INHERENT SAFETY ASSESSMENT FRAMEWORK FOR PROCESS DESIGN USING NUMERICAL AND GRAPHICAL TECHNIQUES

SYAZA IZYANNI BINTI AHMAD

UNIVERSITI TEKNOLOGI MALAYSIA

INHERENT SAFETY ASSESSMENT FRAMEWORK FOR PROCESS DESIGN USING NUMERICAL AND GRAPHICAL TECHNIQUES

SYAZA IZYANNI BINTI AHMAD

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Chemical Engineering)

Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia

OCTOBER 2017

To my mom; Mrs. Norhazani , my dad; Mr. Ahmad, my brothers; Amirul Ashraf, Waziem and Muhammad Amzar and my sister; Husna Azyan

ACKNOWLEDGEMENT

The ending of a journey is actually the beginning of another journey. Many thanks and syukur to the Almighty and it is a great pleasure of mine to be able to present this thesis for my PhD research. My PhD journey might not be easy but it is also very pleasant and memorable thanks to a number of individuals who accompanied me along this road to doctoral degree. Firstly, very much thanks to my mother Mrs. Norhazani Rasalee. Thank you for your patience with my stubbornness to pursue a doctoral degree. I love you and this is for you, Mom. Thank you also to my father, Mr. Ahmad Kasim who always support me and letting me discover my own worth. Thank you Dad and I love you.

I would also like to express my sincere gratitude to main supervisor, Associate Professor Dr. Haslenda Hashim for her encouragement and guidance. Thank you for always providing me with various chances to widen my mind as a researcher. I am also very thankful to my co-supervisor, Assoc. Prof. Dr. Mimi Haryani Hassim for her guidance and motivation. Your cheerful and positive words always encouraged me during my study. Also, thank you very much to my supervisors for letting me do what I want to do the way I want to do it and at the same time pulling me back to the right path whenever I've gone astray.

Thank you very much to all individuals, researchers as well as academicians that I was in contact during the duration of this research. Their support and critics play an important role in completing this research. Also thank you to my closest friends who were always there for me. Our silly, sad, heartwarming and happy moments together will not be forgotten. Lastly, I would like to acknowledge the Ministry of Higher Education (MOHE) for funding this research through MyBRAIN15-MyPHD Scholarship and Universiti Teknologi Malaysia (UTM) for the great doctoral degree journey.

ABSTRACT

Plants should be designed so that they exhibit good safety features to prevent accidents. This can be done by preventing the presence of hazards in the process during its design stages or also known as the inherent safety concept. This research proposes an inherent safety assessment framework for early process design stage. This framework consists of two inherent safety assessment techniques and one hazard prevention strategy. Both inherent safety assessment techniques can be integrated to be used together or as a standalone technique. However, the usage of one or both of these techniques must be followed by the hazard prevention strategy that will provide suggestions on hazard prevention for the hazards identified by the two inherent safety assessment techniques. The first technique is the extended graphical and numerical descriptive (GRAND) technique which is an extension of the previously developed GRAND method through the addition of the two dimensional graphical rating (2DGR) for inherent safety rating and the two dimensional inherent safety and economic graphical rating (2DISEGR) for economic evaluation. The 2DISEGR for methyl methacrylate (MMA) manufacturing process shows that tertiery butyl alcohol (TBA) route is the safest and most profitable process route with the highest net profit margin of 97% at low GRAND total score value of 371. At similar GRAND total score of 371, the 2DGR for MMA manufacturing process shows that TBA is the least hazardous route due to the low number of most hazardous parameter of 1. The second technique is the inherent safety assessment for preliminary design stage (ISAPEDS) technique. This technique consists of three inherent safety parameters which are flammability, explosiveness, and toxicity in relations to operating conditions. The evaluation is done on every equipment in the process flow diagram. ISAPEDS assessment shows that all equipment are identified as the most hazardous in the hydrodealkylation process of toluene to produce benzene. The hazard prevention strategy was developed through the utilization of thematic analysis to extract hazard prevention strategies from the accident databases producing results in the form of keywords that are called themes and generated codes. The 2DISEGR-ISAPEDS figure was developed to show the relationship between the inherent safety assessment using the parameter scores and the economic evaluation using the numerical values. The results of the 2DISEGR-ISAPEDS show that storage tank (V101) is ranked in the economically least preferred and most hazardous region due to high ISAPEDS total score value of about 200 and minimum economic preference factor value of 0.38. Hazard mitigation themes for strategies identified for V101 are design, operating, chemicals and control. These strategies and their generated codes can be used to maintain the balance between hazard reduction and economical benefit. High similarity that can be seen between this framework and other available inherent safety assessment techniques in the comparison made proves the effectiveness as well as the validity of this framework. In conclusion, this research has achieved its main objective to develop an inherent safety assessment framework for early stage of process design.

ABSTRAK

Loji harus direka bentuk agar mempunyai ciri-ciri keselamatan untuk mencegah kemalangan. Ini boleh dilakukan dengan mencegah kehadiran faktor bahaya ketika di tahap reka bentuk proses dikenali sebagai konsep keselamatan terwujud. Penyelidikan ini memperkenalkan satu rangka penilaian keselamatan terwujud di peringkat reka bentuk proses. Rangka ini terdiri daripada dua teknik penilaian keselamatan dan satu strategi pencegahan bahaya. Kedua-dua teknik penilaian keselamatan boleh digabungkan atau diasingkan penggunaannya. Namun, penggunaan kedua-dua teknik ini mestilah diikuti oleh penggunaan strategi pencegahan bahaya yang mencadangkan strategi pencegahan bahaya berdasarkan penilaian kedua-dua teknik tersebut. Teknik pertama ialah teknik lanjutan deskriptif grafik dan berangka (GRAND) yang merupakan kesinambungan kepada teknik yang dibangunkan sebelum ini, iaitu teknik GRAND melalui penambahan dua kaedah penilaian, iaitu kadaran grafik dua dimensi (2DGR) untuk penilaian aspek keselamatan dan kadaran grafik dua dimensi untuk aspek keselamatan dan ekonomi (2DISEGR) untuk penilaian aspek ekonomi. Penilaian 2DISEGR terhadap beberapa proses penghasilan metil metakrilat (MMA) menunjukkan proses butil alkohol tertiar (TBA) sebagai proses yang paling selamat dan paling menguntungkan dengan margin keuntungan bersih setinggi 97% pada jumlah skor GRAND yang rendah, iaitu 371. Pada jumlah skor GRAND yang sama, iaitu 371, penilaian 2DGR terhadap proses penghasilan MMA menunjukkan TBA sebagai proses yang rendah risiko dengan bilangan komponen paling bahaya yang paling sedikit, iaitu 1. Teknik kedua ialah teknik penilaian keselamatan terwujud di tahap reka bentuk permulaan (ISAPEDS). Teknik ini menganalisis komponen kebakaran, letupan dan ketoksikan yang terlibat dengan mengambil kira kondisi pengoperasian. Penilaian ini dilakukan pada semua kelengkapan berpandukan rajah aliran proses. Penilaian ISAPEDS menunjukkan semua kelengkapan dalam proses penghasilan benzena adalah merbahaya. Strategi pencegahan bahaya menggunakan analisis tematik untuk mengeluarkan kata kunci berkaitan cadangan pencegahan kemalangan daripada pangkalan data kemalangan industri yang dipanggil tema dan kod. 2DISEGR-ISAPEDS dibangunkan bertujuan untuk menunjukkan kaitan antara penilaian keselamatan terwujud menggunakan skor komponen dan aspek ekonomi menggunakan nilai berangka. Penilaian 2DISEGR-ISAPEDS menunjukkan tangki penyimpanan (V101) sebagai peralatan yang paling bahaya dan tidak menjadi pilihan dalam aspek ekonomi dengan jumlah skor ISAPEDS kira-kira 200 dan nilai berangka sebanyak 0.38. Kata kunci strategi pencegahan bahaya untuk V101 adalah reka bentuk, pengoperasian, bahan kimia dan kawalan. Kata kunci ini boleh digunakan untuk mengekalkan keseimbangan antara pengurangan bahaya dan faedah ekonomi. Keserupaan yang banyak antara rangka ini dan beberapa penilaian keselamatan sedia ada membuktikan keberkesanan dan kesahihan rangka ini. Kesimpulannya, objektif penyelidikan ini berjaya dicapai dengan penghasilan rangka penilaian keselamatan terwujud untuk penilaian keselamatan di peringkat awal reka bentuk proses.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xiii
	LIST OF FIGURES	xvii
	LIST OF ABBREVIATIONS	xix
	LIST OF SYMBOLS	xxiii
	LIST OF APPENDICES	XXV
1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Research Background	2
	1.3 Problem Statement	4
	1.4 Objective of Study	5
	1.5 Scopes of Study	6
	1.6 Research Contributions	7
2	LITERATURE REVIEW	9
	2.1 Introduction	9

