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ABSTRACT 

Conventional piled foundation usually provides adequate load carrying 
capacity to limit the settlement within allowable limits.  However, in deep layer of 
soft compressible subsoil with settling platform, this foundation system faces 
numerous problems namely requiring very long piles, lower pile capacity due to 
downdrag forces, and hollow gap formed beneath the slab of piled structures when 
the earth platform settled causing services to break and poses health hazard.  This 
research proposed an analysis and design methodology for an alternative foundation 
system of ‘floating’ piled raft (FPR) with same or varying pile lengths to resolve the 
problems stated above.  The design objectives are to control differential settlement, 
angular distortion and bending moment rather than only limiting total settlement.  
The proposed analysis and design methodology bridges the research gaps of using 
piled raft in soft compressible subsoil. This incorporate long term settlement in the 
analysis to cater for piles of varying lengths and can be used by practicing engineers 
for design works. Parametric studies were carried out to verify the proposed analysis 
and design methodology through modelling of ‘floating’ piled raft with different 
numbers of piles, lengths configurations, spacing of piles and also different raft 
thickness.  The vertically loaded pile rafts analysed are 3x3, 6x6 and 9x9 number of 
piles respectively with total combination of 108 cases that cover different pile 
lengths of same and varying lengths, different pile spacing and different raft 
thickness.  The research findings showed that piled raft with combination of varying 
pile lengths is generally more effective in reducing differential settlement, ratio of 
(∆ρ/ρmax), bending moment of the raft and angular distortion (β) compared to pile 
raft with similar pile length (even with longest piles).  The findings from the 
parametric studies contributed to a better understanding on the performance and 
behaviour of ‘floating’ piled raft in soft compressible subsoil especially on the piled 
raft of varying piled lengths. The proposed analysis and design methodology in this 
research has also been successfully used to design ‘floating’ piled raft foundation 
system in deep and soft compressible subsoil to support low rise buildings of 2-
storey to 5-storey that have been constructed and occupied for more than 10 years.  
This confirmed the benefits obtained from this research to have a realiable and 
efficient analysis and design methodology through better understanding of the 
performance and behaviour of ‘floating’ piled raft foundation with same or varying 
pile lengths. 
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ABSTRAK 

Asas cerucuk konvensional biasanya mempunyai keupayaan menanggung 
beban untuk menghadkan enapan pada had yang dibenarkan. Walaubagaimanapun, 
di dalam lapisan lembut yang dalam dengan pelantar yang mengenap, sistem asas ini 
menghadapi pelbagai masalah seperti memerlukan cerucuk yang panjang. 
Keupayaan cerucuk yang rendah akibat daya seret ke bawah dan ruang kosong 
terbentuk di bawah papak disokong oleh cerucuk apabila pelantar tanah mengenap 
menyebabkan laluan perkhidmatan pecah dan mengancam kesihatan. Hasil kajian 
mencadangkan analisis dan metodologi rekabentuk untuk sistem asas alternatif 
menggunakan asas rakit bercerucuk ‘terapung’ (FPR) samada dengan panjang 
cerucuk yang sama atau panjang cerucuk yang pelbagai bagi menyelesaikan masalah 
ini. Objektif rekabentuk adalah untuk mengawal perbezaan enapan, sudut herotan 
dan momen lentur berbanding hanya menghadkan jumlah enapan. Analisis dan 
metodologi rekabentuk ini menjadi hubungan bagi jurang dalam kajian penggunaan 
asas rakit bercerucuk dalam lapisan tanah lembut boleh mampat. Ini menggabungkan 
enapan jangka masa panjang di dalam analisis, mengambilkira cerucuk dengan 
panjang yang pelbagai dan boleh digunakan pengamal jurutera dalam kerja 
rekabentuk. Kajian parametrik bagi mengesahkan analisis dan rekabentuk ini melalui 
permodelan asas rakit cerucuk ‘terapung’ dengan bilangan cerucuk, konfigurasi 
panjang, jarak antara cerucuk dan ketebalan rakit yang berbeza-beza telah di 
laksanakan. Asas rakit bercerucuk dengan beban pugak yang dianalisis adalah 3x3, 
6x6 dan 9x9 bilangan cerucuk dengan 108 jumlah  kombinasi kes; merangkumi 
panjang cerucuk yang berbeza-beza samada dengan panjang cerucuk yang pelbagai 
atau sama, jarak antara cerucuk yang berbeza dan ketebalan rakit yang berbeza. 
Penemuan kajian menunjukkan asas rakit bercerucuk dengan kombinasi panjang 
cerucuk yang pelbagai secara amnya lebih efektif dalam mengurangkan bezaan 
enapan, nisbah (∆ρ/ρmax), momen lentur rakit dan sudut herotan (β) berbanding 
dengan rakit bercerucuk yang mempunyai panjang cerucuk yang sama walaupun 
dengan cerucuk yang paling panjang. Penemuan daripada kajian parametrik ini 
menyumbang kepada pemahaman lebih jelas tentang prestasi dan sifat rakit 
bercerucuk ‘terapung’ dalam tanah lembut terutamanya untuk rakit bercerucuk 
dengan pelbagai panjang. Cadangan analisis dan metodologi rekabentuk di dalam 
kajian ini telah digunakan dengan jayanya untuk merekabentuk sistem asas rakit 
bercerucuk dalam lapisan tanah lembut dan dalam bagi menampung beban bangunan 
setinggi 2 hingga 5 tingkat yang telah dibina dan diduduki lebih daripada 10 tahun. 
Ini telah mengesahkan manfaat yang diperolehi hasil daripada kajian ini iaitu untuk 
menambah baik metodologi analisis dan rekabentuk yang boleh dipercayai dan 
efisyen melalui pemahaman terhadap prestasi serta sifat asas rakit bercerucuk 
‘terapung’ dengan sama panjang atau pelbagai. 
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k1 to k4 - Fitting parameters 

