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ABSTRACT

Electromagnetic Interference (EMI) generated by wireless devices can cause
disturbance to electrical circuits. In this thesis, the Frequency Selective Surface (FSS)
is proposed as the EMI shield for the interference control as it eliminates the need
for power supply and blocking only the unwanted signals without interrupting the
operation of other wireless devices. The contribution of this thesis comprise of the
miniaturization technique employed for the dimension reduction of the unit cell FSS
and the evaluation of the bending effect of the conformal FSS based on the semi-infinite
modeling technique. All the designs and simulation works are completed utilizing
the Computer Simulation Technology (CST) Microwave Studio software. First, the
FSS is developed on the FR-4 substrate to perform as the band-stop planar FSS which
support the attenuation over the X-band signals ranging from 8 GHz to 12 GHz. The
evaluation of the planar FSS is performed using the unit cell boundary modelling. The
miniaturization of the ring loop FSS is performed by adding four stubs at each 90◦

angle of the ring loop and four cross-dipole are embedded into convoluted ring loop
FSS to further reduce the unit cell dimension. All the proposed unit cell geometries
are modeled to accomplish the excellent transmission frequency response for normal
and oblique incidence up to 60◦ cases at Transverse Electric (TE) and Transverse
Magnetic (TM) polarizations. In order to ensure the FSS is competent to be employed
as the EMI shield for the conformal structure, the proposed design is developed onto
the flexible Polyethylene Terephthalate (PET) substrate. To prove the conformal
suitability of the proposed planar design, the bending effects of the conformal FSS
are investigated. The semi-infinite modeling allows modelling of the finite and infinite
array in curved and uncurved directions, respectively. With the employment of this
technique, the bending effects toward the performance of the proposed FSS at the
normal angle of incidence for TE and TM polarizations are obtainable. From the
results obtained, the convoluted ring loop FSS is the most sensitive to the bending
effect while the ring loop FSS is the least sensitive to the bending effect. All
the proposed FSS geometries are fabricated using either photolithography or inkjet
printing technique. The manufactured prototypes are measured experimentally using
bi-static measurement technique. All the proposed FSS provides minimum attenuation
of - 25 dB at 10 GHz. The measurement results are shown to be similar with the
simulation results. Hence, the proposed FSS can be employed in both planar and
conformal structure.
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ABSTRAK

Gangguan elektromagnet (EMI) yang terjana dari peranti-peranti wayarles
boleh menyebabkan gangguan kepada litar elektrik. Dalam tesis ini Permukaan
Frekeunsi Terpilih (FSS) dicadangkan sebagai perisai EMI bagi kawalan gangguan
gelombang elektromagnet kerana ia menyingkir keperluan bekalan kuasa dan
menghalang isyarat yang tidak dikehendaki tanpa menganggu operasi peranti-peranti
wayarles yang lain. Sumbangan-sumbangan tesis ini merangkumi teknik pengecilan
yang digunakan untuk mengurangkan dimensi sel unit FSS dan penilaian kesan lentur
terhadap FSS menyebentuk berasakan teknik pemodelan separuh infinit. Kesemua
reka bentuk dan kerja simulasi disiapkan dengan menggunakan perisian Computer
Simulation Technology (CST) Mircowave Studio. Pertama, FSS yang dibangunkan
atas substrat FR-4 untuk bertindak sebagai FSS menyatah jalur henti yang menyokong
pelemahan isyarat dalam jalur-X yang berjulat dari 8 GHz hingga 12 GHz. Penilaian
FSS menyatah dilakukan menggunakan pemodelan sempadan sel unit. Pengecilan
FSS berbentuk gelung cincin dilakukan dengan menambah empat puntung pada setiap
sudut 90◦ gelung cincin dan empat silang dwikutub dibenam pada gelung cincin
berlingkar FSS untuk mengurangkan lagi dimensi sel unit. Kesemua geometri sel unit
yang dicadangkan telah dimodel untuk mencapai sambutan frekeunsi penghantaran
cemerlang untuk sudut tuju normal dan oblik sehingga kes-kes 60◦ bagi polarisasi
Transverse Electric (TE) and Transverse Magnetic (TM). Untuk memastikan FSS
berkemampuan digunakan sebagai perisai EMI pada struktur menyebentuk, reka
bentuk yang dicadangkan dibangunkan pada substrat Polyethylene Terephthalate
(PET) yang fleksibel. Untuk membuktikan kesesuaian menyebentuk reka bentuk
menyatah yang dicadangkan, kesan lentur pada FSS menyebentuk disiasat. Pemodelan
separuh infinit membenarkan pemodelan tatasusunan finit dan infinit masing-masing
dalam arah lengkung dan tidak lengkung. Dengan menggunakan teknik ini, kesan
lentur terhadap prestasi FSS yang dicadangkan pada sudut tuju normal bagi polarisasi
TE and TM dapat diperolehi. Daripada keputusan yang diperolehi, gelung cincin
berlingkar FSS adalah paling sensitif terhadap kesan lentur, manakala gelung cincin
FSS adalah paling kurang sensitif pada kesan lentur. Semua geometri FSS yang
dicadangkan difabrikasi menggunakan antara teknik fotolitografi atau cetak dakwat
sembur. Prototaip yang dihasilkan diukur secara eksperimen dengan menggunakan
teknik ukuran dwi-statik. Kesemua FSS yang dicadangkan menyokong pelemahan
minima sebanyak -25 dB pada 10 GHz. Keputusan pengukuran menujukkan kesamaan
dengan keputusan simulasi. Oleh yang demikian, FSS yang dicadangkan boleh
digunakan dalam kedua-dua struktur menyatah dan menyebentuk.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

