
 

 

QUANTIFICATION OF SUBMERGED SEAGRASS TOTAL ABOVEGROUND 

BIOMASS FOR MALAYSIAN COASTAL WATERS USING REMOTE 

SENSING DATA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SYARIFUDDIN BIN MISBARI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA 

 

 



 

 

QUANTIFICATION OF SUBMERGED SEAGRASS TOTAL ABOVEGROUND 

BIOMASS FOR MALAYSIAN COASTAL WATERS USING REMOTE 

SENSING DATA 

 

 

 

 

 

 

SYARIFUDDIN BIN MISBARI 

 

 

 

 

 

 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Doctor of Philosophy (Remote Sensing) 

 

 

 

 

Faculty of Geoinformation and Real Estate 

Universiti Teknologi Malaysia 

 

 

 

 

FEBRUARY 2017 

 

 



iii 
 

 

 

ACKNOWLEDGEMENT 

 

 

 

 

I am so grateful to Allah S.W.T for His mercy and for constantly grant me 

the bravery and patience to solve all the problems during this period. I am honored to 

present this thesis as a gift to the people that continuously expressed their support 

and encouraged me to do my best in completing this thesis.  

 

Special thanks to my father, Mr.Misbari Bin Danaem, my mother, Mrs. 

Juhanah Binti Syafie. Thank you for every bit of your prayers and encouragement. I 

am so motivated because of your prayers and supports. Thank you to my younger 

brothers, Salihuddin Bin Misbari and Misrudi Bin Misbari for being patient and 

always supporting me. Thank you also to my relatives for their great supports. 

 

Thank you so much to my supervisor, Professor Sr. Dr. Mazlan Hashim for 

the good guidance and moral support. Thank you to my lecturers including Dr. 

Teruhisa Komatsu from University of Tokyo, Japan and Mr. Samsudin Ahmad, my 

special friend, seniors including Nurul Nadiah and Norin Nazira, my Japanese’s 

friends, Shuhei Ito and Ayaka Morimoto from Tokyo Metropolitan University for 

helping me during seagrass data collection at Merambong area and Tinggi Island, my 

juniors and my fellow friends for their kindness for helping me in accomplishing this 

thesis. Thank you also for their prayers and motivation. Thank you very much. 

 

 

 

 

 

 

 



iv 
 

 

 

ABSTRACT 

 

 

 

 

Multi-species of seagrass forms dense benthic communities in the coastal 

clear (Case 1) and less clear water (Case 2) in Malaysia. There are two types of 

seagrass, i.e. intertidal and submerged, which can easily be found in Malaysia. 

Satellite remote sensing data is an effective tool to be used in many marine 

applications, including monitoring seagrass distribution at large area coverage. The 

emphasizes of this thesis is to determine the best two steps satellite-based approach 

for mapping submerged seagrass and quantifying aboveground biomass at 

Merambong area and Pulau Tinggi, Johor. Multi-platforms satellite data that has 

different data specifications have been used at both Case 1 (water dominated by 

phytoplankton) and Case 2 (water concentrated with water floating substances and 

sediments). The satellite data used for Merambong are GeoEye-1, Worldview-2, 

ALOS AVNIR-2, Landsat-8 OLI and Landsat-5 TM, while the satellite data for 

Pulau Tinggi are Worldview-2, ALOS AVNIR-2, Landsat-8 OLI and Landsat-5 TM. 

The robustness of seagrass detecting techniques, namely Depth Invariant Index (DII) 

and Bottom Reflectance Index (BRI) on remotely sensed data at different water 

clarity have been tested. Both techniques require measurement of radiance, deep-

water radiance and ratio of attenuation coefficients while BRI needs few additional 

elements from nautical chart and tide calendar to attain information of the sea bottom 

depth during satellite passes. Ground truth data has intensively been collected at both 

study areas to validate and assess the finding of this study. Comparative assessment 

and analysis between both techniques revealed that BRI is best to be used on 

Landsat-8 OLI (93.2% user accuracy) in Case 2 water while (95.0% user accuracy) 

in Case 1 water to identify submerged seagrass. An empirical model has been 

developed to devise quantification of aboveground biomass and the temporal 

changes by associating insitu seagrass coverage data with BRI value on the satellite 

images. Submerged seagrass biomass quantification using remotely sensed data is 

feasible in Case 2 water at required scale and accuracy (>80%), depending on the 

field data sufficiency, technique and choice of satellite data. In conclusion, Landsat-