EsL - Soil modulus at mid-length of the pile 

Eb - Modulus of bearing stratum below ile tip 

rg  - A group distance defined by Randolph & Wroth 

     (1979) 

w     - Vertical deflection 

rm    - Limiting radius of influence of the pile 

l    - Pile length 

ν    - Poisson ratio of the soil 

Pb    - Load acting on the pile base 

c    - 2/π 

2
lG    - Shear modulus of soil at pile mid-depth 

Gl    - Shear modulus of soil at pile base 

Ps    - Load acting on the pile shaft 

vα    - Interaction factor 

2)( lµ    - 2

0
))(2( r

l
ζλ  

λ    - Ep/Gl 

Ap   - Cross Section Area of the Pile 

0'σ    - In-situ effective vertical stress 

c'σ    - Pre-consolidation Pressure /Yield Stress 

CR   - Compression ratio = 
01 e

Cc

+
 

RR   - Recompression ratio = 
01 e

Cr

+
 

Cc   - Compression Index 

Cr   - Recompression Index 

Hi - Initial thickness of incremental soil layer, i of  

  n layers 

0σ  - Foundation contact pressure 

Iq - Factor of intensity of pressure 



xxiii 
 

L - Length of area loaded 

B - Width of area loaded 

Z - Depth of soil layer of interest 

m - L/B 

n - z/B 

Kpile-total,q,i=0 - Stiffness of pile support (unit in kN/m) 

Ppile,q,i=0 - Axial point load acting pile (unit in kN) 

δpile-total,q,i=0 - Total combined settlement of the pile raft  

  at each pile point location (unit in m) 

q - Pile point reference number 

I - Iteration number 

Ksoil-total,r,i=0 - Stiffness of soil support beneath each section  

  of raft (unit in kPa/m) 

praft,r,i=0 - Uniform load acting on each section of  

  raft (unit in kPa) 

δraft-total,r,i=0 - Total combined settlement of the pile raft at  

  the midpoint of each section of raft (unit in m) 

r - Reference number for each section of raft 

E - Young modulus of soil.  E ≈  200su  to 400su 

for soft clay 

Nq - eπtanφ’tan2(45+φ’/2) 

Nc - (Nq-1)cotφ’ 

Nγ - (Nq-1)tan(1.4φ’) 

sc - 1 + 0.2Kp(B/L) ; for any φ’ 

sq = sγ - 1 + 0.1Kp(B/L); for φ’>10o 

sq = sγ - 1 ; for φ’=0o 

α - Adhesion factor 

su - Undrained shear strength (in kPa) 

