for sophisticated oxygen 

transport in mammals (Donald, 2001).  

 

 

 
 

 

Figure 1.1 Molecular structure of (a): porphyrin, (b): chlorophyll and (c): 

haemoglobin 
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The abundance and importance of porphyrin in nature make it interesting 

scaffold for technological and scientific studies. The π electrons rich macrocycle of 

porphyrin makes its structure rigid and stable. In addition, the four nitrogen atoms in 

the macrocycle readily coordinate to wide variety transition metals. Besides, the large 

macrocycle in porphyrin provides spaces for further functionalization. Its properties 

can be fine-tuned by introducing substituents or changing the central metal ion.  

 

 

This ability enables porphyrin to be modulated to fit different applications by 

simple chemical modification of porphyrin multifunctional core, such as protonation 

by acids. In addition, metal complexes of porphyrins possess photochemically and 

electrochemically interesting characteristics that can be used to introduce new 

functionalities of the materials. With these attractive features, porphyrin has been 

studied intensively in various applications such as sensing, catalysis, photodynamic 

therapy, energy harvesting and others (Král et al., 2006; Meunier, 1992).   

 

 

The water solubility of porphyrin is dependent strictly on the functional group 

substituted at the porphyrin macrocycle. For example, meso-tetrakis(4-

chlorophenyl)porphyrin with non-polar chlorophenyl- as the substituent group is 

sparingly soluble in water at room temperature, while meso-

tetrakis(methylpyridyl)porphyrin with positively charged methylpyridyl- as the 

substituent is soluble in water. The non-water-soluble porphyrins are not suitable for 

most of the bio-chemical applications which usually occur in aqueous medium.  

 

 

Due to the difficulty of preparation, only a limited number of water-soluble 

porphyrins have been successfully synthesized. In general, water-soluble porphyrin 

can be divided into three classes, i.e. positively charged porphyrin, negatively 

porphyrin and neutral porphyrin (Simonnaeux et al., 2011). Examples of water-soluble 

synthetic porphyrins based on their classes are given in Table 1.1.  
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Table 1.1 Examples of water-soluble porphyrins based on their classes 

 

 

Class of Porphyrin Examples 

positively charged meso-tetrakis(4-pyridyl)porphyrin, meso-tetrakis(4-N,N, 

N-trimethylanilinium)porphyrin 

negatively charged , , , -tetraphenylporphine trisulfonate, meso-tetrakis-

(4-sulphonatophenyl)porphyrin (TSPP) 

neutral Porphyrin glycosylated porphyrins (bearing appended glycol groups) 

 

 

Compared to other water-soluble porphyrins, the preparation of negatively 

charged meso-tetrakis(4-sulphonatophenyl)porphyrin (hereafter referred as TSPP) was 

much easier (Fleischer et al., 1971). TSPP is a tetra-anionic porphyrin which consists 

of four sulphonatophenyl- charge groups (Figure 1.2(a)) that enable it to possess 

excellent water solubility.  

 

 

When a metal is inserted in the porphyrin core, the resulting complex, meso-

tetrakis(4-sulphonatophenyl)porphyrinato metal (hereafter referred as TSPP-M), 

possesses a molecular structure as shown in Figure 1.2(b), which has the potential to 

undergo redox reactions at the metal centre rather than on the porphyrin ring. 

 

 

However, not much work has been devoted to the applications of TSPP until a 

less-tedious protocol was developed by Fleischer et al. (1971). Soon after, some TSPP 

derivatives have been successfully prepared up to gram scale based on the improved 

version of Fleischer’s method (Srivastava and Tsuisui, 1972; Dong and Scammells, 

2007; Simões et al., 2012). This has sparked the interest of researchers to explore more 

potential applications of TSPP. In general, the TSPP application studies can be 

grouped into three categories, i.e. sensing, catalysis, and bio-medical applications 

(Taies and Mohammed, 2013; Cristaldi et al., 2015; Zoltan et al., 2015). 
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Figure 1.2 Molecular structure of (a) meso-tetrakis(4-sulphonatophenyl)porphyrin 

and (b) meso-tetrakis(4-sulphonatophenyl)porphyrinato metal complex; M: transition 

metal 

 

 

In various sensing applications, the TSPPs were used as optical sensing 

materials for the quantitative analysis by spectrophotometric and high performance 

liquid chromatography (HPLC) methods (Xu et al. 1990). Cation sensing was studied 

by means of HPLC, UV-Vis and fluorescence spectroscopies while, anion sensing by 

potentiometric and UV-Vis spectroscopy studies. Besides, neutral molecules and gases 

were sensed by probes that were modified with TSPP. In the analytical study of cation 

using TSPP as the host component, the porphyrin structure was reported to undergo a 

planarity change upon the chelation with the target cation.  

