
 

 INHERENT SAFETY ASSESSMENT FRAMEWORK FOR PROCESS DESIGN 

USING NUMERICAL AND GRAPHICAL TECHNIQUES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SYAZA IZYANNI BINTI AHMAD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA

 



1 

 INHERENT SAFETY ASSESSMENT FRAMEWORK FOR PROCESS DESIGN 

USING NUMERICAL AND GRAPHICAL TECHNIQUES 

 

 

 

  

 

 

SYAZA IZYANNI BINTI AHMAD 

 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of  

Doctor of Philosophy (Chemical Engineering) 

 

 

 

 

 

 

 

Faculty of Chemical and Energy Engineering  

Universiti Teknologi Malaysia 

 

 

 

 

 

 

 

 

OCTOBER 2017

 



iii 

 

 

 

To my mom; Mrs. Norhazani , my dad; Mr. Ahmad, my brothers; Amirul Ashraf, 

Waziem and Muhammad Amzar and my sister; Husna Azyan 



iv 

ACKNOWLEDGEMENT 

The ending of a journey is actually the beginning of another journey. Many 

thanks and syukur to the Almighty and it is a great pleasure of mine to be able to 

present this thesis for my PhD research. My PhD journey might not be easy but it is 

also very pleasant and memorable thanks to a number of individuals who accompanied 

me along this road to doctoral degree. Firstly, very much thanks to my mother Mrs. 

Norhazani Rasalee. Thank you for your patience with my stubbornness to pursue a 

doctoral degree. I love you and this is for you, Mom. Thank you also to my father, Mr. 

Ahmad Kasim who always support me and letting me discover my own worth. Thank 

you Dad and I love you.  

I would also like to express my sincere gratitude to main supervisor, Associate 

Professor Dr. Haslenda Hashim for her encouragement and guidance.  Thank you for 

always providing me with various chances to widen my mind as a researcher. I am also 

very thankful to my co-supervisor, Assoc. Prof. Dr. Mimi Haryani Hassim for her 

guidance and motivation. Your cheerful and positive words always encouraged me 

during my study. Also, thank you very much to my supervisors for letting me do what 

I want to do the way I want to do it and at the same time pulling me back to the right 

path whenever I’ve gone astray.    

Thank you very much to all individuals, researchers as well as academicians 

that I was in contact during the duration of this research.  Their support and critics play 

an important role in completing this research. Also thank you to my closest friends 

who were always there for me. Our silly, sad, heartwarming and happy moments 

together will not be forgotten. Lastly, I would like to acknowledge the Ministry of 

Higher Education (MOHE) for funding this research through MyBRAIN15-MyPHD 

Scholarship and Universiti Teknologi Malaysia (UTM) for the great doctoral degree 

journey.   



v 

ABSTRACT 

Plants should be designed so that they exhibit good safety features to prevent 

accidents. This can be done by preventing the presence of hazards in the process during 

its design stages or also known as the inherent safety concept. This research proposes 

an inherent safety assessment framework for early process design stage. This 

framework consists of two inherent safety assessment techniques and one hazard 

prevention strategy. Both inherent safety assessment techniques can be integrated to 

be used together or as a standalone technique. However, the usage of one or both of 

these techniques must be followed by the hazard prevention strategy that will provide 

suggestions on hazard prevention for the hazards identified by the two inherent safety 

assessment techniques. The first technique is the extended graphical and numerical 

descriptive (GRAND) technique which is an extension of the previously developed 

GRAND method through the addition of the two dimensional graphical rating (2DGR) 

for inherent safety rating and the two dimensional inherent safety and economic 

graphical rating (2DISEGR) for economic evaluation. The 2DISEGR for methyl 

methacrylate (MMA) manufacturing process shows that tertiery butyl alcohol (TBA) 

route is the safest and most profitable process route with the highest net profit margin 

of 97% at low GRAND total score value of 371. At similar GRAND total score of 371, 

the 2DGR for MMA manufacturing process shows that TBA is the least hazardous 

route due to the low number of most hazardous parameter of 1. The second technique 

is the inherent safety assessment for preliminary design stage (ISAPEDS) technique. 