2.2 Current Methods in Evaluating Inherent Safet	У
during Early Phase of Process Design	13
2.2.1 Inherent Safety Assessment Focused	
Methods	13
2.2.2 Analysis of the Inherent Safety Assessme	ent
Technique for Early Phase of Process	
Design Reviews	31
2.2.2.1 Types of Parameter Used in the	
Current Inherent Safety Technique	ue 31
2.2.2.2 Limitations of the Current	
Quantitative Methods for Inheren	nt
Safety Assessment	32
2.2.2.3 Hazard Level Definition in the	
Current Inherent Safety Assessm	ent
Technique	35
2.2.2.4 Inherently Safer Options for Haz	ard
Prevention in the Current Inheren	nt
Safety Assessment Technique	37
2.3 Accident Databases Related Research	38
2.4 Thematic Analysis	46
2.5 Research Gap	52
METHODOLOGY	56
3.1 Introduction	56
3.2 Phase 1: Extended GRAND Technique for	
Research and Development Design Stage	59
3.2.1 Calculation of GRAND Total Score	60
3.2.2 Development of Economic Evaluation for	or
Extended GRAND Technique	62
3.2.3 Development of Graphical Rating for	
Extended GRAND Technique	65

3.3 Phase 2: Development of Inherent Safety	
Assessment Technique for Preliminary	
Engineering Design Stage (ISAPEDS)	67
3.3.1 Inherent Safety Assessment Parameters	
Involved	70
3.3.2 Scores Development for ISAPEDS	
Technique	71
3.3.2.1 Calculation of Flammability and	
Explosiveness Parameters in term of	
Operating Conditions	72
3.3.2.2 Calculation of Inherent Safety	
Parameters for Chemical Mixture	73
3.3.2.3 Logistic Function for ISAPEDS	
Scoring	74
3.3.2.4 Root-cause Analysis to Identify the	
Most Hazardous Chemical	79
3.3.3 Development of Graphical Rating for	
ISAPEDS Technique	79
3.3.3.1 General Analysis of Accident	
Databases	80
3.3.3.2 Analysis of the Largest Accident	
Contributors	82
3.3.3.3 Development of ISAPEDS	
Graphical Rating	85
3.4 Phase 3: Development of Hazard Mitigation	
Framework for Preliminary Engineering Design	
Stage	94
3.4.1 Utilization of Thematic Analysis for Hazard	
Mitigation Framework	95
3.4.1.1 Data Familiarization	96
3.4.1.2 Initial Codes Generation	97
3.4.1.3 Themes Identification and Reviews	100
3.4.1.4 Themes Definition and Labelling	105

	3.4.2 Development of Economic Evaluation for	
	Hazard Mitigation Strategy	113
	3.4.2.1 Economic Evaluation on Hazard	
	Mitigation Strategy	113
	3.4.2.2 Economic Preference Factor for	
	Hazard Mitigation Strategies	114
	3.4.2.3 Development of 2 Dimensional	
	Inherent Safety and Economic	
	Graphical Rating for ISAPEDS	
	(2DISEGR-ISAPEDS)	124
4	APPLICATION OF EXTENDED GRAND	
	TECHNIQUE TO CASE STUDY	129
	4.1 Introduction	129
	4.2 Evaluate the Process Routes using GRAND	
	Technique	130
	4.2.1 Process Condition Safety Parameters	
	Assessment	130
	4.2.2 Chemical Safety Parameters Assessment	131
	4.2.3 GRAND Total Score Calculation	132
	4.3 Application of Extended GRAND Technique to	
	Case Study	134
	4.3.1 Application of Economic Evaluation to the	
	Case Study	134
	4.3.2 Application of 2DGR to the Case Study	136
	4.4 Application of Extended GRAND to Other	
	Process Routes	141
	4.4.1 Inherent Safety and Economic Assessment	141
5	APPLICATION OF ISAPEDS TECHNIQUE TO	
	CASE STUDY	148
	5.1 Introduction	148

	5.2 Application of ISAPEDS Technique to Case	
	Study	152
	5.2.1 Flammability Parameter	152
	5.2.2 Explosiveness Parameter	160
	5.2.3 Toxicity Parameter	173
	5.2.4 ISAPEDS Total Score	177
	5.3 Root-cause Analysis	179
	5.3.1 Highest Normalized Score and Highest	
	Mass Fraction	180
	5.3.2 Low Normalized Score and Highest Mass	
	Fraction	181
	5.3.3 Highest Normalized Sore and Low Mass	
	Fraction	182
	5.4 ISAPEDS Graphical Rating	187
	5.4.1 Flammability Parameter	187
	5.4.2 Explosiveness Parameter	188
	5.4.3 Toxicity Parameter	190
	5.4.4 ISAPEDS Total Score	192
6	APPLICATION OF HAZARD PREVENTION	
	STRATEGY TO CASE STUDY	194
	6.1 Introduction	194
	6.2 Application to Case Study	194
	6.2.1 Flammability Parameter	196
	6.2.2 Explosiveness Parameter	200
	6.2.3 Toxicity Parameter	203
	6.2.4 ISAPEDS Total Score	208
7	INHERENT SAFETY ASSESSMENT	
	FRAMEWORK FOR EARLY PROCESS	
	DESIGN STAGE VALIDATION	213
	7.1 Introduction	213

	7.2.1 Application of the Extended GRAND	
	Technique on the Case Studies for Results	
	Comparison	214
	7.2.2 Justification on the Validity of the Extended	
	GRAND Technique	216
	7.3 Inherent Safety Assessment for Preliminary	
	Engineering Design Stage (ISAPEDS) Technique	218
	7.3.1 Application of the ISAPEDS Technique to	
	the Case Study for Results Comparison	218
	7.3.2 Justification on the Validity of the	
	ISAPEDS Technique	219
	7.4 Hazard Prevention Strategy	221
	7.4.1 Application of the Hazard Prevention	
	Strategy on the Case Studies for Results	
	Comparison	221
	7.4.1.1 Bhopal Case Study	221
	7.4.1.2 Toluene Nitration Case Study	225
	7.4.2 Justification on the Validity of the Hazard	
	Prevention Strategy	228
8	CONCLUSIONS AND RECOMMENDATIONS	230
	8.1 Introduction	230
	8.2 Conclusions	230
	8.3 Recommendations	233
REFERE	NCES	235

Appendices A - B	245 - 261
------------------	-----------

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	Publications, Patents and Copyrights Contributed by	
	this Research	7
2.1	Inherent Safety Techniques	10
2.2	Summary of Inherent Safety Assessment Technique	
	Reviewed	14
2.3	Summary of Accident Databases Related Research	
	Reviewed	44
2.4	Summary of Thematic Analysis Researches	
	Reviewed	51
3.1	Logistic Function for Scores Assignment in GRAND	
	Technique	61
3.2	Percentage of Accidents Occurred in Five Types of	
	Equipment	81
3.3	Percentage of Chemicals as Accident Contributors	84
3.4	Inherently Safer Hazard Mitigation Strategies	
	Available	97
3.5	Initial Codes Generated for Inherently Safer Hazard	
	Mitigation Strategy	97
3.6	Summary of Themes Identified and Reviewed	101
3.7	Themes Definition and Labelling for Reactors	108
3.8	Themes Definition and Labelling for Separation	
	Equipment	109
3.9	Themes Definition and Labelling for Heat Transfer	
	Equipment	110
3.10	Themes Definition and Labelling for Process Vessel	111
3.11	Themes Definition and Labelling for Storage Tanks	112