The introduction of multimedia infotainment application and smart gadgets
such as smartphones, tablets, and smartwatches result in exacerbating the demand for
communication data [1]. Recently, a number of researchers have been scrutinizing
on the employment of Internet of Thing (IoT), machine to machine communication
and device and device communication [1, 2] which has further escalated the demand
for communication data. On the recent report of visual network index (VNI) from
Cisco, it is expected that the worldwide mobile traffic will increase more than ten
times than the contemporary figures [1]. In consequence, the fifth generation (5G)
communication is contemplated to advocate a huge data transmission to overcome the
mobile traffic congestion problems [2, 3]. In contemplation of realizing the vision of
5G communication, one of the proposed approaches is to utilize a smaller cell size so
that the bandwidth that can be used for data transmission is escalated [4]. Although
the mentioned solution manages to support higher communication data, but, it results
in the exponential growth of base stations. The proliferation of the mobile base station
directly or indirectly imposes the potential electromagnetic interference (EMI) risk or
radiation hazard to the human life and some sensitive electronic equipment [5, 6]. In
addition, the X-band frequency is widely employed for the airport radar system [7]
and satellite communication [8]. These system usually utilize high power for detection
purpose and create significant inteference to the other wireless devices. For instance,
the intensive care unit (ICU) in the hospital that equipped with a lot of sensitive medical
devices that used to support human life and the storage house for the military elements
such as communication devices for military explosive materials and flammable liquid
which are sensitive toward these electromagnetic radiation, Therefore, it is crucial to
shield all these unwanted electromagnetic signals.
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Frequency Selective Surface (FSS) is a planar periodic array structure that
trumped up from either radiating or non-radiating element on top of the dielectric
substrate [9]. FSS behave like a spatial filter, which only block specific frequency
and transparent to other frequency signals [9] is being proposed to overcome the
aforementioned problem. However, unlike microwave filters, the FSS is operating in
the function of both frequency and angle of incidence as well as the electromagnetic
waves polarisations [5, 9]. Consequently, FSS is commonly designed as either
a bandpass or bandstop filters. Moreover, FSS is also widely employed as the
antenna radome to protect the antenna [9–11], sub-reflector for antenna’s performance
enhancement [12, 13]and the beam switching solution for smart antenna system
[14, 15]. With such extensive application of FSS, compatibility with other devices and
hassle-free installation within existing building and devices come into mind. In this
study, the geometry of the FSS is formulated to provide screening for X-band signals
while allowing other signals to pass through it. The suggested FSS could conveniently
be cascaded with existing structures and devices without interrupting other devices.

This research involves the design and development of a single band FSS to
provide screening over X-band frequency. The FSS element that manages to stipulate
a stable performance over TE and TM polarisation. The angular stability of the FSS
is also investigated. In addition, to allow realize hassle-free installation features of the
FSS, flexible and durable substrates are investigated and the fabrication techniques are
identified. All the simulation of the design is performed using CST MWS commercial
software. The optimised design is fabricated and tested experimentally to assure the
suggested FSS able to provide sufficient shielding for X-band signals.

1.2 Problem Statement

As deliberated in the previous section, with the exponential growth of the
high-end devices can prompt to various issues. The main problem is the EMI that
precipitated from the mobile base station that gives significant radiation hazard to
the sensitive areas such as airport, armed-forces camp, hospital and others. The
electromagnetic intrusion is not only desensitized the function of the electronic system
but it also can impair the security of the system [5, 16]. The traditional practice to
shield the unwanted electromagnetic waves is to implement the solid metallic shield
[5, 17] or reinforced walls [18, 19] on the sensitive area. However, these approaches
in impractical as it is very costly and labour intensive and it blocks both useful and
unwanted frequency bands.
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Other alternative approaches that commonly employed in the market to
overcome the EMI problem are to utilized the signal jammer [20–22]. The signal
jammer where it can obstruct the unwanted signals by employed the concept of
destructive interference. The signal that having the same wavelength of the unwanted
frequency is being transmitted by the signal jammer to causes interference toward
the unwanted frequency and hence the electromagnetic waves will be devastating
[20]. However, this device is relatively costly as it required a high power supply in
corresponding to the coverage area and power needed [20]. Besides that, in most of
the countries like United Kingdom, Australia, and Sweden, signal jammer had been
prohibited [22].