 

 

The structural change of TSPP was significant and could be observed in both 

the UV-Vis and fluorescence spectra (Biesaga et al., 2000). Porphyrins usually possess 

high absorption coefficient at 400–450 nm (visible range) and large stokes shift that 

minimize the effect of background noise. However, the use of fluorescence 

spectroscopy for the analysis of target analyte with TSPP is still limited. Hence, the 

first part of this research highlighted on the application of TSPP in anion recognition 

studies by UV-Vis and fluorescence spectroscopies. In addition, the distribution of 

charged species at different pH was simulated using Marvin Bean ChemSketch® to 

probe the conformational change in TSPP during the anion recognition process.  

N

NH N

HN
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N N

N
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 Since the discovery of cysteine-haem enzyme in cytochrome P450 more than 

fifty years ago, various types of metalloporphyrins have been developed that aimed to 

mimic the oxidation properties of cytochrome P450 (Luzgina et al., 1977). 

Metalloporphyrin coordinated to various transition metals with great variety of new 

structures have been synthesized (Nakagaki et al., 2013). Some of these 

metalloporphyrins were TSPP-Ms which were tested as potential catalysts in oxidation, 

reduction, photodegradation and polymerization reactions (Olaya et al., 2012; 

Tanimoto et al., 2008; Nabid et al., 2013).  

 

 

The TSPP-Ms gave good catalytic performances, particularly in oxidation of 

hydrocarbons (Ren et al., 2009; Ricoux et al., 2009). It was demonstrated that the 

metal species should be carefully chosen so that the metal-oxo-porphyrin formed could 

act as active oxidizing species. Noted that most of the TSPP-Ms reported in the 

literature possessed Mn(III) and Fe(II) as the central metal ion. Oxidative catalyst on 

TSPP-Ms with Co(II) and Cu(II) core are still scarce. In this study, the 

physicochemical properties of TSPP coordinated to Mn(III), Fe(II), Co(II) and Cu(II) 

were synthesized. Their catalytic potential as oxidation catalysts were studied. Their 

physicochemical properties of these TSPP-Ms were also investigated. 

 

 

Heterogeneous catalysts are highly desired as they can be easily separated and 

recovered from the reaction medium. Heterogeneous catalysts based on TSPP-Ms can 

be obtained by immobilizing the TSPP-Ms onto a solid support. However, the solid 

support has to be carefully selected so that desirable catalyst properties such as high 

surface area, good thermal and chemical stabilities can be achieved. Mesoporous silica 

SBA-15 which consists of high surface area (>500 m2/g), high hydrothermal stability, 

easily accessible and uniform mesopores (20 – 100 Å) is an excellent candidate as the 

solid support for the porphyrin macrocycles. Previous studies have reported that the 

immobilization of porphyrin catalyst onto SBA-15 enhanced the catalyst stability and 

selectivity and made the reusability of the catalyst possible (Espinosa et al., 2011; Zhu 

et al., 2014; Najafian et al., 2015).  
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Therefore, immobilizing the metalloporphyrin catalyst on a high surface area 

SBA-15 can lead to the desired catalytic activity. The porphyrin complexes can be 

introduced onto SBA-15 by two approaches: either by entrapment of the porphyrin in 

the silica support by in-situ synthesis, or immobilization of the porphyrin onto the 

porous silica surface in a post-synthesis modification step. In the present study, the 

latter approach was performed to immobilize the TSPP onto SBA-15 via electrostatic 

interaction between TSPP-M and (3-aminopropyl)triethoxysilane (APTES) 

functionalized SBA-15 as proposed in Figure 1.3. 