3.12	Numerical Representation for Questionnaires'	
	Preference Level	114
3.13	Economic Preference Factor (EPF) Value for Every	
	Themes	115
3.14	EPF Values for Themes and their Generated Codes	
	for Every Type of Equipment and Accident	116
4.1	GRAND Process Condition Safety Assessment	
	Results for MMA Manufacturing Process Routes	130
4.2	GRAND Chemical Safety Assessment Results for	
	MMA Manufacturing Process Routes	131
4.3	GRAND Assessment Results for MMA	
	Manufacturing Process	132
4.4	Economic Assessment Results for MMA	
	Manufacturing Process	134
4.5	Determination of the Number of Most Hazardous	
	Parameter (MHP) for MMA Manufacturing Process	138
4.6	Overall Ranking of MMA Manufacturing Process	
	Routes According to the 2DGR	140
4.7	GRAND Assessment Results on Benzene Production	
	Processes	142
4.8	Economic Evaluation Results for Benzene Production	
	Processes	143
4.9	Determination of the Number of Most Hazardous	
	Parameter (MHP) for Benzene Production Process	
	Routes	145
4.10	Overall Ranking of Benzene Production Process	
	Routes According to the 2DGR	146
5.1	Equipment Involved for Inherent Safety Evaluation	149
5.2	New LEL Values for Chemicals Existed in the HDA	
	Process	153
5.3	New LEL Values for Chemical Mixture in the HDA	
	Process	156

5.4	Calculated Flammability Parameter Scores for HDA	
	Process	159
5.5	New UEL and LEL Values for Chemicals Existed in	
	the HDA Process	162
5.6	UEL and LEL Values for Chemical Mixture in HDA	
	Process	167
5.7	Calculated Explosiveness Parameter Scores for HDA	
	Process	173
5.8	TLV-STEL Values for Chemical Mixture in HDA	
	Process	174
5.9	Calculated Toxicity Parameter Scores for All	
	Equipment in HDA Process	177
5.10	Calculated ISAPEDS Total Score for All Equipment in	
	HDA Process	179
5.11	Root-cause Analysis Results for Flammability,	
	Explosiveness and Toxicity Parameter	184
5.12	Summary of Equipment Identified to be the Least Safe	
	in term of Explosiveness Parameter	189
6.1	Identification of Flammability Score, Hazard	
	Mitigation Themes, Generated Codes and Minimum	
	EPF Values Involving Flammability Parameter	198
6.2	Identification of Explosiveness Score, Hazard	
	Mitigation Themes, Generated Codes and Minimum	
	EPF Values Involving Explosiveness Parameter	202
6.3	Identification of Toxicity Score, Hazard Mitigation	
	Themes, Generated Codes and Minimum EPF Values	
	Involving Toxicity Parameter	206
6.4	Identification of ISAPEDS Total Score, Hazard	
	Mitigation Themes, Generated Codes and Minimum	
	EPF Values Involving Total Score	210
7.1	Results Comparison between Extended GRAND, PIIS	
	and IBI Methods for MMA Production Case Study	215

Results Comparison between Extended GRAND, PIIS	
and IBI Methods for Benzene Production Case Study	216
Results Comparison between ISAPEDS and ISI	
Methods	218
Results Comparison between the Hazard Prevention	
Strategy with Kidam and Hurme (2012) on the Bhopal	
Case Study	222
Results Comparison between the Hazard Prevention	
Strategy with QAISD on the Toluene Nitration Case	
Study	226
	and IBI Methods for Benzene Production Case Study Results Comparison between ISAPEDS and ISI Methods Results Comparison between the Hazard Prevention Strategy with Kidam and Hurme (2012) on the Bhopal Case Study Results Comparison between the Hazard Prevention Strategy with QAISD on the Toluene Nitration Case

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Hierarchy of Control	11
3.1	Usage Guidelines for Inherent Safety Assessment	
	Framework for Process Design Stage	57
3.2	Research Methodology Flowchart	58
3.3	Research Methodology for the Development of Extended	
	GRAND Technique	59
3.4	2 Dimensional Inherent Safety and Economic Graphical	
	Rating (2DISEGR)	64
3.5	2DGR for Inherent Safety Assessment Graphical Results	
	Representation	67
3.6	Research Methodology for the Development of ISAPEDS	
	Technique	69
3.7	General Curve of Logistic Function	76
3.8	ISAPEDS Ranking Curve	78
3.9	Statistic of Fire Accident	86
3.10	Flammability Graphical Rating	87
3.11	Statistic of Explosion Accident	88
3.12	Explosiveness Graphical Rating	89
3.13	Statistic of Toxic Release Accident	90
3.14	Toxicity Graphical Rating	91
3.15	Statistic of Combined Type of Accident	92
3.16	ISAPEDS Total Score Graphical Rating	93
3.17	Research Methodology for the Development of Hazard	
	Mitigation Framework	94
3.18	2 Dimensional Inherent Safety and Economic Graphical	
	Rating for ISAPEDS (2DISEGR-ISAPEDS)	125

3.19	2 Dimensional Inherent Safety and Economic Graphical	
	Rating for ISAPEDS (2DISEGR-ISAPEDS) (a)	
	Flammability Parameter; (b) Explosiveness Parameter; (c)	
	Toxicity Parameter	127
4.1	2DISEGR for MMA Manufacturing Process	136
4.2	2-Dimensional Graphical Rating (2DGR) for MMA	
	Manufacturing Routes	139
4.3	2 Dimensional Inherent Safety and Economic Graphical	
	Rating (2DISEGR) for Benzene Production Process	
	Routes	143
4.4	2-Dimensional Graphical Rating (2DGR) for Benzene	
	Production Process Routes	146
5.1	Process Flow Diagram (PFD) for the Hydrodealkylation of	
	Toluene	151
5.2	Flammability Graphical Rating for HDA Process	188
5.3	Explosiveness Graphical Rating for HDA Process	190
5.4	Toxicity Graphical Rating for HDA Process	191
5.5	ISAPEDS Total Score Graphical Rating for HDA Process	193
6.1	2DISEGR-ISAPEDS for HDA Process Flammability	
	Parameter Assessment	200
6.2	2DISEGR-ISAPEDS for HDA Process Explosiveness	
	Parameter Assessment	203
6.3	2DISEGR-ISAPEDS for HDA Process Toxicity Parameter	
	Assessment	208
6.4	2DISEGR-ISAPEDS for HDA Process ISAPEDS Total	
	Score Assessment	212

LIST OF ABBREVIATIONS

2DGR	-	2 Dimensional Graphical Rating
2DISEGR	-	2 Dimensional Inherent Safety and Economic Graphical Rating
2TISI	-	Two-tier Inherent Safety Index
3-TISQ	-	Three-tier Inherent Safety Quantification
ACGIH	-	American Conference of Governmental Industrial Hygienists
AP	-	Acidification Potential
AEGLs	-	Acute Exposure Guidelines Levels
ANR	-	Average Numerical Representation
ATHI	-	Acute Toxic Hazards Index
ATP	-	Aquatic Toxicity Potential
CALD	-	Culturally and Linguistic Diverse
CAMD	-	Computer Aided Molecular Design
CSCI	-	Conventional Safety Cost Index
CSTS	-	Chemical Safety Total Score
DI	-	Damage Index
DHI	-	Domino Hazard Index
DOSH	-	Department of Occupational Safety and Health
$EDP_{i,j} \\$	-	Effective Dangerous Property
EHI	-	Environmental Hazard Index
EPA	-	Engineering Preventive Action
ERA	-	Environmental Risk Assessment
e-MARS	-	Major Accident Reporting System
F&EI	-	Dow Fire and Explosion Index
FEDI	-	Fire and Explosion Damage Index
FEHI	-	Fire and Explosion Hazards Index
FKD	-	Japanese Failure Knowledge Database
GRAND	-	Graphical and Numerical Descriptive

