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ABSTRACT 

 

 

 

 

Fluid structure interaction (FSI) needs to be considered in modeling biofluids 

because the interaction between blood flow and vessel wall is of great clinical 

interest. However, the interaction between blood flow and vessel wall make FSI 

problems complex and challenging.  Spurious oscillations were observed from 

numerical solutions and in the case of Bubnov-Galerkin finite element method, the 

oscillations occurred at relatively high pressure differences.  In this thesis, 

Streamline-Upwind Petrov Galerkin (SUPG) stabilization scheme was formulated to 

solve one-dimensional FSI problems in blood flow to eliminate the spurious 

oscillations and to obtain stable numerical solutions for stenotic vessel. A pressure-

area constitutive relation to complement the continuity equation and momentum 

equation was formulated by adopting the collapsible model.  The geometry of 

stenotic vessel consists of single smooth and single irregular stenosis, multi-smooth 

and multi-irregular stenosis in this thesis.  Numerical results show that there are no 

vessel collapse phenomena in single smooth stenosis and multi-smooth stenosis cases.  

Vessel collapse phenomena are observed for single-irregular stenosis with 85% cross 

sectional area amplitude at distal pressure of 47 mmHg while for multi-irregular 

stenosis with 60% and 85% cross sectional amplitudes at proximal stenosis and distal 

stenosis respectively, at distal pressure of 36 mmHg.  In addition, paradoxical 

collapse motion along the time phase cycle is obtained in unsteady cases for single 

irregular stenosis and multi-irregular stenosis with the distal resistance of 2.73 

mmHg/(ml/s) and 2.44 mmHg/(ml/s) respectively when sinusoidal pressure variation 

is applied at the inlet boundary.  In conclusion, numerical results show that vessel 

collapse phenomena occurs when there is supercritical flow at the minimum cross 

sectional area of the stenotic vessel which is lower than the minimum cross sectional 

area at static condition and hence lead to the negative transmural pressure at that 

position.   
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ABSTRAK 

 

 

 

 Interaksi struktur bendalir (FSI) perlu diambil kira dalam pemodelan biofluids 

kerana interaksi antara aliran darah dengan dinding salur pembuluh mempunyai 

kepentingan klinikal yang besar.  Walau bagaimanapun, interaksi antara aliran darah 

dengan dinding salur pembuluh menjadikan masalah FSI rumit dan mencabar.  

Ayunan palsu telah dapat diperhatikan dari penyelesaian berangka dan dalam kes 

kaedah unsur terhingga Bubnov-Galerkin, ayunan berlaku ketika terdapat perbezaan 

tekanan yang agak tinggi.  Dalam tesis ini, skim penstabilan Streamline-Upwind 

Petrov Galerkin (SUPG) digubal untuk menyelesaikan masalah FSI satu dimensi 

dalam aliran darah untuk menghapuskan ayunan palsu dan mendapatkan 

penyelesaian berangka yang stabil bagi salur pembuluh stenosis.  Hubungan 

konstitutif tekanan-kawasan untuk melengkapi persamaan keselanjaran dan 

persamaan momentum telah diformulasi dengan menggabungkan model boleh runtuh.  

Geometri salur pembuluh stenosis yang terdiri daripada stenosis tunggal yang 

seragam dan stenosis tunggal yang tidak seragam, stenosis pelbagai yang seragam 

dan stenosis pelbagai yang tidak seragam digunakan dalam tesis ini.  Keputusan 

berangka menunjukkan bahawa tiada fenomena keruntuhan salur pembuluh dalam 

kes stenosis tunggal yang seragam dan stenosis pelbagai yang seragam. Fenomena 

keruntuhan salur pembuluh telah dikesan dalam kes stenosis tunggal yang tidak 

seragam dengan 85% amplitud kawasan keratan rentas stenosis pada tekanan distal 

47 mmHg sementara dalam kes stenosis pelbagai yang tidak seragam masing-masing 

dengan 60% dan 85% amplitud keratan rentas pada stenosis proksimal dan stenosis 

distal, pada tekanan distal di 36 mmHg. Tambahan pula, keruntuhan salur pembuluh 

paradox di sepanjang masa kitaran fasa telah didapati untuk kes stenosis tunggal 

yang tidak seragam dan stenosis pelbagai yang tidak seragam dengan rintangan distal 

masing-masing 2.73 mmHg/(ml/s) dan 2.44 mmHg/(ml/s) apabila variasi tekanan 

sinusoidal digunakan pada sempadan masuk. Kesimpulannya, keputusan berangka 

telah membuktikan fenomena keruntuhan salur pembuluh terjadi apabila terdapat 

aliran superkritikal di kawasan keratan rentas minimum salur pembuluh stenosis 

adalah kurang daripada kawasan keratan rentas minimum pada keadaan statik dan 

seterusnya membawa kepada tekanan transmural negatif pada kedudukan tersebut.         
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Fluid structure interaction (FSI) is encountered and applicable in many 

different branches of engineering and science. For example, FSI is a crucial 

consideration in the design of many engineering systems such as aircraft and bridges. 

