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ABSTRACT 

This study presents the simulation and experimental works for 

Magnetorheological (MR) semi active suspension system in generic vehicles. In 

simulation study, a seven degree of freedom (7-DOF) vehicle model was developed 

using MATLAB-Simulink and verified using TruckSim. A semi active controller 

with road friendliness oriented was developed to reduce vehicle tire force; besides, 

ride comfort becomes the secondary objective of the proposed controller. The 

proposed semi active controllers which are Tire Force Control (TFC), Aided Tire 

Force Control (ATFC) and ground Semi Active Damping Force Estimator (gSADE) 

and simulation results were compared with existing controller known as Groundhook 

(GRD) and passive suspension system. Then, these controllers were applied 

experimentally using generic quarter vehicle model. The overall results showed 

gSADE is the most effective controller in reducing vehicle tire force and improving 

ride comfort. Both reduction of gSADE vehicle tire force and ride comfort compared 

with passive system are similar about 14.2%. In the simulation study, ideal and real 

cases (using MR damper model) were conducted. In the ideal case, two bump 

profiles were used to test the effectiveness of the controller and the results showed 

gSADE recorded the highest improvement of the tire force followed by ATFC, TFC, 

GRD and passive system. The maximum improvement of gSADE control compared 

with passive system is about 21% in reduction of tire force and 22% in improving 

ride comfort. A similar test was conducted using MR damper model, and the overall 

result showed gSADE recorded almost similar improvement of the tire force 

compared with TFC. The maximum reduction of vehicle tire force and improvement 

of ride comfort using gSADE control compared with passive are 15% and 30%, 

respectively.  
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ABSTRAK 

Kajian ini membentangkan kerja simulasi dan eksperimen bagi Magnetreologi 

(MR) suspensi separa sistem aktif dalam kenderaan umum. Dalam kajian simulasi, 

sebuah kenderaan dengan tujuh darjah kebebasan (7-DK) dibangunkan dengan 

menggunakan MATLAB-Simulink dan disahkan menggunakan TruckSim. Kawalan 

separa aktif dengan berorientasikan mesra jalanraya dibangunkan untuk 

mengurangkan daya tayar kenderaan; selain itu, keselesaan perjalanan dijadikan 

objektif sekunder. Pengawal separa aktif yang dicadangkan ialah Tire Force Control 

(TFC), Aided Tire Force Control (ATFC) dan ground Semi Active Damping Force 

Estimator (gSADE) dan hasil simulasi dibandingkan dengan pengawal sedia ada 

yang dikenali sebagai Groundhook (GRD) dan sistem suspensi pasif. Kemudian 

semua pengawal tersebut digunakan dalam eksperimen menggunakan model 

kenderaan suku-umum berskala. Keputusan keseluruhan menunjukkan pengawal 

gSADE paling berkesan dalam mengurangkan daya tayar kenderaan dan 

meningkatkan keselesaan tunggangan. Kedua-dua pengurangan kawalan gSADE 

iaitu daya tayar kenderaan dan keselesaan tunggangan berbanding dengan sistem 

pasif adalah sama iaitu 14.2%. Dalam kajian simulasi, kes ideal dan sebenar 

(menggunakan model peredam MR) telah dijalankan. Dalam kes ideal, dua profil 

bonggol telah digunakan untuk menguji keberkesanan pengawal dan keputusan 

menunjukkan gSADE telah mencatat peningkatan terhadap pengurangan daya tayar 

yang paling tinggi diikuti oleh ATFC, TFC, GRD dan sistem pasif. Peningkatan 

maksima kawalan gSADE berbanding dengan sistem pasif adalah kira-kira 21% 

dalam pengurangan daya tayar dan 22% peningkatan keselesaan tunggangan. Ujian 

yang sama telah dijalankan dengan menggunakan model peredam MR, dan 

keputusan keseluruhan menunjukkan gSADE mencatat peningkatan terhadap 

pengurangan daya tayar yang hampir sama dengan TFC. Pengurangan maksima daya 

tayar kenderaan dan peningkatan keselesaan tunggangan menggunakan kawalan 

gSADE berbanding pasif adalah masing-masing 15% dan 30%.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Problem   

A vehicle that transports goods needs high vehicle stability, ride comfort and 

road friendliness. Some of this vehicle is regularly driven on different terrains, and 

thus the stability of the vehicle needs to be studied to improve the vehicle ride quality 

and road friendliness. Generally, suspension is one of the important systems that can 

be improved to achieve good ride comfort and road friendliness (Woodrooffe, 1995). 