GWP	-	Global Warming Potential
HATS	-	Harmonic Analysis of Occupational Accident Time Series
HAZOP	-	Hazard and Operability Study
HDA	-	Hydrodealkylation Process of Toluene
HI	-	Hazard Index
HIRA	-	Hazard Identification and Ranking
HRA	-	Human Reliability Analysis
HRAP	-	Hybrid Risk Assessment Process
HTPE	-	Human Toxicity Potential by Inhalation or Dermal Exposure
HTPI	-	Human Toxicity Potential by Ingestion
I2SI	-	Integrated Inherent Safety Index
IBI	-	Inherent Benign-ness Index
IDH	-	Inherent Design Heuristics
IFCET	-	Inherent Fire Consequence Estimation Tool
IOHI	-	Inherent Occupational Health Index
IRA	-	Inherent Risk Assessment
iRET	-	Integrated Risk Estimation Tool
IRDI	-	Inherently Risk of Design Index
ISAPEDS	-	Inherent Safety Assessment for Preliminary Engineering
		Design Stage
ISCI	-	Inherent Safety Cost Index
ISI	-	Inherent Safety Index
ISIM	-	Inherent Safety Index Module
IS-KPIs	-	Inherent Safety Key Performance Indicators
ISPI	-	Inherent Safety Potential Index
LEL	-	Lower Explosive Limit
MHP	-	Most Hazardous Parameter
MI	-	Mechanical Integrity
MMA	-	Methyl Methacrylate
MPA	-	Management Preventive Action
NFPA	-	National Fire and Protection Agency
NTSB	-	U.S. National Transportation Safety Board
OCI	-	Overall Chemical Index
ODP	-	Ozone Depletion Potential

ORI	-	Overall Reaction Index
OSI	-	Overall Safety Index
PCA	-	Principal Component Analysis
PCOP	-	Photochemical Oxidation Potential
PCSTS	-	Process Condition Safety Total Score
PEM	-	Proton Exchange Membrane
PFA	-	Predicted Failure Analysis
PFD	-	Process Flow Diagram
PHA	-	Process Hazard Analysis
PHCI	-	Process and Hazard Control Index
PID	-	Piping and Instrumentation Diagram
PIIS	-	Prototype Index for Inherent Safety
PoD _{ij}	-	Potential of Danger
PRAT	-	Proportional Quantitative Risk Assessment
PRI	-	Process Route Index
PSI	-	Process Stream Index
PSM	-	Process Safety Management
QAISD	-	Qualitative Assessment Inherently Safer Design Concept
QI2SD	-	Quantitative Index of Inherently Safer Design
QRA	-	Quantified Risk Assessment
R&D	-	Research and Development
RCI	-	Risk Control Index
RIP	-	Register, Investigate and Prioritise
RISI	-	Risk-based Inherent Safety Index
SAW	-	Simple Additive Weighing
SHE	-	Safety, Health and Environmental
SOCSO	-	Society Security Organization
SPI	-	Safety Performance Indicators
SRE	-	Societal Risk Estimation
STODET	-	Alternative Risk Assessment Framework
SWeHI	-	Safety Weighted Hazard Index
TDI	-	Toxicity Damage Index
THF	-	Toxic Harm Factor
TIM	-	Three-stage ISD Matrix

TLVs	-	Threshold Limit Values
TLV-STEL	-	Threshold Limit Value Short-term Exposure Limit
TOPSIS	-	Technique for Order Performance by Similarity to Ideal
		Solution
TORCAT	-	Toxic Release Consequence Analysis Tool
TRIRA	-	Toxic Release Inherent Risk Assessment
TRRI	-	Toxic Release Route Index
TRSI	-	Toxic Release Stream Index
TTP	-	Terrestrial Toxicity Potential
UEL	-	Upper Explosive Limit
UK HSE	-	United Kingdom Health, Safety and Environmental Guidelines
US CSB	-	United States Chemical Safety Board
US EPA	-	United States Environmental Protection Agency

LIST OF SYMBOLS

°C	-	Degree Celsius
ΔH_{vap}	-	Heat of Vaporization
ΔH_c	-	Heat of Combustion
ACH	-	Acetone cyanohydrin based route
Atm	-	atmospheric pressure
С	-	Combine Accident Group
C2/MP	-	Ethylene via methyl propionate based route
C2/PA	-	Ethylene via propionaldehyde based route
C3	-	Propylene based route
EXP	-	Explosiveness
F	-	Fire Accident
FE	-	Combination of Fire and Explosion Accident
FET	-	Combination of Fire, Explosion and Toxic Release Accident
FT	-	Combination of Fire and Toxic release Accident
FL	-	Flammability
E	-	Explosion Accident
ET	-	Combination of Explosion and Toxic Release Accident
i-C4	-	Isobutylene based route
LELT	-	Lower Explosiveness Limit at Designated Operating
		Temperature
LEL ₂₅	-	Lower Explosiveness Limit at Ambient Temperature
LEL _{mix}	-	Mix Lower Explosiveness Limit Value
m _i	-	Chemical Mass Fraction
OP	-	Operating Pressure
PI	-	Process Inventory
\mathbf{P}_1	-	Ambient Pressure
P ₂	-	Designated Pressure

	•
VV	1 3 7
$\Lambda \Lambda$	IV

$\mathbf{P}_{\mathbf{i}}$	-	Value for Every Parameter
ppm	-	Parts per Million
R	-	Ideal Gas Constant
REAC	-	Reactivity
$\mathbf{S}_{\mathbf{i}}$	-	Parameters Score
$\mathbf{S}_{\mathrm{EXP}}$	-	Score for Explosiveness Parameter
\mathbf{S}_{FL}	-	Score for Flammability Parameter
SISAPEDS RAN	IKING-	Ranking for ISAPEDS
\mathbf{S}_{TOX}	-	Score for Toxicity Parameter
OT	-	Operating Temperature
Т	-	Toxic Release Accident
T_1	-	Boiling Point at Ambient Temperature
T_2	-	New Boiling Point Value
T _b	-	New Boiling Point Value from Equation 5.1
$T_{\rm F}$	-	New Flash Point Value
T _{Fmix}	-	Mix Flash Point Value
TBA	-	Tertiery butyl alcohol based route
TLV-STEL	mix -	Mix TLV-STEL Value
TOX	-	Toxicity
UELT	-	Upper Explosiveness Limit at Designated Operating
		Temperature
UEL ₂₅	-	Upper Explosiveness Limit at Ambient Temperature
UEL _{mix}	-	Mix Upper Explosiveness Limit Value
Y	-	Mix Parameter Value
Xi	-	Individual Parameter Value

LIST OF APPENDICES

APPENDIX.

TITLE

PAGE

А	Hazard Mitigation Suggestions from Accident		
	Databases	245	
В	Expert Survey Questionnaire Sample	255	

CHAPTER 1

INTRODUCTION

1.1 Introduction

Chemical industry not only contributes to major economic achievements through advanced technologies in modern development but also a major aid in improving human lifestyle as well as global economic health. Chemical industry offers various products such as health care, food processing and also transportation (Abbaszadeh and Hassim, 2014). The technologies brought by chemical industry are also important in allowing new measurements for social welfare, offers new and complex risks as well as ethical dilemmas and outline the methods on human interactions with the surrounding environment (Janeiro and Patel, 2015)

However, safety problems caused by the operations in the chemical industry are also anticipated. Rising emission of greenhouse gases from the industry is one of many contributors to environmental problems such as climate change (Liew *et al.*, 2014). In addition, fatal disasters such as the Flixborough and Bhopal disasters also caused harm to the environment and human health which lead to major concern on understanding as well as minimizing the impacts of the production process, chemical storage and chemical disposal to safety, health and environmental. This results to the production of many works focusing on preventing accidents following the fatal disasters such as the Flixborough explosion in 1974 and the Bhopal toxic release in 1984 (Kletz and Amyotte, 2010). Various strategies have been proposed to reduce or avoid the adverse impacts of hazards in chemical industry. Most of the strategies proposed the need for additional installation of more and better protective equipment such as fire protection, gas detectors, and firefighting equipment. The addition of protective equipment are necessary however, the equipment are also expensive and complex. In addition, maintaining zero error performance continuously all day long throughout the working lifetime is an impossible task for operators. According to Kidam *et al.* (2015b), the rate of chemical process industry accidents has not been decreasing although in about 95% of the causes have been identified and could be prevented using existing knowledge. Thus, safer and user-friendlier plants that can tolerate deviance from regular work routine by operators and equipment failures without major implications on output, safety or efficiency should be built (Kletz and Amyotte, 2010).