 

 

 
 

 

Figure 1.3 TSPP-M (M: Mn, Fe, Co and Cu) immobilized onto APTES 

functionalized SBA-15 by post-synthesis modification step 
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1.2 Problem Statement 
 

 

As anion interactions play a vital role in chemistry and biology, the 

development of new, sensitive method for the determination of extremely small 

amounts of anions in solution is deemed important. For example, the concentration of 

acetate ion is utilized to monitor the fermentation process in sediment and sludge 

reactor (Orcutt et al., 2013; Chua et al.2003); while the concentration of citrate ion in 

urine can be used to diagnose nephrolithiasis and nephrocalcinosis disease (Schell-

Feith et al., 2006).  

 

 

Because of the relevance to the needs, a wide variety of methods have been 

devised to analyse acetate and citrate ions such as capillary ion electrophoresis 

(Wiliams et al., 1997) isotope labelling method (Morrision et al., 2004), flow injection 

analysis (Forman et al., 1991) and ion-chromatography methods (Erdema and Bedir, 

2014). All of these known methods required tedious sample pre-treatment and 

complicated instrument set up which limited their widespread applicability. 

Consequently, UV-Vis absorption and fluorescence spectroscopy techniques are 

considered as effective tools owing to their sensitivity, simple instrument 

implementation, as well as safe and short response time (Chahal and Sankar, 2015; 

Kiefer et al., 2010).  

 

 

In order to prepare anions sensing material, numerous chromogenic and 

fluorogenic indicators consist of functional groups such as amide (Goswani et al., 

2012), phenolic hydroxyl (Hijji, 2012) and thiourea derivatives (Liu et al., 2012) have 

been developed for acetate and citrate ions analyses. Most of the indicators were only 

soluble in aprotic solvents such as acetonitrile, hence limiting their applications for 

detecting anions in aqueous samples (Huang et al., 2010). This is because non-water-

soluble molecular scaffolds tend to agglomerate in aqueous medium. Furthermore, the 

physicochemical properties of the anion, such as large size and high solvation energy 

often make the design of anion indicator/receptor more challenging. Because of the 

larger size of anion as compared to cation, a bigger host is required for the binding of 

anion.  
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Currently, quantitative determination of anions can be carried out using 

commercially available bio-chemical sensors based on enzymes (Keevil et al., 2005). 

However, many enzymes are very sensitive to sample conditions and unstable at high 

temperature and extreme pH. As a result, the enzyme-based sensors are not suitable to 

be applied to samples that are without any pre-treatment. On the other hand, porphyrins 

have been used in sensor applications due to their high sensitivity. As mentioned in 

Section 1.1, the rich photochemistry of TSPP would enable it to be used as a 

chromogenic indicator for cation and anion analysis. 

 

 

 Spectral shifts of porphyrins could be used as a “marker” for the presence of 

different anions. With the high sensitivity of porphyrin to the pH change, the optical 

behaviour can be altered through modification of the porphyrin structure. In the case 

of TSPP, owing to its low pKa (~4.86), the porphyrin can be easily protonated and 

deprotonated at the pyrrolic nitrogen (-NH), which depends on pH change of the 

medium (Delmarre et al. 1999). The protonation and deprotonation processes during 

interactions with the target analytes can affect the conformations of porphyrin 

macrocycle which may also result in observable changes in the UV-Vis and 

fluorescence spectra. Therefore, it is possible to use TSPP as anion recognition 

material for basic anions such as acetate and citrate; without tedious macrocycle 

modification. 

 

 

To the best knowledge of the author, using TSPP as fluorogenic indicators for 

quantitative fluorescence spectroscopic analysis of anion has not been reported yet. 

Only quantitative absorption spectrophotometric technique has been explored so far.  

In addition, the application of TSPP, especially free-base TSPP, as chromogenic and 

fluorogenic indicators for quantitative anion analysis is still scarce. Hence, in the first 

part of this study, the conformational change of water-soluble TSPP during 

diprotonation and deprotonation by acids was being utilized for anion analysis in 

aqueous medium. 