A vehicle suspension system is a mechanism that separates the vehicle body 

(sprung mass) from vehicle wheels (unsprung mass). Ride, handling and safety are 

criteria that always been considered in designing a vehicle suspension. There are three 

types of common suspension being used in the automotive industry namely passive, 

semi active and active suspensions. Many automotive researchers have studied the 

benefits of passive suspension system intensively compared to active and semi active 

suspension. Active suspension control systems rely entirely on external power to 

supply forces to operate the actuators. Although an active suspension provides better 

performance than semi active suspensions, it has major drawbacks such as the need 

for a large external power source, increased complexity and cost and decreased 

reliability. Therefore, research on semi active suspension control systems has grown 

extensively because a semi active suspension offers both the reliability of a passive 

system and the versatility of an active control system; its performance lies between 

active and passive suspension system (Hedrick and Yi, 1991; Yi et al.,1992). 
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In recent years, magnetorheological (MR) fluids have attracted researchers’ 

interest due to their wide range of use as vibration dampers for vehicle suspension 

systems (Bakar et al., 2011). Their damping capabilities can be adjusted very quickly 

by applying suitable electric or magnetic fields (Stanway et al., 1996; Bakar et al., 

2011). MR fluid dampers enable vibration control of semi active suspension systems 

with reaction times in the range of milliseconds; in addition, it requires low power 

consumption. Due to their rather simple mechanical design which involves only few 

moving parts thus ensure high technical reliability and exhibit almost no wear (Butz 

and Stryk, 2002). These fluids can vary their viscosity by varying the magnetic field 

across the fluid. The fluid contains iron particles which are aligned by magnetic field 

(Spencer et al., 1997) and this alignment makes the oil stiffer and rigid. The fluid 

responds very quickly and the alignment can be done within 6.1 ms (millisecond) 

(Symans and Constantinou, 1999). The MR damper is seen as a safe damper, because 

of its action when power loss occurs; after semi active suspension loss its power it will 

reverts to a passive damper. 

Semi active suspension serves the same purpose as passive suspension; the only 

difference is semi active suspension damping forces can be controlled. The idea of 

semi active suspension has been introduced by Karnopp et al. (1974) and the controller 

initially proposed is Skyhook (SKY) control for ride control. Novak and Valasek, 

(1996) have proposed modified skyhook known as Groundhook (GRD) control with 

the purpose of reducing vehicle tire force. Most of the important and basic issue to be 

studied in a semi active suspension system is ride comfort and mostly in passenger 

vehicle. One of the widely used comforts oriented controller which has been 

successfully applied in semi active suspension is Skyhook control. Other numerous 

approaches have also been developed such as optimal control (Savaresi et al., 2005), 

clipped optimal control (Canale et al., 2006; Giorgetti et al., 2006) and H∞ control 

(Du et al., 2005). 

For heavy vehicle, aiming to reduce vehicle tire force is challenging. Cole and 

Cebon, (1989), and Cole et al. (2000) did extensive work on semi active suspension 

for heavy vehicle, both theoretical and experimental. Groundhook control was also 

investigated by Valasek et al. (1997) and shown the reduction of heavy vehicle tire 
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force (Novak and Valasek, 1996; Savaresi et al., 2005). In theory, semi active 

suspension with GRD controller can control tire velocity by installing fictitious 

damper on the vehicle ground; and it shows that the proposed controller is able to 

reduced vehicle tire force. 

1.2 Statement of Problem 

The designer of heavy goods vehicles (HGVs), today are more aware of the 

needs to design suspension system that satisfies an additional criterion, namely road 

friendliness that reduces road damage caused by heavy goods vehicles. The forces of 

interaction between the tires and the road surface induce stresses on the pavement, 

which ultimately will lead to road failure (Tsampardoukas et al., 2008; Yarmohamadi 

and Berbyuk, 2012). For passenger vehicles the contact forces between tires and road 

are too small to cause significant pavement damage (Valasek et al., 1998). The high 

cost of maintenance of highways and road networks, because of premature road failure 

due to heavy traffic has caused global concern. Fluctuating component of tire-road 

force is the main contributor to road damage along with other environmental factors 

(Pable et al., 2007). For HGVs the contact forces between tires and road are 

considerable and hence for these vehicles, suspension parameters need to be selected 

to reduce road damage. 

 

Ride comfort and road friendliness of a vehicle performances are dependent on 

the road that the vehicle travels. Ride comfort is proportional to the absolute 

acceleration of the vehicle body, road friendliness is linked to the vehicle unsprung 

performances (Chen et al., 2010); and stability of the vehicles is related to the tire-

ground (Eslaminasab, 2008).  