Safer and user-friendlier chemical plants can be designed by utilizing small amounts of hazardous materials that are used at lower operating conditions or by using safer materials instead of the hazardous ones so that it does not matter if leakage occurs. Avoiding hazard in the first place is more cost efficient and safer than repairing the process after an accident occurs. Hazards avoidance as early as the process design stage is called the inherent safety concept. The concept of inherent safety is important in designing a user-friendly and inherently safer plant, however, it is also important to first identify and understand the hazards posed by the process. According to the hierarchy of controls (Kletz and Amyotte, 2010), avoiding hazards comes after identifying and understanding the hazards which can be achieved through hazards assessment. Hazards assessment during the process design stage is also known as inherent safety assessment.

1.2 Research Background

The inherent safety assessment can be implemented throughout the process design lifecycle. However, it is best for the assessment to be made as early in the design process as possible. The inherent safety assessment for early phase of process design usually begins during the research and development (R&D) phase. In this phase, several alternatives of process routes will be evaluated according to its chemical and physical properties in order to determine the safety level of each process routes. Then, the inherent safety assessment will proceed to the preliminary engineering phase which focuses on using the information available from the process flow diagrams. Inherent safety assessment during the early phase of process design provides various information on the safety level of the process that is helpful in determining the best hazard prevention strategies to be applied.

Inherent safety assessment at the early phase of process design not only will assist in producing an inherently safer and friendlier process but it is also cost effective as any modification according to the suggestions can be done easily. Kidam *et al.* (2016) stated that the current safety and health framework put very little effort in recognizing, avoiding and controlling hazards at the early phase of process design. This results to most companies to conduct full safety assessment only at the detailed design phase. Late inherent safety evaluation will results to difficulty in fundamental or major design changes.

A survey funded by the UK Engineering and Physical Sciences Research Council (EPSRC) was carried amongst regulators, industrialists and academicians in order to investigate the reasons for slow adoption of inherently safer design (Gupta and Edwards, 2002). The results indicate that some of the reasons for slow adoption of inherent safety are lack of a tried and tested simple methodology for application as well as lack of knowledge on the inherently safer design concept. This leads to the development of various types of inherent safety assessment technique in order to ease the difficulty in understanding the concept of inherent safety for example the indexbased method, the simple graphical approach as well as integrated approach of inherent safety assessment with the process design simulators.

Inherent safety assessment techniques for the early phase also includes hazard prevention strategies in order to improve the inherent safety level of a process. Hazard prevention or reduction strategies are usually done according to the inherently safer design concept as mentioned by Kletz and Amyotte (2010) which are intensification, substitution, attenuation and simplification.

Aside from hazard prevention strategies according to the inherently safer design concept, the accident databases also offer inherently safer suggestions according to the accidents occurred in the past. These databases, for example, the US Chemical Safety Board (US CSB) provides the information on the accident contributors and the inherent safety design that can be done in order to prevent the same accidents from occurring again. These types of information need to first be extracted according to the types of accidents and process equipment as not to overwhelm the readers as there is so many useful information that can be utilized.

This research will focus on integrating both inherent safety assessment techniques and the information gathered from the accident databases in order to produce an inherent safety assessment framework.

1.3 Problem Statement

Currently, the inherent safety assessment techniques for preliminary design stage developed consists of several characteristics that can be further improved. The first characteristic is user-friendly. Process flow diagram is often used in evaluating inherent safety during the preliminary design stage, thus computer-aided simulators are often used in order to accomplish the assessment. Computer-aided simulators provide a huge amount of information to expert users however it can become quite handful to those who are not familiar with its function. Thus, Ahmad et al., (2014) developed an inherent safety assessment technique that is easy to use even for those who are not familiar with the concept of inherent safety called the Graphical and Numerical Descriptive Inherent Safety Technique (GRAND). The GRAND technique (Ahmad *et al.*, 2014) is applicable for inherent safety assessment during the research and development (R&D) phase. However this technique only use total score for process hazard ranking which is not suitable as process with safer total score still has its own hazards. Aside from that this technique can be improved more by adding preliminary economic evaluation for R&D phase. This technique also needs to be improved so that it will be applicable for the preliminary design stage.

Extracting information from the accident databases to be used in improving chemical processes is not uncommon. There are many researches exist for this purpose. Some noted examples focus on identifying the causes for equipment related accidents and identifying the causes for chemical process accidents. Incorporating information gathered from the accident databases into inherent safety assessment technique for early design stage is quite rare as there are not many inherent safety assessment techniques utilizing the information. However, manipulation of the accident databases information will provide more understandings on the level of hazards possess by a chemical process.

Inherent safety assessment is not complete if not followed by hazard prevention strategy. There are various inherent safety assessment techniques that provides hazard prevention strategy. However, utilization of accident databases information as hazard prevention strategy in an inherent safety assessment technique is currently in none existence.

This research focused on extending the Graphical and Numerical Descriptive Inherent Safety Technique (GRAND) for usage during the preliminary design stage of chemical process with better ranking system including preliminary economic evaluation. Aside from that, this research will utilize the information gathered from accident databases in assessing the inherent safety parameters and in the hazard prevention strategy. Thematic analysis will be used in extracting the information for hazard prevention strategy in this research.

1.4 Objective of Study

The main objective of this research is to develop an inherent safety assessment framework for early process design stage. This framework is consisted of two inherent safety assessment techniques and one hazard prevention strategy. The framework produced in this research is a continuation of the previous research on the inherent safety assessment technique for research and development (R&D) stage. The main objective of this study is supported by several sub-objectives.

- 1. To develop an extended GRAND technique for inherent safety assessment to include economic evaluation and inherent safety graphical rating for inherent safety assessment technique during research and development (R&D) design stage.
- 2. To develop an inherent safety assessment technique focusing on various equipment at preliminary design stage.
- 3. To develop a hazard prevention strategy based on past accident reports.

1.5 Scopes of Study

The scopes of this study are;

- 1. Economic evaluation for inherent safety assessment during the R&D stage only based on the price of the chemicals.
- 2. Inherent safety assessment for R&D design stage only focuses on alternative process routes ranking.
- 3. Inherent safety assessment during the preliminary design stage is based on the process flow diagram (PFD) which includes main equipment and auxiliary equipment (focusing on the operating condition of the equipment).
- 4. Past accident reports are used in constructing the graphical inherent safety assessment ranking and hazard mitigation framework.
- 5. Thematic analysis is used for data extraction in constructing the hazard prevention strategy.
- 6. The past accident reports were taken from the US Chemical Safety Board (US CSB), United States Environmental Protection Agency (US EPA), JST Failure Knowledge Database, Major Accident Reporting System (e-MARS) and the National Transportation Safety Board (NTSB) focusing on accident databases from the year 1990 to the year 2014.
- Economic evaluation for the preliminary design stage inherent safety assessment technique only based on economic aspect preferability of hazard prevention strategy for implementation gathered from the expert survey.

1.6 Research Contributions

There are several contributions of this research. Firstly, this research contributes to the development of an inherent safety assessment framework for process design using numerical and graphical techniques. Among the advantages of this technique is the specification of the root cause of hazards in process area evaluated. In addition, this technique contributes to hazard prevention strategy using thematic analysis. Lastly, this research also contributes to the development of a graphical representation of inherent safety assessment results produced. This research has contributed to several publications, two filed patents and two copyrights as listed in Table 1.1.