 

 

In the second part of this research, the TSPP-M immobilized SBA-15 samples 

were explored in heterogeneous catalysis of benzyl alcohol in order to understand the 

structure-catalytic property relationship in this catalyst system. In homogeneous 
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catalysis, oxidation of alcohols to corresponding aldehyde and ketone requires a 

stoichiometric amount of oxidant such as chromium(VI), permanganate, DMSO and 

DDQ (Cardona and Permeggiani, 2015). Consequently, all of these oxidants suffer 

drawbacks of generating high amounts of organic and inorganic toxic side products 

after the reaction. Furthermore, these methods are usually carried out in halogenated 

organic solvent that will produce undesirable halogenated waste and caused safety 

hazardous concern. Hence, the catalytic reaction with little amount of oxidant has 

attracted attention in the past decade. 

 

 

In the conventional method, benzaldehyde was produced by hydrolysis of 

benzyl chloride or oxidation of toluene and styrene with stoichiometric amounts of 

chromium and manganese salt. These methods generate copious wastes and the 

chloride inevitably will present in the benzaldehyde as an impurity (Yu et al., 2010; 

Patel and Pathan, 2012). Moreover, these methods suffer from the drawbacks of lack 

of selectivity, generation of undesired side product, unenviable toxic waste and usage 

of toxic reagent. Consequently, an alternative environmentally benign heterogeneous 

catalyst for the oxidation of benzyl alcohol is required.  

 

 

In this work, the TSPP was core modified using a series of transition metals 

such as Mn(III), Fe(II), Co(II) and Cu(II) as oxidation catalyst for conversion of benzyl 

alcohol as model reaction. Hence, it would be expected that stability of valence 

electron and oxidative properties of TSPP ligand will affect the catalytic activity trend. 

Previous studies have shown that various TSPP-Ms were utilized as epoxidation and 

oxidation catalysts (Ren et al., 2009; Rémy et al., 2009; Nabidi et al., 2013).  

 

 

However, till date, TSPP-M catalyst has never been reported for its application 

in the liquid phase oxidation of benzyl alcohol to benzaldehyde. Thus, present study 

reported for the first time that TSPP-Ms with different metal cores were used as 

catalysts for the oxidation of benzyl alcohol. In addition, the usage of “clean” oxidant 

such as tert-butyl hyroperoxide (TBHP) for the liquid phase oxidation of benzyl 

alcohol possesses great potential from the point of view of green chemistry. 

 



10 

 

Neat metalloporphyrin catalyst typically shows high efficiency and selectivity 

under mild reaction conditions. This is because the reactant molecules interact with 

the catalyst molecules in the same reaction phase, generally liquids, which make 

chemical reactions more efficient and easy to form the desired products. However, the 

use of metalloporphyrin as a homogeneous catalyst has suffered a few drawbacks such 

as insoluble in the reaction medium, liable to oxidative self-destruction, mass transfer 

limitation and aggregation through π-π stacking interaction that lead to deactivation of 

the catalyst (Rosa et al., 2000).  

 

 

Furthermore, the difficult recovery of homogenous catalyst leads to the 

substantial loss of the catalyst and adds significantly to production costs of commercial 

processes. In order to overcome these drawbacks, immobilization of homogenous 

catalyst onto mesoporous solid support was demonstrated in this study in order to 

produce environmentally benign heterogeneous catalyst which could be a very 

promising, alternative approach. 

 

 

 

 

1.3 Research Objectives 

 

 

 The main goal of this research is to investigate the application of TSPP as anion 

indicator and oxidation catalyst. 

 

 

The main objectives of this research are shown as follows: 

 

 

1. To synthesize and characterize meso-tetrakis(4-sulphonatophenyl)porphyrin 

(TSPP). 

2. To investigate the colorimetric and fluorogenic properties of TSPP as anion 

recognition material. 

3. To evaluate and optimize the catalytic condition of meso-tetrakis(4-

sulphonatophenyl)porphyrinato metal (TSPP-M) immobilized SBA-15 in the 

synthesis of benzaldehyde by oxidation of benzyl alcohol. 
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1.4 Scope of Study 

 

 

 In this research, the anionic porphyrin entity, TSPP was used throughout the 

study.  In Chapter 4, the physicochemical properties of TSPP were studied by Fourier 

Transform Infrared (FTIR) spectroscopy, 1H, 13C NMR spectroscopies and matrix-

assisted laser desorption – time of flight (MALDI-TOF) mass spectrometry. The 

correlations between optical changes of TSPP aqueous solution and anion 

concentration have been investigated by the addition of different acids and base for pH 

adjustment in the range of 2 to 7. Furthermore, matrix effect studies were carried out 

in the presence of additional anions, i.e. chloride, nitrate, phosphate, carbonate and 

sulphate, respectively. Additionally, the charge species distribution of TSPP during 

the anion interaction was predicted using the Marvin Bean ChemSketch®. 