8 OLI with 16-bits quantization level produces more accurate results than 

Worldview-2 and GeoEye-1. It is able to cover a large area of study, hence it is very 

useful for spatio-temporal seagrass biomass monitoring project by local policy 

makers and related agencies. 
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ABSTRAK 
 

 

 

 

Rumput laut berbilang spesies membentuk komuniti padat hidupan bentos di 

perairan pantai jernih (Kes 1) dan kurang jernih (Kes 2) di Malaysia. Terdapat dua 

jenis rumput laut, iaitu separa tenggelam dan tenggelam sepenuhnya boleh dijumpai 

di Malaysia. Data satelit penderiaan jauh adalah mekanisma yang efektif dalam 

pelbagai aplikasi marin, termasuk pemantauan taburan rumput laut meliputi kawasan 

yang luas. Tesis ini menekankan dua langkah terbaik berasaskan satelit bagi 

pemetaan rumput laut tenggelam dan pengiraan biojisim atas tanah di kawasan 

Merambong dan Pulau Tinggi, Johor. Beberapa data satelit yang berbeza 

spesifikasinya telah digunakan untuk perairan Kes 1 (air didominasi dengan 

fitoplankton) dan perairan Kes 2 (air berkepekatan tinggi dengan bahan terampai dan 

sedimen). Data satelit yang digunakan di Merambong ialah GeoEye-1, Worldview-2, 

ALOS AVNIR-2, Landsat-8 OLI dan Landsat-5 TM, manakala data satelit yang 

digunakan di Pulau Tinggi ialah Worldview-2, ALOS AVNIR-2, Landsat-8 OLI dan 

Landsat-5 TM. Keteguhan teknik pengesanan rumput laut iaitu indek kedalaman 

tidak berubah (DII) dan indek pemantulan dasar (BRI) telah diuji ke atas data 

penderiaan jauh dalam tahap kejernihan air yang berlainan. Kedua-dua teknik 

memerlukan pengukuran nilai radian pembalikan sinar, radian air dalam dan nisbah 

koefisien pengurangan cahaya dalam air, manakala BRI memerlukan beberapa 

elemen tambahan daripada carta nautika dan kalendar pasang surut air bagi 

mengetahui kedalaman dasar laut ketika satelit melintas. Data sebenar di lapangan 

dikutip secara intensif di kedua-dua kawasan kajian bertujuan mengesahkan dan 

menilai hasil kajian. Penilaian perbandingan dan analisa di antara kedua-dua teknik 

menunjukkan bahawa BRI lebih baik digunakan ke atas data Landsat-8 OLI (93.2% 

ketepatan pengguna) di kawasan perairan Kes 2 manakala  (95.0% ketepatan 

pengguna) di perairan Kes 1 bagi mengenal pasti rumput laut yang tenggelam 

sepenuhnya. Sebuah model empirikal dibangunkan bagi pengiraan biojisim rumput 

laut atas tanah dan perubahan berkala dengan menghubungkait litupan rumput laut di 

lapangan dengan nilai BRI imej satelit. Pengiraan biojisim rumput laut tenggelam 

sepenuhnya menggunakan imej penderiaan jauh adalah boleh dilaksanakan di 

perairan Kes 2 pada skala yang dikehendaki dan ketepatan (>80%), bergantung 

kepada kecukupan data lapangan, teknik dan pemilihan data satelit. Kesimpulannya, 

Landsat-8 OLI yang mempunyai 16-bit tahap kuantisasi menghasilkan keputusan 

yang lebih tepat berbanding Worldview-2 dan GeoEye-1. Ia berupaya merangkumi 

kawasan kajian yang luas, maka ia sangat berguna bagi projek pemantauan berkala 

biojisim rumput laut oleh penggubal polisi tempatan dan agensi-agensi berkaitan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background  

 

 

Seagrass forms dense submerged vegetative communities in shallow water in 

global coastal environment. Seagrasses are the only aquatic flowering plant that are 

able to grow submerged in the marine environment (Den, 1970) from low to high 

biomass content that needs to be quantified. At the present time, at least 60 species 

(Green and Short, 2003) of submerged aquatic vegetation including seagrass, 

macroalgae and microalgae were reported to exist in global coastal water. 