No.	Year	Item		
	Indexed Publications			
1	2017	Syaza Izyanni Ahmad, Haslenda Hashim, Mimi Haryani Hassim,		
		2017, Inherent Safety Assessment Technique for Preliminary Design		
		Stage. Chemical Engineering Transactions. 56(2017). (ISI Indexed).		
2	2016	Syaza Izyanni Ahmad, Haslenda Hashim, Mimi Haryani Hassim,		
		Zarina Abdul Muis. 2016. Inherent Safety Assessment of Biodiesel		
		Production: Flammability Parameter. Procedia Engineering. 148		
		(2016): 1177-1183. (Scopus Indexed)		
3	2016	Syaza Izyanni Ahmad, Haslenda Hashim, Mimi Haryani Hassim,		
		2016. A Graphical Method for Assessing Inherent Safety during		
		Research and Development Phase of Process Design. Journal of Loss		
		Prevention in the Process Industries. 42: 59-69 (IF= 1.406)		
4	2015	Syaza Izyanni Ahmad, Haslenda Hashim, Mimi Haryani Hassim,		
		2015. Inherent Safety Assessment Technique for Separation		
		Equipment in Preliminary Engineering Stage. Chemical Engineering		
		Transactions. 45, 1123-1128. (ISI Indexed)		
5	2014	Syaza Izyanni Ahmad, Haslenda Hashim, Mimi Haryani Hassim,		
		2014. Numerical Descriptive Inherent Safety Technique (NuDIST)		
		for Inherent Safety Assessment in Petrochemical Industry. Process		
		Safety and Environmental Protection, 92, 379-389. (IF=1.495)		
		Patent		
1	2015	PI 2015 002151 A Hazard Identification Technique to Identify the		
		Root-Cause of Hazards in Research and Development (R&D) Stage		
		of Process Design		

Table 1.1 : Publications, Patents, and Copyrights Contributed by this Research

2	2014	PI 2014 002499 Graphical Descriptive (GRAND) Technique for			
		Inherent Safety Assessment in Petrochemical Industry			
	Copyright				
1	2014	2-Dimensional Graphical Rating (2DGR) for Inherent Safety			
		Assessment © 2014 Universiti Teknologi Malaysia - All Rights			
		Reserved			
2	2014	Graphical and Numerical Descriptive (GRAND) Software for			
		Inherent Safety Assessment in Petrochemical Industry during			
		Research and Development Stage of Process Design © 2014			
		Universiti Teknologi Malaysia – All Rights Reserved			

REFERENCES

- Abbaszadeh, S., and Hassim, M. H. (2014). Comparison of Methods Assessing Environmental Friendliness of Petrochemical Process Design. *Journal of Cleaner Production*. 71, 110-117.
- Ahmad, S. I. (2014). Numerical and Graphical Descriptive Technique for Inherent Safety Assessment in Petrochemical Industry. Master of Engineering (Chemical). Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
- Ahmad, S. I., Hashim, H., and Hassim, M. H. (2014). Numerical Descriptive Inherent Safety Technique (NuDIST) for Inherent Safety Assessment in Petrochemical Industry. *Process Safety and Environmental Protection*. 92, 379-389.
- Ahmad, S. I., Hashim, H., and Hassim, M. H. (2016). A Graphical Method for Assessing Inherent Safety during Research and Development Phase of Process Design. *Journal of Loss Prevention in the Process Industries*. 42, 59-69.
- Akamangwa, N. (2016). Working for the Environment and Against Safety: How Compliance Affects Health and Safety on Board Ships. *Safety Science*. 87, 131-143.
- Anderson, J. E., and Kodate, N. (2015). Learning from Patient Safety Incidents in Incident Review Meetings: Organizational Factors and Indicators of Analytic Process Effectiveness. *Safety Science*. 80, 105-114.
- Arora, M. P., and Lodhia, S. (2017). The BP Gluf of Mexico Oil Spill: Exploring the Link Between Social and Environmental Disclosures and Reputation Risk Management. *Journal of Cleaner Production*. 140, 1287-1297

- Aviles-Martinez, A., Medina-Herrera, N., Jimenez-Gutierrez, A., Serna-Gonzalez, M., and Castro-Montoya, A. J. (2015). Risk Analysis Applied to Bioethanol Dehydration Processes: Azeotropic Distillation versus Extractive Distillation. *12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering*. 31 May 4 June 2015. Copenhagen, Denmark.
- Braun, V., and Clarke, V. (2006). Using Thematic Analysis in Psychology. *Qualitative Research in Psychology*. 3, 77-101.
- Crowl D. A., and Louvar, J. F. (2011). *Chemical Process Safety Fundamentals with Applications*. (3rd ed.). Massachussetts: Pearson Education, Inc.
- Cunio, C., and Melhem, G. (2014). A Guide to the Legal Framework of the PSM Standard for Engineers. *Process Safety Progress*. 33(2), 152-155.
- Dow Chemical Company. (1987). *DOW's Fire and Explosion Index Hazard Classification Guide*. (6th ed.). New York: American Institute of Chemical Engineers.
- Edwards, D. W., and Lawrence, D. (1993). Assessing the Inherent Safety of Chemical Process Routes: Is there a Relation Between Plant Costs and Inherent Safety?. *Trans IchemE*. 71(B), 252-258.
- Fyffe, L., Krahn, S., Clarke, J., Kosson, D., and Hutton, J. (2016). A Preliminary Analysis of Key Issues in Chemical Industry Accident Reports. *Safety Science*. 82, 368-373.
- Gupta, J. P., and Edwards, D. W. (2002). Inherently Safer Design Present and Future. *Trans IchemE*. 80, 115-125.
- Gupta, J. P., and Edwards, D. W. (2003). A Simple Graphical Method for Measuring Inherent Safety. *Hazardous Materials*. 104,15-30.
- Halim, I., Carvalho, A., Srinivasan, R., Matos, H. A., and Gani, R. (2011). A Combined Heuristic and Indicator –based Methodology for Design of Sustainable Chemical Process Plants. *Computers and Chemical Engineering*. 35, 1343-1358.

- Hassim, M. H., and Ali, M. W. (2009). Screening Alternative Chemical Routes Based On Inherent Chemical Process Properties Data: Methyl Methacrylate Case Study. *The Inst. Of Engineers, Malays.* 70, 2-10.
- Hassim, M. H., and Hurme, M. (2010). Inherent Occupational Health Assessment during Process Research and Development Stage. Loss Prevention in the Process Industries. 23, 127-138.
- Heikkila, A. M. (1999). Inherent Safety in Process Plant Design an Inde-based Approach. Doctor Philosophy. Helsinki Universiti of Technology, Finland.
- Howitt, D., and Cramer, D. (2011). *Introduction to Research Methods in Psychology*. (3rd Ed.). England: Pearson Education Limited.
- Hristova, M., and Tchaoushev, S. (2006). Calculation of Flash Points and Flammability Limits of Substances and Mixtures. *Journal of the University of Chemical Technology and Mettallurgy*. 41(3), 291-296.
- Hunka, A. D., Meli, M., Palmqvist, A., Thorbek, P., and Forbes, V. E. (2015). Ecological Risk Assessment of Pesticides in the EU: What Factors and Groups Influence Policy Changes?. *Journal of Risk Research*. 18(9), 1165-1183.
- Hussin, N. A. E., Kidam, K., Shahlan, S. S., Johari, A., and Hashim, H. (2015b). Lessons Learned from Process Equipment Failures in the Chemical Process Industry. *Jurnal Teknologi*. 75(6), 43-52
- Hussin, N. E., Kidam, K., Jalani, Jihan, J., Johari, A., Hashim, H., and Hassim, M. H. (2015a). Application of Risk Reduction Strategies in the Chemical Process Industry. *Jurnal Teknologi*. 75(6), 127-135.
- Jalani, J. A., Kidam, K., Shahlan, S. S., Kamarden, H., Hassan, O., and Hashim, H. (2015). An Analysis of Major Accident in the US Chemical Safety Board (CSB) Database. *Jurnal Teknologi*. 75(6), 53-60.
- Janeiro, L., and Patel, M. K. (2015). Choosing Sustainable Technologies Implications of the Underlying Sustainability Paradigm in the Decision-making Process. *Journal of Cleaner Production*. 105, 438-446.