As a result, FSS which act like a spatial filter to provide screening for
the unwanted frequency band be nominated as the finest solution, as it obliterated
the demand of electrical power supply compare to the signal jammer. As for the
metallic shield, FSS is much affordable as fewer conductors are needed to provide
the attenuation with same shielding effectiveness. Besides that, FSS is more feasible
in the manner that it only blocked the unwanted frequency while transparent to other
useful frequency bands.

Consequently, to ensure the FSS provides the screening of the X-band
frequency, FSS requires being developed with a band-stop filtering characteristic. As
a result, the FSS will provide the reflective features for the unwanted frequency, which
is ranging from 8 GHz to 12 GHz in this study, while allowing other electromagnetic
waves to pass over it. As mentioned previously, FSS operates as a spatial filter, on that
account, the electromagnetic signals travelling at the various angle of incidence with
either horizontal polarized (TE) or vertically polarized (TM). On that account, it is very
important to assure that the proposed geometry of the FSS manages to provide a stable
transmission frequency response for both of the polarisations and both the normal and
oblique angles of incidence [5]. To ensure the recommended FSS is compatible with
other devices and hassle-free installation within existing building and devices, it is
crucial to take the substrates that will be used for the FSS design and the fabrication
technique of the FSS into the account.
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1.3 Objectives

The objectives of this research are:-

1. To design an FSS geometry that manages to provide the attenuation of X-band
frequency bands over planar and conformal features.

2. To fabricate the proposed FSS array cell by utilizing the conventional
photolithography method and inkjet printing technique.

3. To validate experimentally the transmission frequency response of the
fabricated FSS.

1.4 Scopes

The research work focused on the study of single band planar and conformal
frequency selective surface that can be employed as the electromagnetic shield. The
proposed single band FSS is developed to furnish screening over the X-band frequency
bands which are covered from 8 GHz to 12 GHz. Since the FSS is functioned as a
spatial filter, consequently, the optimized design of the FSS unit cell has to manage to
provide a stable transmission coefficient at both normal and oblique angle of incidence
at both TE and TM polarizations. In this research, the proposed planar FSS element
is expected to provide a stable frequency response up to the angle of incidence of
60◦. In addition, the conformal FSS is expected to function as the X-band EMI
shield at normal angle of incidence for TE and TM polarization when it is bent. The
commercialized software CST Microwave studio is employed as the simulation tool
in the design and simulation of the FSS unit cell in this study. The unit cell and
open (add space) boundaries are used for simulating the designs of the planar FSS. On
the other hand, the semi-infinite simulation modelling is used to examine the bending
effect of the flexible FSS at normal angle of incidence. Due to the limitation of the
measurement setup, the evaluation of the bending effect is limited to a cylinder radius
of 150 mm and 200mm. Moreover, there are a total of two substrates are employed
in this research which is FR-4 and PET substrate. The FR-4 substrate based FSS is
fabricated using the conventional photolithography method whereas the PET substrate
based FSS is manufactured with the help of inkjet printing technology. At the end of
the research, the bi-static measurement method is utilized in the measurement of the
transmission coefficient of the fabricated FSS prototype so as to validate the simulated
results. Equipment such as horn antennas and vectors network analyzer is employed.
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1.5 Organisation of Thesis

This thesis comprised of six chapters. The first chapter of this thesis provides
the general synopsis of this research and its objectives. The scope of the study and the
benefits in conducting the research are also described in this chapter.

Chapter 2 provides a comprehensive literature review on the works that had
been done by the other researchers. This chapter deliberates the general features of
the FSS and its filtering features. The applications of the FSS is also presented in this
chapter. Besides that, the key factors that determined the performance of the FSS are
reviewed. The equivalent circuit modeling is utilized to develop and analyze the FSS
structure. Nevertheless, the extra merit and hindrances of other associated studies that
carried out by other researchers are demonstrated.

Chapter 3 reports about the methodology of the research. This chapter provides
a detail discussion about the methods or approaches that were employed to perpetuate
the objectives of the research. The software used for simulation and fabrication
technique employed to produce the FSS prototype are presented.

Chapter 4 discuss the preliminary study of the research which is the parametric
evaluation. The parameters that manage to influence the performance of the FSS are
investigated extensively.

Chapter 5 outlines a structured design technique that utilized to develop the
advocated FSS. The proposed FSS is developed on FR-4 and PET substrate to provide
shielding over X-band frequency. The suggested FSS geometries are fabricated using
photolithography method and inkjet printing technique. The measured results and
simulated results are as well, being compared in this chapter.

Lastly, Chapter 6 draws some conclusions including the findings and key
contribution of the research, as well as the recommendation for future developments.
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