Functioning as natural ecosystem engineers (Jones et al., 1998), seagrasses are 

angiosperm aquatic plants that are vital for coastal environment. A number of 

scientific reports state that seagrass meadows offer a diverse ecosystem services 

(Unsworth, 2014; Short, 2011; Orth, 2006; Mumby; 1997) such as dampening of 

flow, oxygenation of the water and sediments, help in maintaining water quality, 

stabilization of the sediments from the land, provision of a nursery and spawning 

grounds for numerous species and are a direct food resource for a number of species.  

 

 

Globally, seagrass meadows can be found in most shallow on-shore areas 

(den Hartog, 1970). They also provide nursery habitat for copious juvenile fish and 

invertebrates, feeding grounds for endangered marine species like dugongs and sea 

turtles and protection against coastal erosion (Nagelkerken et al., 2000; Costanza et 

al., 1997; Bell and Pollard, 1989; Orth et al., 1984). However, natural and 
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anthropogenic disturbances are key factors of global seagrass declination (Green and 

Short, 2003). Human activities and extreme natural disasters have significantly 

increased water turbidity and nutrient concentrations thus degrading the seagrass 

ecosystem (Yang and Yang, 2009). These are considered as being the primary cause 

of seagrass losses (Duarte, 2002; Short and Echeverria, 1996). As seagrass adapts 

well in coastal water, remote sensing satellite can be employed to monitor its 

changes over large areas (Kirkman, 1996). 

 

 

 

 

1.2 Seagrass Total Aboveground Biomass (STAGB) 

 

 

Seagrass Total Aboveground Biomass (STAGB) is defined as the biomass of 

seagrass body parts growing above the sea floor, excluding continuous and ramified 

roots. According to the IPCC Good Practice Guidance for Land Use, Land-Use 

Change and Forestry (LULUCF) in 2003, aboveground biomass is all living biomass 

above the soil including stem, stump, branches, bark, seeds, and foliage. For this 

purpose, the wet and dry weight of above part of multi-species seagrass is measured 

in the laboratory before and after drying process using oven at a specific time and 

temperature. The physical seagrass structure is shown in Figure 1.1 to distinguish 

below and above parts of seagrass in their natural habitats. Compared to intertidal 

seagrass, the quantification of aboveground biomass of submerged seagrass remains 

a challenge in remote sensing field. The loss of seagrass indicates the reduction of 

total biomass of submerged aquatic vegetation that plays an important role to marine 

species and coastal ecosystem. Seagrass biomass information is very valuable for 

managing and appraising marine environment including ocean carbon, ocean 

sedimentation, fisheries industry and sustainability of many ecosystems, since the 

respond of seagrass to environmental alterations is quick.  
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Figure 1.1 Above and below ground of seagrass physical structure.  

         (Source: Fourqurean, 2012) 

 

 

For more than a decade, substantial ecological and benthic mapping research 

has been conducted with the aim of mapping seagrass spatial distribution, 

quantifying STAGB manually and developing at least rudimentary algorithm to 

detect seagrass and quantify STAGB from satellite data. Satellite remote sensing 

data offers synoptic view over large area and very good seagrass detection result if 

the acquired data fulfills the following criteria: i) spatial resolution depending the 

spatial scale of project site; ii) spectral and temporal resolution; iii) adequate 

radiometric and geometric quality and iv) cloud-free or low cloud coverage as short 

wave visible wavelength can penetrate to substrate level. Baseline maps and 

temporal changes of seagrass spatial extent can be created and determined using 

large spatial coverage of remote sensing images (Ferguson et al., 1993), including 

seagrass percentage cover (Gullstrom et al., 2006) and above ground biomass 

(Mumby et al., 1997). Fine pixel resolution offers high accuracy of remotely sensed 

maps of seagrass with 75%-100% overall accuracy in areas of shallow and clear 

water, large homogeneous seagrass meadows and water depth of less than 5m 

(Lyons et al., 2013; Robbins, 1997; Mumby et al., 1997). In contrast, many near 

shore areas in Malaysia are often characterized by small size and patchy seagrass 

areas with multiple-species growing in coastal waters. Some water area within 

seagrass habitat have limited visibility, which is an indicator for high (more than 4m 

transparency), medium (less than 4m transparency) or low water clarity (less than 