- Kalatpour, O., and Farhadi, S. (2017). The Context Analysis of Emergency Scenarios: Thematic Survey of the Context in the Process Industries. *Safety Science*. 92, 257-261.
- Khan, F. I., and Abbasi, S. A. (1998). Multivariate Hazard Identification and Ranking System. *Process Safety Progress*. 17(3), 157-170.
- Khan, F. I., and Amyotte, R. (2005). I2SI: A Comprehensive Quantitative Tool for Inherent Safety and Cost Evaluation. *Loss Prevention in the Process Industries*. 18, 310-326.
- Khan, F. I., Husain, T., and Abbasi, S. A. (2001). Safety Weighted Hazard Index (SWeHI) A New, User Friendly Tool for Swift yet Comprehensive Hazard Identification and Safety Evaluation in Chemical Proces Industries. *Trans IchemE*. 79, 65-80.
- Khan, F., Abunda, H., John, D., and Benmosbah, T. (2010). Development of Risk-Based Process Safety Indicators. *Process Safety Progress*. 29(2), 133-143.
- Kidam, K., and Hurme, M. (2012a). Design as a Contributor to Chemical Process Accidents. *Journal of Loss Prevention In The Process Industries*. 25, 655-666.
- Kidam, K., and Hurme, M. (2012b). Origin of Equipment Design and Operation Errors. *Journal of Loss Prevention In The Process Industries*. 25, 937-949.
- Kidam, K., and Hurme, M. (2013c). Statistical Analysis of Contributors to Chemical Process Accidents. *Chemical Engineering Technology*. 1, 167-176.
- Kidam, K., Hurme, M., and Hassim, M. H. (2010). Technical Analysis of Accident in Chemical Process Industry and Lesson Learnt. *Chemical Engineering Transaction*. 19, 451-456
- Kidam, K., Hussin, N. E., Hassan, O., Ahmad, A., Johari, A., and Hurme, M. (2014b). Accident Prevention Approach Throughout Process Design Life Cycle. *Process Safety and Environmental Protection*. 92, 412-422.
- Kidam, K., Hussin, N. E., M Fandi, N. F., Johari, A., Tuan Abdullah, T. A., Hassim,
 M. H., Kamaruddin, M. J., Zakaria, Z. Y., and Wan Sulaiman, W. R. (2015a).
 Level of Learning from Occupational Safety Accidents: Current Status in
 Malaysia. Advanced Materials Research. 1125, 608-612.

- Kidam, K., Kamarden, H., Hurme, M., Hassim, M. H., and Kasmani, R. M. (2014a). Accident Contributor Interconnection Study as a Basis for Accident Mechanism Prediction. *Chemical Engineering Transactions*. 36, 25-30.
- Kidam, K., Sahak, H. A., Hassim, M. H., Hashim, H., and Hurme, M. (2015b). Method for Identifying Errors in Chemical Process Development and Design Base on Accidents Knowledge. *Process Safety and Environmental Protection*. 97, 49-60.
- Kidam, K., Sahak, H. A., Hassim, M. H., Shahlan, S. S., and Hurme, M. (2016). Inherently Safer Design Review and Their Timing During Chemical Process Development and Design. *Journal of Loss Prevention in the Process Industries*. 42, 47-58.
- Kidam. K., and Hurme, M. (2013a). Analysis of Equipment Failures as Contributors to Chemical Process Accidents. *Process Safety and Environmental Protection*. 91, 61-78
- Kidam. K., and Hurme, M. (2013b). Method for Identifying Contributors to Chemical Process Accidents. *Process Safety and Environmental Protection*. 91, 367-377.
- Kletz, T., and Amyottes, P. (2010). Process Plants A Handbook for Inherently Safer Design. (2nd ed.).USA: Taylor and Francis Group.
- Koller, G., Fischer, U., and Hungerbuhler, K. (2000). Assessing Safety, Health, and Environmental Impact Early during Process Development. *Ind. Eng. Chem. Res.* 39, 960-972.
- Kossoy, A. A., and Akhmetshin, Y. G. (2012). Simulation-based Approach to Design of Inherently Safer Processes. *Process Safety and Environmental Protection*. 90, 349-356.
- Krauesslar, V., Avery, R. E., and Passmore, J. (2015). Taking Ownership of Safety.
 What are the Active Ingredients of Safety Coaching and How do They Impact
 Safety Outcomes in Critical Offshore Working Environments?. *International Journal of Occupational Safety and Ergonomics (JOSE)*. 21(1), 39-46.

- Leong, C. T., and Mohd Shariff, A. (2008). Inherent Safety Index Module (ISIM) to assess Inherent Safety Level during Preliminary Design Stage. *Process Safety and Environmental Protection*. 86, 113-119.
- Leong, C. T., and Mohd Shariff, A. (2009). Process Route Index (PRI). To Assess Level of Explosiveness for Inherent Safety Quantification. *Loss Prevention in the Process Industries*. 22, 216-221.
- Liew, W. H., Hassim, M. H., and Ng, D. K. S. (2014). Review of Evolution, Technology and Sustainability Assessments of Biofuel Production. *Journal of Cleaner Production*. 71, 11-29.
- Liaw, H. J., Lee, Y. H., Tang, C. L., Hsu, H. H., and Liu, J. H. (2002). A Mathematical Model for Predicting the Flash Point of Binary Solutions. *Journal of Loss Prevention in the Process Industries*. 15, 429-238.
- Marhavilas, P. K., and Koulouriotis, D. E. (2008). A Risk-estimation Methodological Framework using Quantitative Assessment Techniques and Real Accidents' Data: Application in an Aluminum Extrusion Industry. *Journal of Loss Prevention in the Process Industries*. 21, 596-603.
- Marhavilas, P. K., and Koulouriotis, D. E. (2012a). A Combined Usage of Stochastic and Quantitative Risk Assessment Methods in the Worksites: Application on an Electric Power Provider. *Reliability Engineering and System Safety*. 97, 36-46.
- Marhavilas, P. K., and Koulouriotis, D. E. (2012b). Developing a New Alternative Risk Assessment Framework in the Work Sites by Including a Stochastic and a Deterministic Process: A Case Study for the Greek Public Electric Power Provider. *Safety Science*. 50, 448-462.
- Marhavilas, P. K., Koulouriotis, D. E., and Mitrakas, C. (2011). On the Development of a New Hybrid Risk Assessment Process using Occupational Accidents' Data: Application on the Greek Public Electric Power Provider. *Journal of Loss Prevention in the Process Industries*. 24, 671-687.
- Marhavilas, P. K., Koulouriotis, D. E., and Spartalis, S. H. (2013). Harmonic Analysis of Occupational-Accident Time-Series as a Part of the Quantified Risk

Evaluation in Worksites: Application on Electric Power Industry and Construction Sector. *Reliability Engineering and System Safety*. 112, 8-25.