Nc - Bearing capacity factor = 9 

Qag - Allowable geotechnical capacity 

Qsu - Ultimate shaft capacity = ∑
i

(fsu x AS) 

i - Number of soil layers 
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Qbu - Ultimate base capacity = fbu Ab 

fs - Unit shaft resistance for each layer of 

embedded soil 

fb - Unit base resistance for the bearing layer of 

soil 

As - Pile shaft area  

Ab - Pile base area 

Fs - Partial Factor of Safety for Shaft Resistance of 

‘floating’ pile as settlement reducer = 1.1 to 1.2 

Fb - Partial Factor of Safety for Base Resistance of 

‘floating’ pile as settlement reducer  = 1.5 to 

2.0 

Fg - Global Factor of Safety for Total Resistance of 

‘floating’ pile as settlement reducer  = 1.2 to 

1.5 

prα  - Pile raft coefficient 

∑ pilesR  - Sum of piles resistance 

Rtotal - Total imposed load 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Conventional piled foundation, commonly designed and constructed in 

Malaysia, is usually designed for buildings/structures to provide adequate load 

carrying capacity, to limit the overall settlement and hence indirectly control 

differential settlement to within tolerable limits.  Piles are often installed into 

competent stratum or to ‘set’ (terminate) in hard layer.  Therefore to date, design 

methods commonly used by practicing engineers in Malaysia still concentrate on 

providing adequate axial capacity from the piles to carry all the structural loads 

without detailed evaluation of pile settlement.  Usually, the estimation of settlement 

is considered as a secondary issue and sometimes ignored because of the nature of 

load transfer between pile and soil, particularly where shaft resistance provides a 

major component of the total pile capacity which will automatically lead to small 

acceptable settlement.  However, this conventional design methodology faces 

numerous problems over the years when adopted in deep layer of soft compressible 

subsoil of alluvial and marine deposits.  This type of geological formation is 

commonly found in majority of the areas along the coast of Peninsular Malaysia and 

also East Malaysia namely the infamous clay at Klang, Muar and Sibu.  

Neighbouring countries such as Thailand, Indonesia and Singapore also have similar 

alluvial or marine deposits. 

 

As the country develops, good competent ground (e.g. hard residual soils) are 

becoming scarce and development especially for housing (especially for low and 
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medium cost houses and flats) and also for industrial usage (e.g. tanks farm, factory 

and plants) have to be constructed in the low lying or swampy areas with deep soft 

compressible subsoil.  In these areas, hard competent stratum is sometime as deep as 

40m to 60m therefore making conventional method requiring long slender piles.  To 

make things worse, at these low lying areas (sometimes water logged) the 

earthworks platform for the buildings has to be raised by earth filling above the flood 

level. The weight of the earth fill on top of the soft compressible subsoil induces 

both primary and secondary consolidation settlement with time.   

 

The conventional piled to ‘set’ design methodology only addresses the short-

term problem associated with soft clay as the allowable pile capacity (allowable load 

to be imposed on the piles from the building) will be significantly reduced because 

the allowable geotechnical capacity has to be downgraded to cater for negative skin 

friction (down drag) induced by the settling soft compressible subsoil. This often 

reduces the cost-effectiveness of such ‘conventional solution’ as the pile capacity 

(both allowable geotechnical and structural capacity) has to be downgraded 

(reduced) thus requiring more piles or larger pile sizes for same loading compared to 

piles that are not experiencing down drag.  Other than being uneconomical, 

conventional method of piled to ‘set’ also causes long term serviceability problems 

such as large abrupt differential settlement between the piled buildings/structures 

and the surrounding earth platform on compressible subsoil that is still undergoing 

settlement with time.  The abrupt differential settlement with large enough 

magnitude causes problem such as breakages of water and sewerage pipes.  The 

hollow gap formed beneath the building, due to larger settlement of the earth 

platform compared to the buildings supported by piles installed into competent 

stratum, becomes a health and safety hazard to the public as mosquitoes, rats, snakes 

and other animals can make this area their habitat as shown in Figure 1.1.  
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Figure 1.1  Problems for buildings with piled to ‘set’ foundation on soft ground 

1.2 Problem Statement 

Being aware of all the problems associated with conventional method of 

piled to ‘set’ in deep layer of soft compressible subsoil, it is important to propose an 

alternative  foundation method of ‘floating’ piled raft (FPR) foundation system that 

would eliminate all the problems stated above.  In summary, the proposed 

foundation method shall be economical, technically suitable, safe and satisfy both 

ultimate and serviceability limit states of the buildings to be supported.  This 

foundation system would benefit the construction industry in particular and the 

development of the country as a whole.  However, in order to achieve this, the 

proposed foundation system shall have practical analysis and design methodology 

that practicing engineers in Malaysia would find it user friendly and not too difficult 

so that it can be widely used to carry out day-to-day analysis and design.   