1m transparency) (Lyons et al., 2013). This study focuses on the total aboveground 

biomass quantification of seagrass at both Case 1 and Case 2 tropical coastal water 

using remote sensing approach on satellite remote sensing data
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Case 1 water is water that has optical properties determined by high 

phytoplankton (chl-a) where the concentration with respect to scattering coefficient 

at 550nm (wavelength) is >1. Case 2 water is determined by everything else (man-

made & natural substances) such as color-dissolved organic material (CDOM) and 

mineral where the concentration does not co-vary with phytoplankton (<1 ratio with 

scattering coefficient). In contrast to Case 1 water, Case 2 water represents a major 

challenge to STAGB quantification. The capability of remote sensing data with 

appropriate techniques has never been tested and reported for such non-ideal water 

condition. To distinguish seagrass from other submerged features that inhibit similar 

environment, such as seaweed on satellite image requires good compromise between 

satellite image characteristics and seagrass detection techniques. Similar to seagrass, 

various species of seaweed are green in color, as pigments on their leaf absorbs 

strongly in blue band (400-500nm) while reflecting sunlight peaked in green band 

(555-630nm) (Pinnel et al., 2004). Nevertheless, it is crucial to determine the 

accuracy of STAGB quantification in wider regions if remote sensing is to be 

effectively used to monitor STAGB temporal changes in such environments. Hence, 

more ground truth points were needed in order to attain better results of STAGB 

quantification. 

 

 

Quantifying seagrass biomass is vital for various inputs of coastal related 

studies. However, it is very time-consuming and costly especially for large area 

coverage using conventional method. Using satellite data, STAGB quantification at 

large areal coverage is feasible. Seagrass biomass is the main parameter for further 

quantification of carbon sequestration and carbon sink in the ocean because 

chlorophyll pigment on seagrass blade and leaf will require sunlight for food 

production through photosynthesis. Seagrass accounts for more than 10 percent of all 

the carbon buried in the oceans each year (Emily, 2009). As a byproduct, oxygen 

will be released out to the atmosphere for aquatic organisms and sustainable marine 

ecology in general. Therefore, seagrass also influences the climate changes that have 

occurred recently in global scale since seagrass will reduce a huge amount of carbon 

sink from the atmosphere because seagrass meadows are 50 times more proficient to 

absorb and sequester carbon compared to the same area of tropical forest (IPCC, 

2012). 
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1.3 Problem Statement 

 

 

Existing requirement of seagrass biomass quantification is very important 

and estimations have been done in tropical and temperate seagrass habitat. However, 

the previous work is limited to intertidal seagrass area in clear water only because 

the destructive sampling of seagrass biomass was done during low tide and clear 

water apparently enabling seagrass mapping using simple remote sensing approaches 

such as image enhancement method and zonal analysis. Nevertheless, seagrass 

occupies 0.1% of total ocean floor is expected to consist of more than 60% 

submerged as opposed to intertidal (UNEP-WCMC, 2005). Hence, two gaps are 

remained. Although satellite images have been used, the submerged seagrass has still 

not been detected in less clear water. In addition, there is still no such attempt for 

quantitative submerged STAGB in less clear water using water column correction 

technique on satellite images. 

 

 

One of the critical issues regarding submerged seagrass detection using 

remote sensing approach is suitability of spatial resolution on different water clarity. 

Lack of study emphasized the detection of submerged seagrass in less clear water for 

large area, especially in Malaysia. Although seagrass is able to be detected using 

established water column correction and mapping of its extent is frequently reported 

in many studies, a method for submerged seagrass habitat in Case 2 coastal water 

from satellite remote sensing data is not generated. As a result, the suitability of 

satellite data characteristics for STAGB quantification for different scale and 

accuracy has never been revealed. Satellite data ranging from medium (30m) to fine 

resolution scale (less than 1 m) for seagrass is assessed to test the robustness of 

detection techniques at different water case. Furthermore, limited number of study 

has been conducted using digital satellite image as the main tool for STAGB 

quantification. Empirical model on STAGB estimation in Malaysia from two water 

column correction techniques, namely Depth Invariant Index (DII) and Bottom 

Reflectance Index (BRI) on satellite images, has rarely been explored, thus are 

intended to be assessed in this study. Moreover, evaluation of differences of STAGB 

in clear and less clear water in synoptic scale is rarely reported, even in ground-
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based approach. Thus, devastation of seagrass meadow in Malaysia at such scale has 

not been assessed until now.  