- Medina-Herrera, N., Grossmann, I. E., Mannan, M. S., and Jimenez-Gutierrez, A. (2014). An Approach for Solvent Selection in Extractive Distillation Systems including Safety Considerations. *Industrial and Engineering Chemistry Research.* 53, 12023-12031.
- Meel, A., O., Neill, L. M., Levin, J. H., Seider, W. D., Oktem, U., and Keren, N. (2007). Operational Risk Assessment of Chemical Industries by Exploiting Accident Databases. *Journal of Loss Prevention in the Process Industries*. 20, 113-127.
- Milch, V., and Laumann, K. (2016). Interorganizational Complexity and Organizational Accident Risk: A Literature Review. *Safety Science*. 82, 9-17.
- Mohd Shariff, A., Abdul Wahab, N., and Rusli, R. (2016). Assessing the Hazards from a BLEVE and Minimizing its Impacts using the Inherent Safety Concept. *Journal of Loss Prevention in the Process Industries*. 41, 303-314.
- Mohd Shariff, A., and Abdul Wahab, N. (2013). Inherent Fire Consequence Estimation Tool (IFCET) for Preliminary Design of Process Plant. *Fire Safety Journal*. 59, 47-54.
- Mohd Shariff, A., and Leong, C. T. (2009). Inherent Risk Assessment-A New Concept to Evaluate Risk in Preliminary Design Stage. *Process Safety and Environmental Protection*. 87, 371-376.
- Mohd Shariff, A., and Zaini, D. (2010). Toxic Release Consequence Analysis Tool (TORCAT) for Inherently Safer Design Plant. *Hazardous Materials*. 182, 394-402.
- Mohd Shariff, A., and Zaini, D. (2013). Inherent Risk Assessment Methodology in Preliminary Design Stage: A Case Study for Toxic Release. *Journal of Loss Prevention in the Process Industries*. 26, 605-613.
- Mohd Shariff, A., Leong, C. T., and Zaini, D. (2012). Using Process Stream Index (PSI) to Assess Inherent Safety Level during Preliminary Design Stage. Safety Science. 50, 1098-1103

- Mohd Shariff, A., Rusli, R., Leong, C. T., Radhakrishnan, V. R., and Buang, A. (2006). Inherent Safety Tool for Explosion Consequences Study. *Loss Prevention in the Process Industries.* 19, 409-418.
- Mohd Yusof, K., Phang, F. A., Sadikin, A. N., and Kamaruddin, M. J. (2014). Determining the Effect of an Engineering Overview Assignment on First Year Students. 121st ASEE Annual Conference & Explosition. 15-18 June 2014, Indianapolis.
- Murakami, S., Kawakubo, S., Asami, Y., Ikaga, T., Tamaguchi, N., and Kaburagi, S. (2011). Development of a Comprehensive City Assessment Tool: CASBEE-City. *Building Research & Information.* 39(3), 195-210.
- Naweed, A., Rainbird, S., and Dance, C. (2015). Are You Fit to Continue? Approaching Rail Systems Thinking at the Cusp of Safety and the Apex of Performance. *Safety Science*. 76, 101-110.
- Newman, S., and Goode, N. (2015). Do Not Blame the Driver: A Systems Analysis of the Causes of Road Freight Crashes. Accident Analysis and Prevention. 76, 141-151.
- Nivolianitou, Z., Konstandinidou, M., and Michalis, C. (2006). Statistical Analysis of Major Accidents in Petrochemical Industry Notified to the Major Accident Reporting System (MARS). *Hazardous Materials*. 137(A), 1-7.
- Nordin, N. N., Ali, M. W., Asli, U. A., Ahmad, A., and Kidam, K. (2016). Inherent Safety Index for Proton Membrane Fuel Cell Vehicle System. *Jurnal Teknologi*. 78(8-3), 117-126.
- O'Keeffe, V. (2016). Saying and Doing: CALD Workers' Experience of Communicating Safety in Aged Care. *Safety Science*. 84, 131-139.
- Ozmec, M. N., Karlsen, I. L., Kines, P., Andersen, L. P. S., and Nielsen, K. J. (2015). Negotiating Safety Practice in Small Construction Companies. *Safety Science*. 71, 275-281.
- Palaniappan, C., Srinivasan, R., and Tan, R. (2002a). Expert System for the Design of Inherently Safer Processes. 1. Route Selection Stages. *Ind. Eng. Chem. Res.* 41, 6698-6710.

- Palaniappan, C., Srinivasan, R., and Tan, R. (2002b). Expert System for the Design of Inherently Safer Processes. 2. Flowsheet Development Stage. *Ind. Eng. Chem. Res.* 41, 6711-6722.
- Rasmussen, M., Standal, M. I., and Laumann, K. (2015). Task Complexity as a Performance Shaping Factor: A Review and Recommendaitons in Stardardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) Adaption. *Safety Science*. 76, 228-238.
- Rathnayaka, S., Khan, F., and Amyotte, P. (2014). Risk-based Process Plant Design Considering Inherent Safety. *Safety Science*. 70, 438-464.
- Rusli, R., and Mohd Shariff, A. (2010). Qualitative Assessment for Inherently Safer Design (QAISD) at Preliminary Design Stage. *Journal of Loss Prevention in the Process Industries*. 23, 157-165.
- Rusli, R., Mohd Shariff, A., and Khan, F. I. (2013). Evaluating Hazard Conflicts using Inhernetly Safer Design Concept. *Safety Science*. 53, 61-72.
- Salleh, I. S., Mohamad Ali, N. S., Mohd Yusof, K., and Jamaluddin, H. (2017). Analyzing Qualitative Data Systematically using Thematic Analysis for Deodorizer Troubleshooting in Palm Oil Refining. *Chemical Engineering Transaction.* 56. 1315-1320.
- Seider, W. D., Seader, J. D., Lewin, D. R., and Widagdo, S. (2010). Product and Process Design Principles Synthesis, Analysis, and Evaluation. (3rd ed.). New Jersey: John Wiley & Sons (Asia) Pte. Ltd.
- Srinivasan, R., and Nhan, N. T. (2008). A Statistical Approach for Evaluating Inherent Benign-ness of Chemical Process Routes in Early Design Stages. *Process* Safety and Environmental Protection. 86, 163-174.
- The INSIDE Project Team Partners. (2001). *The INSET Toolkit-Inherent SHE Evaluation Tool.*
- Tugnoli, A., Khan, F., Amyotte, P., and Cozzani, V. (2008a). Safety Assessment in Plant Layout Design using Indexing Approach: Implementing Inherent Safety Perpective Part 1 – Guideword Applicability and Method Description. *Journal of Hazardous Materials*. 160, 100-109.

- Tugnoli, A., Khan, F., Amyotte, P., and Cozzani, V. (2008b). Safety Assessment in Plant Layout Design using Indexing Approach: Implementing Inherent Safety Perpective Part 2 – Domino Hazard Index and Case Study. *Journal of Hazardous Materials*. 160, 110-121.
- Tugnoli, A., Landucci, G., Salzano, E., and Cozzani, V. (2012). Supporting the selection of process and plant design options by Inherent Safety KPIs. *Journal* of Loss Prevention in the Process Industries. 25, 830-842.
- Tyler, B. J. (1985). Using the Mond Index to Measure Inherent Hazards. *Plant/Operations Progress*. 4(3), 172-175.
- Waern, M., Kaiser, N., and Renberg, E. S. (2016). Psychiatrists' Experiences of Suicide Assessment. BMC Psychiatry. 16(440), 1-10
- White, K. M., Jimmieson, N. L., Obst, P. L., Gee, P., Haneman, L., O'Brien-McInally,B., and Cockshaw, W. (2016). Identifying Safety Beliefs Among Australian Electrical Workers. *Safety Science*. 82, 164-171.
- Yi-fei, M., Ding-feng, Z., and Zhi-qiang, Z. (2013). Preliminary Study on Safety Performance Evaluation of Petrochemical Plant Layout. *Procedia Engineering*. 52, 277-283.
- Zainal Abidin, M., Rusli, R., Buang, A., and Mohd Shariff, A. (2016a). Resolving Inherent Safety Conflict using Quantitative and Qualitative Technique. *Journal* of Loss Prevention in the Process Industries. 44, 95-111.
- Zainal Abidin, M., Rusli, R., and Mohd Shariff, A. (2016b). Technique for Order Performance by Similarity to Ideal Solution (TOPSIS)- entropy Methodology for Inherent Safety Design Decision Making Tool. *Procedia Engineering*. 148, 1043-1050.
- Zaini, D., Mohd Shariff, A., and Leong, C. T. (2014). Three-Tier Inherent Safety Quantification (3-TISQ) for Toxic Release at Preliminary Design Stage. *Applied Mechanics and Materials*. 625, 426-430.
- Zaini, D., Pasha, M., and Kaura, S. (2016). Inherently Safe Heat Exchanger Network Design by Consequence Based Analysis. *Procedia Engineering*. 148, 908-915.