This technique consists of three inherent safety parameters which are flammability, 

explosiveness, and toxicity in relations to operating conditions. The evaluation is done 

on every equipment in the process flow diagram. ISAPEDS assessment shows that all 

equipment are identified as the most hazardous in the hydrodealkylation process of 

toluene to produce benzene. The hazard prevention strategy was developed through 

the utilization of thematic analysis to extract hazard prevention strategies from the 

accident databases producing results in the form of keywords that are called themes 

and generated codes. The 2DISEGR-ISAPEDS figure was developed to show the 

relationship between the inherent safety assessment using the parameter scores and the 

economic evaluation using the numerical values. The results of the 2DISEGR-

ISAPEDS show that storage tank (V101) is ranked in the economically least preferred 

and most hazardous region due to high ISAPEDS total score value of about 200 and 

minimum economic preference factor value of 0.38. Hazard mitigation themes for 

strategies identified for V101 are design, operating, chemicals and control.  These 

strategies and their generated codes can be used to maintain the balance between 

hazard reduction and economical benefit. High similarity that can be seen between this 

framework and other available inherent safety assessment techniques  in the 

comparison made proves the effectiveness as well as the validity of this framework. In 

conclusion, this research has achieved its main objective to develop an inherent safety 

assessment framework for early  stage of process design.
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ABSTRAK 

Loji harus direka bentuk agar mempunyai ciri-ciri keselamatan untuk 

mencegah kemalangan. Ini boleh dilakukan dengan mencegah kehadiran faktor bahaya 

ketika di tahap reka bentuk proses dikenali sebagai konsep keselamatan terwujud. 

Penyelidikan ini memperkenalkan satu rangka penilaian keselamatan terwujud di 

peringkat reka bentuk proses. Rangka ini terdiri daripada dua teknik penilaian 

keselamatan dan satu strategi pencegahan bahaya. Kedua-dua teknik penilaian 

keselamatan boleh digabungkan atau diasingkan penggunaannya. Namun, penggunaan 

kedua-dua teknik ini mestilah diikuti oleh penggunaan strategi pencegahan bahaya 

yang mencadangkan strategi pencegahan bahaya berdasarkan penilaian kedua-dua 

teknik tersebut. Teknik pertama ialah teknik lanjutan deskriptif grafik dan berangka 

(GRAND) yang merupakan kesinambungan kepada teknik yang dibangunkan sebelum 

ini, iaitu teknik GRAND melalui penambahan dua kaedah penilaian, iaitu kadaran 

grafik dua dimensi (2DGR) untuk penilaian aspek keselamatan dan kadaran grafik dua 

dimensi untuk aspek keselamatan dan ekonomi (2DISEGR) untuk penilaian aspek 

ekonomi. Penilaian 2DISEGR terhadap beberapa proses penghasilan metil metakrilat 

(MMA) menunjukkan proses butil alkohol tertiar (TBA) sebagai proses yang paling 

selamat dan paling menguntungkan dengan margin keuntungan bersih setinggi 97% 

pada jumlah skor GRAND yang rendah, iaitu 371. Pada jumlah skor GRAND yang 

sama, iaitu 371, penilaian 2DGR terhadap proses penghasilan MMA menunjukkan 

TBA sebagai proses yang rendah risiko dengan bilangan komponen paling bahaya 

yang paling sedikit, iaitu 1. Teknik kedua ialah teknik penilaian keselamatan terwujud 

di tahap reka bentuk permulaan (ISAPEDS). Teknik ini menganalisis komponen 

kebakaran, letupan dan ketoksikan yang terlibat dengan mengambil kira kondisi 

pengoperasian. Penilaian ini dilakukan pada semua kelengkapan berpandukan rajah 

aliran proses. Penilaian ISAPEDS menunjukkan semua kelengkapan dalam proses 

penghasilan benzena adalah merbahaya. Strategi pencegahan bahaya menggunakan 

analisis tematik untuk mengeluarkan kata kunci berkaitan cadangan pencegahan 

kemalangan daripada pangkalan data kemalangan industri yang dipanggil tema dan 

kod. 2DISEGR-ISAPEDS dibangunkan bertujuan untuk menunjukkan kaitan antara 

penilaian keselamatan terwujud menggunakan skor komponen dan aspek ekonomi 

menggunakan nilai berangka. Penilaian 2DISEGR-ISAPEDS menunjukkan tangki 

penyimpanan (V101) sebagai peralatan yang paling bahaya dan tidak menjadi pilihan 

dalam aspek ekonomi dengan jumlah skor ISAPEDS kira-kira 200 dan nilai berangka 

sebanyak 0.38. Kata kunci strategi pencegahan bahaya untuk V101 adalah reka bentuk, 

pengoperasian, bahan kimia dan kawalan. Kata kunci ini boleh digunakan untuk 

mengekalkan keseimbangan antara pengurangan bahaya dan faedah ekonomi. 