 

 

Moreover, complex coastal environment for STAGB quantification using 

remote sensing technology remains unclear. STAGB quantification in Case 2 water 

as shown in Figure 2 has its own set of problems due to presence of suspended 

particle matter (SPM), CDOM or gelbstoff and algae bloom. Many studies have been 

conducted in identifying seagrass meadow along the coastal region in different 

climates. However, the robustness of remote sensing technique to quantify STAGB 

in coastal water study is still rare, less populated study and not been clearly proven 

yet by any global researchers. This is because the turbidity of Case 2 tropical water 

has a significant effect on contributing factors of extension or gradual shrinkage of 

seagrass bed areas such as light penetration ability, phytoplankton or zooplankton 

concentration and water leaving radiance.  

 

  
      (a)                              (b) 

Figure 1.2 (a) Seagrass habitat in Case 1 water at Tinggi Island; (b) Case 2 

water nearby Merambong shoal. 

 

Despite the great importance of seagrass biomass quantification, the demand 

by environmental policy makers to obtain the actual amount and dynamic change of 

STAGB is increasing tremendously. Declining rate of seagrass in Malaysian coastal 

water is still not reported for large regions, thus the impact of coastal development 

on seagrass loss is not significantly measured. Therefore, remote sensing data has 

successfully assisted many researchers to obtain the TAGB of seagrass for wide and 
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shorter time interval to avoid the high cost and time consumption. However, before 

satellite data was intensively used, conventional methods that require harvesting of 

seagrass from their habitat have been practiced widely. It is impractical to be 

operationalized in a long-term practice.  

 

 

The following are the main research question focused in this study: 

i. What is the influence of medium to fine spatial resolution of satellite images 

on the accuracy of submerged seagrass detection? 

ii. Can STAGB be quantified in both Case 1 and Case 2 coastal waters using 

remote sensing approach?  

iii. How can the changes of STAGB be feasibly quantified using multi-temporal 

remote sensing data? 

 

 

These research questions are motivation for exploring the feasibility of various 

specifications of remotely sensed data for submerged seagrass detection and STAGB 

quantification in both clear and less clear water. 

 

 

 

 

1.4 Objectives of Study  

 

 

The main aim of the research is to map submerged seagrass using remote 

sensing approach on multi-platforms of remotely sensed data and to quantify 

submerged STAGB from satellite remote sensing image. 

 

 

To ensure the research aim is successfully achieved, the specific objectives of 

study are: 

 

i. To examine and analyze satellite spatial resolution suitable for mapping 

spatial distribution of submerged seagrass. 

ii.  To devise method for quantifying total aboveground biomass of seagrass in 

Case 1 and Case 2 tropical coastal water using remote sensing. 
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iii. To devise spatio-temporal quantification of STAGB using satellite multi-

temporal image for detection of STAGB changes. 

 

 

 

 

1.5 Scope of Study  

 

 

The study has several scopes: 

 

i) Subtidal seagrass habitat 

 

Submerged seagrass specifically referred to seagrass grows under the water 

that is not exposed in any time even in the lowest low tide in the area and such area 

is called subtidal area. This means that the detection must compensate for water 

column correction model as it is not exposed. Using satellite-based approach, not 

only are continuous dense seagrass meadow but also, patchy seagrass was 

considered in STAGB quantification since water column correction model will 

correct water column effect on all satellite data. The compensation for water column 

correction is based on DII and BRI as both models set the mathematical solution in 

detecting submerged seagrass and STAGB. This is the main gap in remote sensing 

that has not been reported quantitatively for submerged STAGB in less clear water. 

 

 

ii) Suitability of spatial resolution of satellite images 

 

In this study, satellite image of medium to fine spatial resolution of optical 

passive satellite sensor that consist of Landsat-5 TM, Landsat-8 OLI , ALOS 

AVNIR-2, Worldview-2 and GeoEye-1are used for submerged STAGB 

quantification. All these digital images have unique specifications in terms of spatial 

resolution, spectral resolution, radiometric resolution and temporal resolution, which 

provide a comparative result at different spatial scale. This information is described 

in detail in Chapter 3. All these images were selected because the suitability of 

different spatial resolution and other characteristics for submerged seagrass detection 

was assessed by confusion matrix. The focus is to determine the best spatial 

resolution to enable STAGB quantification at large or small spatial scale. Low 
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spatial resolution images such as MODIS (250m-1km), NOAA series (1km) and 

SeaWIFS (1km) are not fit in this study to quantify such small seagrass features from 

space since very large pixel size tends to underestimate seagrass presence compared 

to homogeneity properties shown by non-seagrass features, causing pixel 

misclassification. Close-range remote sensing such as SONAR is only used as a 

supporting data in validation process because it is collected from ground level that 

has more accurate measurement than satellite view. 