In general, FSI is defined as the interaction between the deformable structures with 

an internal or surrounding fluid flow. Such deformation can be either stable or 

oscillatory. The deformation of the structure contributes to the changes in boundary 

conditions of the fluid flow. Fluid flows encountered in our daily life include 

amongst others meteorological phenomena, environmental hazards, processes in 

human body such as blood flow and breathing.  

 

 

 FSI is more often considered in modelling biofluids because the interaction 

between the blood flow and vessel wall is of great clinical interest, for example, in 

studying cardiovascular diseases which are a major cause of death in developed 

countries (Mortazavinia et al., 2012). The consideration of the interaction between 

blood flow and vessel wall had seldom being consideration in the previous studies 
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due to the difficulty in solving the coupled fluid and solid equations (Zhang et al., 

2003). Although the assumptions of the rigid wall surfaces yield results that are 

reasonable accurate, there are still have some considerations to be taken into such 

that the elastic nature of the arterial wall, stresses on the arterial wall that play  

crucial role in arterial disease as well as the material property alterations with the 

development of the atherosclerotic lesion. (Kanyanta et al., 2009; Friedman et al., 

2010; Siogkas et al., 2011). 

 

 

 Recent studies about the effect of rigid wall and FSI on flow distributions in 

arterial modelling had been carried out. The axial velocities of rigid wall are higher 

compared to the ones in compliant model. Such situation is explained through mass 

conservation theory where the internal fluid pressure exerted on the vessel wall 

pushes the vessel wall outward consistently and slows fluid flow due to the flow area 

expansion. These findings showed that incorporating FSI has significant effects on 

blood flow characteristics, yet FSI models are computationally expensive when the 

arterial geometry is highly complicated.  (Lee and Xu, 2002; Siogkas et al., 2011; 

Mortazavinia et al., 2012; He et al., 2016). 

 

 

 

 

1.2 Problem Statement 

 

 

 FSI describes the wave propagation in arteries driven by the pulsatile blood 

flow. From theoretical point of view, such problems are complex and challenging 

due to high nonlinearity of the problem. Two-dimensional and three-dimensional 

mathematical models are solved with the aid of the commercial software or black-

box solvers, yet there are some considerations such as added mass effect, coupling 

conditions between fluid and structure and suitable boundary conditions to avoid the 

wave reflection influence the numerical stability.  
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 Despite of the numerical stability obtained from the physical problems, there 

is wiggling phenomena observed in computational fluid dynamics (CFD) problems 

especially flow with high Peclet number or high Reynolds number. Same 

phenomenon is expected for one-dimensional FSI blood flow problems for relatively 

high pressure differences. Besides, numerical formulation and simulation become 

complicated to include the geometrical variation of the vessel such as the spatial 

variation of area and corresponding stiffness resulting from the attempt to model the 

stenosis.  Moreover, flow in stenotic vessel is further complicated when there is 

choked flow or flow transition where vessel collapse is observed.  

 

 

 Thus, sets of governing equations together with suitable boundary conditions 

are important to study the flow behavior in straight and stenotic vessel. Numerical 

technique and formulation with oscillations free is significant in ensuring the 

attainment of reliable information and numerical results.  

 

 

   

 

1.3 Objectives of Research 

 

 

 The objectives of this research are specified as follows: 

1. To develop numerical method based on finite element method with 

Streamline-Upwind Petrov-Galerkin (SUPG) stabilization scheme to solve 

one-dimensional blood flow in a stenosed artery. 

2. To determine the effect of geometry to the flow behavior by including the 

irregular shape and multi-stenosis geometry.  

3. To determine the effect of area reduction amplitude to the flow behavior in 

smooth and irregular stenosis. 

4. To determine the effect of distal pressure to the flow behavior in smooth and 

irregular stenosis. 

5. To identify the physiological conditions for vessel collapse phenomena in 

stenotic vessel. 
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1.4 Scope of Research 

 

 

 The scope of this study is on the numerical modelling and simulation in one-

dimensional FSI blood flow cases. One-dimensional, incompressible, Newtonian 

flow is considered in this study. Continuity equation, momentum equation and 

pressure-area constitutive relation are coupled and solved numerically with the 

employment of compatibility conditions at the boundary nodes. Besides, finite 

element method with SUPG stabilization formulation is employed as space 

discretization and first-order forward difference is employed as time discretization. 

For straight vessel, two types of pressure-area constitutive relations are coupled 

together with continuity equation and momentum equation, that are, nonlinear elastic 

model and collapsible model, which are termed as     Model 1 and     Model 

2 respectively. Pressure differences for p-A Model 1 range from 400 Pa to 2500 Pa 

while pressure differences for p-A Model 2 range from 10 mmHg to 45 mmHg.  