Keserupaan yang banyak antara rangka ini dan beberapa penilaian keselamatan sedia 

ada membuktikan keberkesanan dan kesahihan rangka ini. Kesimpulannya, objektif 

penyelidikan ini berjaya dicapai dengan penghasilan rangka penilaian keselamatan 

terwujud untuk penilaian keselamatan di peringkat awal reka bentuk proses.
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Chemical industry not only contributes to major economic achievements 

through advanced technologies in modern development but also a major aid in 

improving human lifestyle as well as global economic health. Chemical industry offers 

various products such as health care, food processing and also transportation 

(Abbaszadeh and Hassim, 2014). The technologies brought by chemical industry are 

also important in allowing new measurements for social welfare, offers new and 

complex risks as well as ethical dilemmas and outline the methods on human 

interactions with the surrounding environment (Janeiro and Patel, 2015)    

However, safety problems caused by the operations in the chemical industry 

are also anticipated.  Rising emission of greenhouse gases from the industry is one of 

many contributors to environmental problems such as climate change (Liew et al., 

2014). In addition, fatal disasters such as the Flixborough and Bhopal disasters also 

caused harm to the environment and human health which lead to major concern on 

understanding as well as minimizing the impacts of the production process, chemical 

storage and chemical disposal to safety, health and environmental. This results to the 

production of many works focusing on preventing accidents following the fatal 

disasters such as the Flixborough explosion in 1974 and the Bhopal toxic release in 

1984 (Kletz and Amyotte, 2010).  
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Various strategies have been proposed to reduce or avoid the adverse impacts 

of hazards in chemical industry. Most of the strategies proposed the need for additional 

installation of more and better protective equipment such as fire protection, gas 

detectors, and firefighting equipment. The addition of protective equipment are 

necessary however, the equipment are also expensive and complex. In addition, 

maintaining zero error performance continuously all day long throughout the working 

lifetime is an impossible task for operators. According to Kidam et al. (2015b), the 

rate of chemical process industry accidents has not been decreasing although in about 

95% of the causes have been identified and could be prevented using existing 

knowledge. Thus, safer and user-friendlier plants that can tolerate deviance from 

regular work routine by operators and equipment failures without major implications 

on output, safety or efficiency should be built (Kletz and Amyotte, 2010). 

Safer and user-friendlier chemical plants can be designed by utilizing small 

amounts of hazardous materials that are used at lower operating conditions or by using 

safer materials instead of the hazardous ones so that it does not matter if leakage 

occurs. Avoiding hazard in the first place is more cost efficient and safer than repairing 

the process after an accident occurs. Hazards avoidance as early as the process design 

stage is called the inherent safety concept. The concept of inherent safety is important 

in designing a user-friendly and inherently safer plant, however, it is also important to 

first identify and understand the hazards posed by the process.  According to the 

hierarchy of controls (Kletz and Amyotte, 2010), avoiding hazards comes after 

identifying and understanding the hazards which can be achieved through hazards 

assessment. Hazards assessment during the process design stage is also known as 

inherent safety assessment. 

1.2 Research Background 

The inherent safety assessment can be implemented throughout the process 

design lifecycle. However, it is best for the assessment to be made as early in the design 

process as possible. The inherent safety assessment for early phase of process design 

usually begins during the research and development (R&D) phase. In this phase, 
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several alternatives of process routes will be evaluated according to its chemical and 

physical properties in order to determine the safety level of each process routes. Then, 

the inherent safety assessment will proceed to the preliminary engineering phase which 

focuses on using the information available from the process flow diagrams. Inherent 

safety assessment during the early phase of process design provides various 

information on the safety level of the process that is helpful in determining the best 

hazard prevention strategies to be applied.  

Inherent safety assessment at the early phase of process design not only will 

assist in producing an inherently safer and friendlier process but it is also cost effective 

as any modification according to the suggestions can be done easily. Kidam et al. 

(2016) stated that the current safety and health framework put very little effort in 

recognizing, avoiding and controlling hazards at the early phase of process design. 

This results to most companies to conduct full safety assessment only at the detailed 

design phase. Late inherent safety evaluation will results to difficulty in fundamental 

or major design changes. 