 

 

iii) Water column correction model 

 

Water column correction models, namely BRI and DII model for STAGB 

quantification, are important in this study. Both established models were selected 

because both are effective to be used in correcting water column effect for 

submerged seagrass detection in any levels of water clarity, but must have good 

compensation with depth. Determination of most suited model for seagrass detection 

on different spatial resolution was done through statistical inference. The focus of 

this approach is to generate STAGB quantification empirically from the detected 

spot of submerged seagrass. In this study, the method is newly introduced since no 

such attempt has been made to quantify TAGB for submerged seagrass in less clear 

water. All the results are validated using ground truth points at both study areas and 

statistical justification including overall accuracy, kappa statistic, user accuracy, 

determination coefficient (R
2
), root mean square error (RMSE); is provided to assess 

the accuracy of seagrass detection and submerged STAGB quantification. 

 

 

iv)  Mixed-species seagrass biomass quantification 

 

In this study, although seagrass occurrence may consist of more than one 

species, all the species are termed as seagrass. The quantification of STAGB is not 

specific to a particular species since the tropical coastal water has high richness of 

seagrass species and only multispectral satellite images were used in this study. In 

order to differentiate seagrass species, it is out of scope of this study as we do not 

use narrowband satellite data such as hyperspectral images such as ALI Hyperion 

that enable such differentiation of species. It is not used in this study because the 
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technique is only tested on particular visible band on multispectral satellite images 

and hyperspectral image is difficult to obtain with low cloud coverage at these areas. 

In this study, there is an assumption that the biomass quantify at the ground for small 

seagrass species is relatively uniform. Only Enhalus acoroides shows significant 

difference in physical structure among seagrass species in terms of the long leaf 

blades. For ground based measurement, only one standard guideline sampling 

designed by McKenzie and Campbell (2002) which also practiced by Save Our 

Seahorse (SOS) organization is used in recoding the percentage of seagrass coverage 

within a designed quadrat during ground data collection at study site. This is 

described in more detail in Chapter 3. SOS is a periodic three-day environmental 

program organized by local environmentalist conducted on Merambong shoal to 

increase the awareness of public community like school students to save seahorses 

that live on seagrass meadow.  

 

 

v) Only seagrass aboveground biomass 

 

Only the morphological structure of above sea floor seagrass, including 

leaves, shoots, stem, and branch are considered to be quantified using satellite 

remote sensing image although roots and rhizome of certain species of seagrass have 

higher biomass content. Allometric quantification approach would consider 

biological physical structure of different species of seagrass. The quantification 

would be derived by voxel-based technique. Below part of the seagrass body 

structure is not considered for biomass quantification. 

 

 

 

 

1.6 Significance of Study  

 

 

Sustainability of coastal would support security of fishing resources in order 

to safeguard protein source and food security of the world. In order to do that, 

coastal conservation has been emphasized and this is within the millennium goal of 

Unite Nation (UN) where each country including Malaysia rectifies some authority 

management for coastal conservation. At global scale, seagrass biomass information 
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is crucial in managing ocean productivity and mitigating unpredicted natural hazards 

due to climate change. Seagrass is very important in economy and ecology, similar 

to forest and coral reefs. A recent study estimated the annual economic value of 

seagrass bed is at US$19 000 per hectare (Unsworth and Cullen, 2013). Malaysia is 

well known for their mega-diversity of flora and fauna in coastal environment, 

including frequent sightings of dugong at the Straits of Johor  because seagrass is 

their primary food source.  

 

 

At regional scale, this study provides information of submerged seagrass in 

Malaysia to be integrated with information of another country in south-east Asia 

since this region has high number of seagrass species. To ensure coastal area is ideal 

for seagrass habitat, Malaysia takes many initiatives to improve such as gazette 

Marine Park, commercial fishery activities and policy managed and regulated by 

government agencies such as Department of Environment, continuity of fish 

resources and food security of the country. One of the main sources of blue carbon is 

seagrass biomass since seagrass requires a sufficient amount of light to synthesize 

food through photosynthesis by consuming carbon dioxide. Biomass is the 

absorption and accumulation of carbon into organic matter and is 50% contributed 

by carbon (Brown et al., 1997). At local scale, this study is benefited to related 

government agency, local authorities, fishery departments and research institutes to 

plan for conservation and restoration of seagrass habitat sustainability. The 

capability of receiving an average of 12 hours of intense sunlight a day serves great 

potential of plant biomass energy, carbon sequestration and carbon sink information 

to be explored, especially to cope with the problem of global warming and weak 

ecosystem sustainability in this country. Therefore, in desiring to create remarkable 

contribution in this field of knowledge, this study is purposely conducted to 

introduce new approach of STAGB quantification techniques for Case 1 and Case 2 

water using satellite data where it is the novelty of this study. 