 

 

 For stenotic vessel, one-dimensional, incompressible Newtonian flow with 

frictional losses is considered. Collapsible model is applied as pressure-area 

constitutive relation to describe the flow in stenotic vessel and capture the vessel 

collapse phenomena. Four different geometry of stenosis are discussed, which are 

single smooth stenosis, single irregular stenosis, multi-smooth stenosis and multi-

irregular stenosis. For single stenosis and multi-stenosis cases, cross sectional area 

reduction amplitude vary from 60% to 85% and stiffness reduction amplitude is set 

10. Perfusion pressure is set at 100 mmHg. Distal pressure is varying from 47 mmHg 

to 70 mmHg for single stenosis cases and 36 mmHg to 60 mmHg for multi-stenosis 

cases.  
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1.5 Significance of Research 

 

 

 First of all, SUPG stabilization scheme is formulated to solve one-

dimensional FSI in straight and stenotic vessel. This study is significant as this would 

be the first application of SUPG in the study of one-dimensional FSI blood flow 

problems. Besides, one-dimensional FSI governing equations are solved numerically 

with the employment of compatibility conditions to minimize the wave reflection at 

the boundary. Compatibility conditions and SUPG stabilization term are derived 

from the characteristic system, which emphasizing the physical nature of the problem. 

With the approach that proposed in this study, the understanding on the characteristic 

flow behavior, physiological conditions to induce vessel collapse, relationship 

between cross sectional area, volumetric flow rate and pressure of the flow are 

observed.   

 

 

 

 

1.6 Outline of Thesis 

 

 

 This thesis consists of seven chapters, including this introduction chapter. 

Chapter 1 introduces the general information about the thesis, including the research 

background, problem statement, objectives, scopes and significance of this study. 

Chapter 2 presents the literature review about FSI in blood flow. The chapter begins 

with the difficulty and challenges of considering FSI in two-dimensional and three-

dimensional mathematical models which then contributes to the research on one-

dimensional FSI model. Then, the governing equations and numerical works on one-

dimensional FSI in blood flow are detailed. Chapter 3 discusses about the 

mathematical models which are used throughout the study, including the governing 

equations, initial conditions and boundary conditions.  
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 Chapter 4 deliberates about the numerical technique and formulation in the 

study. The chapter begins with finite element method, followed by the SUPG 

formulation. The formulation of SUPG involves the stabilization term, which is 

correspond in adding the diffusion along the characteristic direction with the 

appropriate stabilization parameter. Nonreflecting boundary conditions which known 

as compatibility conditions are derived from the characteristic system of governing 

equations to minimize the outgoing characteristic waves at the boundary. 

Eigenvalues and left-eigenvectors of the Jacobian flux vectors are solved from the 

method of characteristics system in order to get the time-independent and time-

dependent compatibility conditions. The coupled governing equations are discretized 

into matrix form and solved with Newton-Raphson nonlinear iterative solver. The 

stability criterion is discussed and an algorithm code is presented at the end of the 

chapter.  

 

 

 Chapter 5 discusses about the steady flow in the straight vessel, followed by 

stenotic vessel. Bubnov-Galerkin finite element is formulated for p-A Model 1, as in 

the work reported in Sochi (2015). However, when Bubnov-Galerkin finite element 

is applied to the higher pressure difference, that is, in the range higher than reported 

in Sochi (2015), spurious oscillations occur. In confirming the occurrence of the 

oscillations, p-A Model 2 is studied. Similar phenomenon is observed for both p-A 

models. Hence, SUPG stabilization scheme is formulated and the numerical results 

are validated with the analytical solutions for both p-A models. The analytical 

solution for p-A Model 1 is taken from Sochi (2015) while the analytical solution for 

p-A Model 2 is derived.  Then SUPG formulation is extended to stenotic vessel and 

the numerical results are compared with the numerical works in Downing and Ku 

(1997). SUPG numerical results are shown to eliminate spurious oscillations 

obtained from Bubnov-Galerkin finite element formulation and provide reliable 

information of the flow. Afterward, SUPG formulation is extended to parametric 

variations study with the irregular geometry of stenosis. Four cases are studied and 

vessel collapse conditions are identified for single irregular stenosis and multi-

irregular stenosis. The relationship between vessel collapse, pressure and speed index 

is discussed.   
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 Chapter 6 discusses about the unsteady flow in stenotic vessel. Sinusoidal 

time variations are applied at the inlet boundary to mimic the pressure variation of 

120/80 mmHg. Initially, SUPG unsteady numerical results are compared with 

Downing and Ku (1997). Parametric variations study is concerned as in previous 

chapter. Steady flow numerical results in previous chapter are applied as the initial 

values of unsteady flow cases in this chapter. Effect of distal resistance for all the 

cases are plotted and discussed. Furthermore, vessel conditions for each phase cycle 

are demonstrated by the plotting of the pressure distributions along the stenotic 

vessel throughout the phase cycle. Finally, the thesis ends with Chapter 7. Summary 

of research and some suggestions for future works are stated.  
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