 

Therefore, when developing the analysis and design methodology for the 

proposed foundation system, it is necessary to make some practical simplifications 



4 
 

and realistic assumptions, but the proposed methodology shall not lose the 

correctness of the proposed method that can be calibrated by actual site 

measurements of the buildings constructed and performance of the actual buildings 

such as no architectural, structural or services damage.  This is like carrying out very 

costly full-scale actual test to prove the usefullness and appropriateness of the 

proposed analysis and design methodology.  Many researches may not have this 

luxury and opportunity as it would be very costly and time consuming.  Fortunately, 

this is possible for this research as the researcher through his consulting firm was 

involved in the actual projects in Malaysia and Indonesia that adopted the 

researcher’s proposed analysis and design methodology. 

1.3 Research Objectives 

Although extensive research in piled raft has been carried out and published 

as presented in literature review, however, the following issues have not been fully 

addressed which will form the research objectives:- 

i. To look into the possibility and suitability of using ‘floating’ piled 

raft (FPR) foundation system in soft compressible subsoil for low rise 

buildings. 

ii.  To develop an analysis and design methodology for an alternative 

foundation system of ‘floating’ piled raft foundation system of same 

or varying pile lengths that take into consideration of the long term 

settlement of the subsoil.  The proposed analysis and design 

methodology should be able to be used by practicing engineers for 

day to day design works. 

iii.  To solve long term serviceability problems of conventional piled to 

set foundation system in soft compressible subsoil by allowing 

‘floating’ piled raft to settle together with the platform. 

iv. To understand the performance and behaviour of ‘floating’ piled raft 

in soft compressible subsoil especially on the piled raft with 

combination of varying piled lengths. 
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1.4 Scope of Works 

The scope of works for this research are as follows:- 

i. For vertically loaded piled raft in soft compressible subsoil only. 

ii.  Proposed analysis and design methodology can cater for piles of 

varying sizes, lengths and loads. 

iii.  The piles shall be ‘floating’ piles  which means  the piles are not 

installed into hard stratum. 

iv. Terzaghi’s consolidation theory is used for the evaluation of the 

magnitude of consolidation settlement. 

v. For parametric studies, the vertically loaded piled rafts analysed are 

3x3, 6x6 and 9x9 number of piles respectively with total combination 

of 108 cases that cover different pile lengths, different pile spacing 

and different raft thickness. 

vi. Case studies on two completed projects designed using the proposed 

methodology and constructed:-  

a) 2-storey terrace houses at Bandar Botanic , Klang  

b) 5-storey medium rise apartment at Bandar Botanic, Klang 

1.5 Significant of Study 

This research was carried out to focus on the development of analysis and 

design methodology for the proposed alternative foundation system of ‘floating’ 

piled raft (FPR) foundation system of same or varying pile lengths. The design 

objectives are to control differential settlement, angular distortion and bending 

moment rather than only limiting total settlement. The estimations of differential 

settlement and angular distortion are the most critical issues in the design of large 

sized pile raft which the raft behaves as flexible raft, these movements are the main 

culprits causing a building to crack and lose its function and even collapse.  Piles of 

varying lengths can be provided under the raft in order to limit settlements (both 

total and differential) to an acceptable level thus achieving the required angular 

distortion. 
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Based on the analysis and design methodology developed in this research,  

parametric studies were carried out to model the ‘floating’ pile raft (FPR) of 

different numbers of piles, lengths configurations, spacing of piles and also different 

raft thickness.  The results obtained from these modelling will be presented and 

discussed in detailed to show the application of the proposed analysis and design 

methodology. The results also provide a better understanding on the performance 

and behaviour of ‘floating’ piled raft in soft compressible subsoil especially on the 

effectiveness of piled raft with combination of varying piled lengths to control 

differential settlement, angular distortion and bending moment.  Finally, the analysis 

and design methodology developed can be used by practicing engineers for day to 

day design of piled raft in soft compressible subsoil which will help the development 

of the engineering practice in Malaysia. 
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