 

 

 Under National Environmental Act 1974, Malaysia is intended to reduce 

carbon emission in 2020 by 40%. Using remote sensing approach, this study 

provides a better approach to achieve the mission by quantification of submerged 

STAGB in any level of water clarity with implementation of remote sensing 
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knowledge to avoid massive destructive sampling of their natural habitat. In fact, this 

study help to cut the cost and shorten the time required to quantify seagrass biomass 

while concurrently preserving their presence in nature. Through this study, a report 

based on the STAGB and seagrass extent trend of changes over few years for both 

seagrass habitat at different water clarity is written to confirm the coastal health 

status. This report will help marine agency to analyse the impact of vast coastal 

development and mitigate plans for conservation and preservation of seagrass habitat 

for fisheries, stabilize water clarity and sustain the ecological marine of nearby 

coastline and its vicinity. 

 

 

In addition, this study provides suggestions related to STAGB sampling and 

technical operation on various resolutions of remote sensing data to yield the best 

reliable approaches for STAGB quantification using remotely sensed data. This 

study also served to enable people without prior knowledge of seagrass to obtain 

better understanding and information of the importance of seagrass in marine 

ecology and coastal environment sustainability. This study helps to inform people 

how critical the marine ecology is due to the sharp reduction of the extent of seagrass 

and STAGB in the present situation because seagrass is very important in reducing 

the excessive carbon dioxide in the atmosphere. Thus, quantification of STAGB 

leads in assisting the action of controlling the tremendous impact of global warming 

phenomenon by releasing more oxygen to the atmosphere through seagrass blade 

and leaf. Moreover, this study is expected to raise peoples' awareness of seagrass 

habitat conservation and coastal ecosystem in the long term by taking effective 

actions as suggested by the international and local expertise. 

 

 

 

 

1.7 Study Area  

 

 

Merambong shoal is located Northeast of Merambong Island, one of the most 

significant natural marine frontiers between Malaysia and Singapore as shown in 

Figure 1.3. It is 1.8 km from north to south and up to 200 m from east to west 

located in the Straits of Johor, Malaysia, situated at latitude of 01
o 

19.979’ North and 
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103
o 
35.965’ East; covering an approximate area of 42.6km

2 
that covers Tanjung 

Kupang, Tanjung Adang, Merambong and Merambong Island. It is the largest single 

tract of intertidal seagrass bed in Malaysia that is, surrounded by Case 1 water. In 

Malaysia, the Merambong shoal is claimed to be the most extensive intertidal 

seagrass meadow (Sidik et al., 2006). This area is characterized as one of the Marine 

Parks in Malaysia and is home to myriad marine biodiversity including pipefish, 

seahorse, dugong, sea turtles; and extensive development of subtropical benthic 

habitat features in shallow to deep waters (Choo, 2006). Of the 15 seagrass species 

known from the region (UNEP-WCMC, 2005) claimed as the richest species of 

seagrass in the world, 10 species can be found here which is the maximum number 

of seagrass species in Malaysia (Sidik et al., 2006). Submerged benthic habitats 

present on site during fieldwork included seagrass (Enhalus acoroides, Halophila 

ovalis, Cymodocea serrulata and Halodule univervis (Sidik et al., 2012), seaweeds: 

Sargassum, Chaetomorpha minima (Phang, 1994; Phang, 2006) and insignificant 

population of coral reef (Toda et al., 2007), with a water depth range from 0.3 m to 

11.9 m  with the majority of seagrass habitats limited to water depth less than 2 m. 

Seagrass patches vary in size and density all outside this shoal. At Merambong shoal, 

oval-shaped seagrass, Halophila ovalis is the preferred food for dugong. Dugong 

feedings help to boost seagrass regenerative process and create microhabitats for 

smaller invertebrates. The substrate comprises  unconsolidated soft sediments, 

including muddy to shelly sands with occasional hard bottom areas. Mangrove forest 

dominates the land and sea boundaries along the coast in muddy areas (Duke, 1992).  
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Figure 1.3 Straits of Johor surrounding Merambong shoal. Depth (blue line) is in 

meter. 