The aim of this research is to propose a semi active suspension control for 

generic vehicle, incorporating with magnetorheological damper by developing a new 

control algorithm and investigate the effectiveness of the proposed control structure in 

term of road friendliness and ride comfort. Furthermore, to develop understanding the 

effect of the semi active damper performance response time due to different control 
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strategies through analytical and simulation methods. On the other hand, the 

technology of MR damper in semi active suspension has not yet been adopted for 

heavy vehicle (Eslaminasab, 2008). 

1.3 Objective of the Study 

The primary objective of this study is to propose a new control algorithm for 

generic vehicle to improve road friendliness and ride comfort. The supporting 

objective of this study are: 

1. To develop seven degree of freedom (7-DOF) vehicle ride model and verify the 

passive vehicle model that was developed in MATLAB-Simulink with multi-

body vehicle simulation software. 

2. To investigate the effectiveness of the propose controller which known as Tire 

Force Control (TFC), Aided Tire Force Control (ATFC) and Ground Semi 

Active Damping Force Estimator (gSADE). The investigation in term of road 

friendliness and ride comfort in ideal and practical (application of MR damper 

model) cases. 

3. To develop semi active suspension experimental test rig to validate the 

performance of the propose controller. The semi active suspension test rig is 

based on generic quarter vehicle model using MR damper. 

1.4 Scope of the Study 

The scopes of this study are defined as the followings: 

1. Simulation study is performed on light-heavy duty truck ride (7-DOF) model 

where the parameters are selected from light-heavy duty truck model. The 

vehicle model is validated by comparing the simulation results from 
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MATLAB-Simulink model with vehicle simulation software namely 

TruckSim.  

2. The quarter vehicle test rig was validated by comparing between MATLAB-

Simulink and experiment results. The quarter vehicle model in MATLAB-

Simulink was used to tune the controller parameters and then these parameters 

were applied in the experimental study. 

3. The investigations of the proposed and existing controllers were only 

performed in vehicle ride motion; all the vehicle responses were recorded and 

used to analyzed the capability of the controllers in attenuating vehicle motion. 

The proposed controllers were compared with passive suspension and 

established semi active controller namely Groundhook (GRD).  

4. Semi active suspension using magnetorheological damper model which based 

on Bouc-Wen model were used, where the rheological fluid properties control 

the variable damping force, in simulation study using light-heavy duty truck 

model. 

5. The LORD® Ltd. damper, MR damper (MRD 1005-3) were used in the scaled 

quarter vehicle test rig. The MR damper was controlled by the current generator 

where the amount of current was decided by the controllers.  

1.5 Research Methodology 

Related past research has been reviewed to find out what other researchers have 

done and suitable method to develop semi active suspension system was selected. 

Based on vehicle ride model, related equation of motion was extracted to construct 

passive vehicle model in MATLAB-Simulink and validate that model with TruckSim 

vehicle dynamic software. Similar parameter was selected for both vehicle model, and 

then related vehicle responses were compared. 

After MATLAB-Simulink model was accepted, then the semi active 

suspension model was developed. There are four aspects considered in developing the 

vehicle semi active system; these are vehicle model, control algorithm, current or 

voltage generator and MR damper model.  
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The first aspect is the validated vehicle model; similar vehicle model that was 

developed in MATLAB-Simulink were used in developing semi active suspension 

system. The second part is control algorithm; there are numerous control algorithms 

for semi active suspension but only several controllers are suitable for heavy vehicle. 

Most control algorithms improved vehicle ride only and ignore tire forces; in this 

study, the vehicle performances in term of dynamic tire forces and vehicle ride comfort 

were considered. The proposed controller capabilities in controlling vehicle responses 

will be evaluated by conducting several tests. The propose controller will also be 

compared with existing semi active suspension controller (Groundhook, GRD) to 

study its performances. 

The third aspect is the implementation of current or voltage generator; this 

generator will generate the appropriate voltage or current to be supplied to the MR 

damper model. Voltage generator model was developed using a simple continuous 

state control and this approach has been similarly adopted by other researchers (Sims 

et al., 1999; Lai and Liao, 2002; Hudha et al., 2005; Bakar, 2013). 

The last aspect is MR damper model. MR damper response was modeled by 

modified Bouc-Wen model which was proposed by Spencer et al., (1997). MR damper 

provides semi active force as feedback to the vehicle suspension model and controlled 

by voltage or current generator. When the magnetic field is applied, the particle chains 

formed, the fluid reversibly changes between free flowing fluid to semi-solid (Tian et 

al., 2011). Figure 1.1 shows flow of research procedure. 
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1.6 Significant of Research 

Based on previous study, road friendliness (road damage) are the important 

issue need to be considered in designing a heavy vehicle suspension together with 

vehicle ride comfort. Even though, there are some studies on those criteria but their 

studies were limited to the simulation and most of the studies considered in improving 

passenger vehicles rather than heavy vehicles. Most vehicles used passive suspensions; 

those vehicles are being driven in different terrains and carry goods; so, effective 

control strategies in semi active suspension need to be develop to reduce road damage 

and improve vehicle ride comfort. 