A survey funded by the UK Engineering and Physical Sciences Research 

Council (EPSRC) was carried amongst regulators, industrialists and academicians in 

order to investigate the reasons for slow adoption of inherently safer design (Gupta 

and Edwards, 2002). The results indicate that some of the reasons for slow adoption 

of inherent safety are lack of a tried and tested simple methodology for application as 

well as lack of knowledge on the inherently safer design concept. This leads to the 

development of various types of inherent safety assessment technique in order to ease 

the difficulty in understanding the concept of inherent safety for example the index-

based method, the simple graphical approach as well as integrated approach of inherent 

safety assessment with the process design simulators.  

Inherent safety assessment techniques for the early phase also includes hazard 

prevention strategies in order to improve the inherent safety level of a process. Hazard 

prevention or reduction strategies are usually done according to the inherently safer 

design concept as mentioned by Kletz and Amyotte (2010) which are intensification, 

substitution, attenuation and simplification.  



4 
 

 

Aside from hazard prevention strategies according to the inherently safer 

design concept, the accident databases also offer inherently safer suggestions 

according to the accidents occurred in the past. These databases, for example, the US 

Chemical Safety Board (US CSB) provides the information on the accident 

contributors and the inherent safety design that can be done in order to prevent the 

same accidents from occurring again. These types of information need to first be 

extracted according to the types of accidents and process equipment as not to 

overwhelm the readers as there is so many useful information that can be utilized.  

This research will focus on integrating both inherent safety assessment 

techniques and the information gathered from the accident databases in order to 

produce an inherent safety assessment framework. 

1.3 Problem Statement 

 Currently, the inherent safety assessment techniques for preliminary design 

stage developed consists of several characteristics that can be further improved. The 

first characteristic is user-friendly. Process flow diagram is often used in evaluating 

inherent safety during the preliminary design stage, thus computer-aided simulators 

are often used in order to accomplish the assessment. Computer-aided simulators 

provide a huge amount of information to expert users however it can become quite 

handful to those who are not familiar with its function. Thus, Ahmad et al., (2014) 

developed an inherent safety assessment technique that is easy to use even for those 

who are not familiar with the concept of inherent safety called the Graphical and 

Numerical Descriptive Inherent Safety Technique (GRAND). The GRAND technique 

(Ahmad et al., 2014) is applicable for inherent safety assessment during the research 

and development (R&D) phase. However this technique only use total score for 

process hazard ranking which is not suitable as process with safer total score still has 

its own hazards. Aside from that this technique can be improved more by adding 

preliminary economic evaluation for R&D phase. This technique also needs to be 

improved so that it will be applicable for the preliminary design stage.  
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Extracting information from the accident databases to be used in improving 

chemical processes is not uncommon. There are many researches exist for this purpose. 

Some noted examples focus on identifying the causes for equipment related accidents 

and identifying the causes for chemical process accidents. Incorporating information 

gathered from the accident databases into inherent safety assessment technique for 

early design stage is quite rare as there are not many inherent safety assessment 

techniques utilizing the information. However, manipulation of the accident databases 

information will provide more understandings on the level of hazards possess by a 

chemical process. 

Inherent safety assessment is not complete if not followed by hazard prevention 

strategy. There are various inherent safety assessment techniques that provides hazard 

prevention strategy. However, utilization of accident databases information as hazard 

prevention strategy in an inherent safety assessment technique is currently in none 

existence. 

This research focused on extending the Graphical and Numerical Descriptive 

Inherent Safety Technique (GRAND) for usage during the preliminary design stage of 

chemical process with better ranking system including preliminary economic 

evaluation. Aside from that, this research will utilize the information gathered from 

accident databases in assessing the inherent safety parameters and in the hazard 

prevention strategy. Thematic analysis will be used in extracting the information for 

hazard prevention strategy in this research. 

1.4 Objective of Study 

The main objective of this research is to develop an inherent safety assessment 

framework for early process design stage. This framework is consisted of two inherent 

safety assessment techniques and one hazard prevention strategy. The framework 

produced in this research is a continuation of the previous research on the inherent 

safety assessment technique for research and development (R&D) stage. The main 

objective of this study is supported by several sub-objectives.  
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1. To develop an extended GRAND technique for inherent safety assessment to 

include economic evaluation and inherent safety graphical rating for inherent 

safety assessment technique during research and development (R&D) design stage. 