 

 

Tanjung Piai and Pulai River were gazetted as a Ramsar site in 2003 and 

recognized as a Wetland of International Importance while Merambong shoal and 

Merambong Island are unprotected and vulnerable to the incessant development 

looming nearby. The water temperature remains 28
o
C to 29

o
C throughout the year 

with moderate water clarity, typical for an area with hectic coastal urbanization, busy 

shipping lanes of Tanjung Pelepas Port and sand dredging activity. It is intensively 

used for many scientific research activities. In addition, coastal development, 

including large port area, power plant project, vast development on the opposite site 

of Singapore and man-made island called ‘Banker Island’ are very close to 

Merambong shoal. Threats from human activities such as sand mining, oil pollution, 

transportation avenues and land reclamation for port facilities have destroyed most 

of these habitats (Sidik et al., 2006). 

 

 

Another study site considered in this study is Pulau Tinggi or written as 

Tinggi Island in this study. It is one of continental isolated islands nearby Mersing, 

Johor and is located 12 km off to the southeast coast of Peninsular Malaysia as 
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shown in Figure 1.4. Submerged features such as seagrass, coral reefs, seaweed and 

aquatic life are easily observed visually in shallow waters of less than 8 m since the 

water is very clear, categorized as Case 1 water where chlorophyll-a is dominant 

element in the water, with less sediment and dissolved material. Relatively, Tinggi 

Island water is deeper than Merambong Island as the subtidal seagrass habitat can be 

found as deep as 40 m. Only 5 to 7 seagrass species namely Thalassia hempirichii, 

Cymodocea rotundata, Syringodium isoetifolium, Halophila ovalis and Cymodocea 

serrulata, can be found here, which is less than the number of seagrass species that 

can be found at Merambong area. Seagrass patches around this area have various 

size. Compared to Merambong, many coral reefs can easily be found here especially 

at northern part of the island and along the white sandy area. In 1994, the Malaysian 

government gazetted Tinggi Island and a few adjacent continental islands as Marine 

Park under Fisheries Act 1985 (Amended, 1993). Hence, no significant and intensive 

construction work could be seen here which further leads to preservation of natural 

marine ecology including seagrass meadow and its density. This study site is 

important as a comparative site to Merambong area to analyse their differences and 

similarities in terms of capability of remote sensing knowledge for seagrass 

distribution and STAGB quantification in both Case 1 and Case 2 water. 

 

Figure 1.4 Tinggi Island at Mersing, Johor, facing the South China Sea. 
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1.8 Structure of Thesis  

 

 

This thesis encompasses six chapters. Chapter 1 presents the main issue of 

seagrass aboveground biomass, a background explanation of the topic of study, 

objectives, scope, significant contribution and a succinct methodology of this study. 

In addition, this section gives a general illustration of what the study is all about and 

specifically explains the reason why this study should be conducted which is to 

contribute new knowledge and ideas to the related field especially for shallow 

substrate, in the context of remote sensing for seagrass aboveground biomass study 

in tropical region. Hence, this section effectively introduces seagrass aboveground 

biomass quantification using remotely sensed data as the main topic and specific 

mission of the study that needs to be accomplished. 

 

 

Chapter 2 focused on summarization of a detailed description of background 

information on the research topic, including basic concepts of seagrass biomass 

study in relation to remote sensing data and conventional method, significant 

components of the study, previous studies and the expansion of related fields in 

global scale, ranging from ground-based techniques to satellite data utilization by 

existing techniques to be implemented. The strength and drawbacks of the current 

techniques in previous studies are also discussed in Chapter 2.  

 

 

The research methodology and all the data involved in the study is 

structurally emphasized in detail in Chapter 3. The technique selected is described 

briefly and the sequence of utilization of remote sensing data for the research is 

explained in detail from pre-processing, processing and post processing stages.  

 

 

The findings and results after the implementation of the methodology and 

selected data for this study will be displayed and discussed in Chapter 4 and Chapter 

5. Quantitative and descriptive analysis is carried out thoroughly to justify and 
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provide a better understanding of the correlation between result presentations with 

the objectives of the research as mentioned earlier in the thesis. 

 

 

In Chapter 6, the summary and conclusion of the research are examined and 

recommendation for future research is briefly suggested. Appendix pages show the 

field sheet of this study, dry biomass measurement and marine biodiversity that 

found in study area.   
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