 

 

 In Chapter 5, the TSPP was coordinated to different transition metals (Mn(III), 

Fe(II), Co(II) and Cu(II)) and immobilized onto SBA-15 (TSPP-M/SBA-15) through 

electrostatic interaction. The physicochemical properties of the resulting organic-

inorganic hybrid materials were characterized with Fourier Transform Infrared (FTIR) 

spectroscopy, diffuse reflectance ultraviolet-visible (DR UV-Vis) spectroscopy, 29Si, 

13C cross polarization magic angle spinning nuclear magnetic resonance (CP-MAS 

NMR) spectroscopy, X-ray diffraction analysis (XRD), nitrogen absorption 

measurement, inductively coupled plasma optical emission (ICP-OES) spectrometry, 

field emission scanning electron microscopy (FESEM) and transmission electron 

microscopy (TEM).  

 

 

The catalytic properties and reusability of TSPP-M immobilized SBA-15 

samples were tested in the oxidation of benzyl alcohol. Various catalytic conditions 

such as the substrate to oxidant ratio, temperature, solvent, reaction time and catalyst 

loadings have been optimized. The research outline is illustrated in Figure 1.4. 
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Figure 1.4 Outline of research 

Synthesis of meso-tetrakis(4-sulphonatophenyl)porphyrin 

(TSPP) 

Characterization: FTIR, 1H- and 13C-NMR, UV-Vis 

Study the effects of pH 

and acid counter anion 

on the optical properties 

of TSPP 

Study the interaction 

between basic anions 

and protonated TSPP 

Characterization: 

UV-Vis and fluorescence 

Metallation of TSPP with four 

types transition metals, 

respectively – Mn(III), Fe(II), 

Co(II) and Cu(II) 

Synthesis of purely siliceous SBA-15 

Synthesis of APTES functionalized SBA-15 

Characterization: 

FTIR, XRD, 29Si, 13C CP MAS NMR, N2 absorption-desorption 

isotherm, ICP-OES, DR UV-Vis, FESEM and TEM 

Evaluation of catalytic activity in oxidation of benzyl alcohol.  

The reaction products were analyzed with GC-FID. 

Immobilization of TSPP-M onto 

APTES functionalized SBA-15 
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1.5 Significance of Study 

 

 

In this research, the porphyrin meso-tetrakis(4-sulphonatophenyl)porphyrin 

(TSPP) which fulfils the prerequisite of high water-solubility, low toxicity and 

commercially available up to gram scale is an exciting candidate for a wide variety of 

research studies involving aqueous samples (Böhm and Gröger, 2015). The TSPP can 

be prepared in aqueous medium, making it more environmentally friendly as the usage 

of non-sustainable and flammable organic solvents can be minimised.  

 

 

Furthermore, a new chromogenic and fluorogenic indicator based on TSPP has 

been developed for the quantitative analysis of acetate and citrate ions. The rich 

photochemistry of TSPP allows for the analysis of anions to be carried out by means 

of UV-Vis and fluorescence spectroscopies which do not require complicated 

instrument set up. Moreover, new techniques, fluorescence spectroscopy and 

prediction with Marvin Bean ChemSketch® (Chem Axon) were developed for the 

anion detection and prediction of TSPP charge species, respectively. 

 

 

 Additionally, the strong coordination properties of TSPP towards various kinds 

of transition metals allow for the development of selective biomimetic catalysts based 

on porphyrins. Green synthesis of benzaldehyde using alcohol as precursor and TBHP 

as oxidant for the transformation of benzyl alcohol to benzaldehyde can possibly 

reduce the generation of toxic side products and undesired inorganic contaminants. 

Recyclable and selective oxidation catalysts based on TSPP derivatives offer the 

prospect of commercialization and the oxidation reaction can be practically 

implemented to produce chlorine-free benzaldehyde that meets the stringent 

requirements of cosmeceutical and pharmaceutical industries. 
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