2. To develop an inherent safety assessment technique focusing on various equipment 

at preliminary design stage.  

3. To develop a hazard prevention strategy based on past accident reports. 

1.5 Scopes of Study 

The scopes of this study are; 

1. Economic evaluation for inherent safety assessment during the R&D stage only 

based on the price of the chemicals. 

2. Inherent safety assessment for R&D design stage only focuses on alternative 

process routes ranking. 

3. Inherent safety assessment during the preliminary design stage is based on the 

process flow diagram (PFD) which includes main equipment and auxiliary 

equipment (focusing on the operating condition of the equipment). 

4. Past accident reports are used in constructing the graphical inherent safety 

assessment ranking and hazard mitigation framework. 

5. Thematic analysis is used for data extraction in constructing the hazard prevention 

strategy. 

6. The past accident reports were taken from the US Chemical Safety Board (US 

CSB), United States Environmental Protection Agency (US EPA), JST Failure 

Knowledge Database, Major Accident Reporting System (e-MARS) and the 

National Transportation Safety Board (NTSB) focusing on accident databases 

from the year 1990 to the year 2014.  

7. Economic evaluation for the preliminary design stage inherent safety assessment 

technique only based on economic aspect preferability of hazard prevention 

strategy for implementation gathered from the expert survey.  
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1.6 Research Contributions 

There are several contributions of this research. Firstly, this research 

contributes to the development of an inherent safety assessment framework for process 

design using numerical and graphical techniques. Among the advantages of this 

technique is the specification of the root cause of hazards in process area evaluated. In 

addition, this technique contributes to hazard prevention strategy using thematic 

analysis. Lastly, this research also contributes to the development of a graphical 

representation of inherent safety assessment results produced. This research has 

contributed to several publications, two filed patents and two copyrights as listed in 

Table 1.1. 

Table 1.1 : Publications, Patents, and Copyrights Contributed by this Research 

No. Year Item 

Indexed Publications 

1 2017 Syaza Izyanni Ahmad, Haslenda Hashim, Mimi Haryani Hassim, 

2017, Inherent Safety Assessment Technique for Preliminary Design 

Stage. Chemical Engineering Transactions. 56(2017). (ISI Indexed). 

2 2016 Syaza Izyanni Ahmad, Haslenda Hashim, Mimi Haryani Hassim, 

Zarina Abdul Muis. 2016. Inherent Safety Assessment of Biodiesel 

Production: Flammability Parameter. Procedia Engineering. 148 

(2016): 1177-1183. (Scopus Indexed) 

3 2016 Syaza Izyanni Ahmad, Haslenda Hashim, Mimi Haryani Hassim, 

2016. A Graphical Method for Assessing Inherent Safety during 

Research and Development Phase of Process Design. Journal of Loss 

Prevention in the Process Industries. 42: 59-69 (IF= 1.406) 

4 2015 Syaza Izyanni Ahmad, Haslenda Hashim, Mimi Haryani Hassim, 

2015. Inherent Safety Assessment Technique for Separation 

Equipment in Preliminary Engineering Stage. Chemical Engineering 

Transactions. 45, 1123-1128. (ISI Indexed) 

5 2014 Syaza Izyanni Ahmad, Haslenda Hashim, Mimi Haryani Hassim, 

2014. Numerical Descriptive Inherent Safety Technique (NuDIST) 

for Inherent Safety Assessment in Petrochemical Industry. Process 

Safety and Environmental Protection, 92, 379-389. (IF=1.495) 

Patent 

1 2015 PI 2015 002151 A Hazard Identification Technique to Identify the 

Root-Cause of Hazards in Research and Development (R&D) Stage 

of Process Design 

http://dx.doi.org/10.1016/j.psep.2013.03.009
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2 2014 PI 2014 002499 Graphical Descriptive (GRAND) Technique for 

Inherent Safety Assessment in Petrochemical Industry 

Copyright 

1 2014 2-Dimensional Graphical Rating (2DGR) for Inherent Safety 

Assessment © 2014 Universiti Teknologi Malaysia – All Rights 

Reserved 

2 2014 Graphical and Numerical Descriptive (GRAND) Software for 

Inherent Safety Assessment in Petrochemical Industry during 

Research and Development Stage of Process Design © 2014 

Universiti Teknologi Malaysia – All Rights Reserved 
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