With a new proposed controller, whereby able to reduce road damage; the cost 

of worldwide road pavement issue can be reduced. While, by improving vehicle ride 

comfort, vehicle that carrying goods inside it can reduce the probability from being 

damage; i.e. vehicle that carry machine or anything that sensitive enough from high 

vibration. Proposed controller also can be applied to the passenger vehicle because the 

controller able to improve ride comfort. 

The proposed control performances will be compared with passive and existing 

semi active suspension control (Groundhook, GRD) in ideal case study; then the MR 

damper model will be applied and integrated with the controller as in actual/practical 

case study. This study is not limited to simulation only but extended to experimental 

work, where the proposed controller is tested using scaled quarter vehicle rig to test 

the real time performance of the controller.  

1.7 Contribution of Research 

The contributions of this research are given as follows: 

1. Three new semi active control algorithms were proposed which aim to reduce 

vehicle tire force; these controllers are TFC, ATFC and gSADE. The TFC was 
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designed based on unsprung mass acceleration control, so it able to reduce the 

vehicle tire force during uneven road condition; furthermore, reduce the road 

damage. The ATFC is designed based on the sprung and unsprung acceleration 

control, so that the controller is not only perform on the tire force but extended 

to the vehicle ride comfort. Semi active suspension with gSADE control is 

almost similar concept as ATFC, but the advantages of this controller is it 

maximize the function of MR damper by selecting the best current to send as 

an input to the MR damper.  

2. Simulated performance analysis in ideal and actual/practical studies, and these 

algorithms performance were compared with existed semi active controller 

which is GRD and passive suspension system. In ideal case, the controllers 

were act as perfect system, where all require forces can be achieve. In practical 

studies, the actuator model is applied to the system to give limitation to the 

controller. The proposed and existing controller were performed using similar 

analysis. 

3. Real-time application of these controllers in scaled quarter vehicle test rig; and 

also to compare performances of the proposed controllers with GRD control 

and passive suspension system. The vehicle test rig is interchangeable between 

passive and semi active system. 

1.8 Organization of the Thesis 

Chapter 1 is the introduction chapter. This chapter introduces the background 

of research, problems statement, research methodology, the contribution of research 

and organization of the thesis was clearly described. 

Chapter 2 presents the literature review of related work of semi active 

suspension. In this chapter, the classification of vehicle suspension, the performance 

criteria that considered in designing suspension and related vehicle model was defined. 

This chapter also explained the overview of semi active suspension control which have 

been done by researchers and engineers; and then the research gap was identified.  
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Chapter 3 presents the vehicle ride modelling and validation. This chapter 

describes the vehicle model developed by mathematically. Assumption and limitation 

on the vehicle modelling are also explained. The vehicle model description in 

MATLAB-Simulink and TruckSim software explained. The validation is shown by 

comparing the vehicle responses between MATLAB-Simulink and TruckSim model. 

Finally, the validation of quarter vehicle model in MATLAB-Simulink is presented by 

comparing the vehicle responses between MATLAB-Simulink and experiment. 

Chapter 4 presents the study of a semi active controller in the suspension 

system. Three control algorithms were proposed, these controllers known as Tire Force 

Control (TFC), Aided Tire Force Control (ATFC) and ground Semi Active Damping 

Force Estimator (gSADE). The performances of semi active suspension system using 

the quarter vehicle rig with the used of actual MR damper. This chapter describes the 

development of a scaled quarter vehicle test rig. The components which involved in 

the experiment, and the development of semi active system in real-time are clearly 

explained. Finally, the results of vehicle performances are discussed. 

Chapter 5 present the semi active suspension control which were applied on 

the verified full vehicle (7-DOF) model. The performances of the controllers were 

simulated by two types of road profile as an input, and the vehicle responses was 

compared with the existing controller which known as Groundhook (GRD) control, 

and also was compared with a passive suspension system. Related vehicle responses 

are recorded and discussed. 

Chapter 6 presents the application of the MR damper model in the semi active 

suspension system. MR dampers and voltage generator model are also explained. The 

performances of the proposed controllers were simulated using verified vehicle model. 

Similar road profiles as in the ideal case was used to evaluate vehicle performances. 

Finally, the results of vehicle performances are discussed. 

Chapter 7 gives the overall conclusion of the thesis. This chapter also provides 

several recommendations for future work. 
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