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ABSTRACT

Speech Recognition is widely being used and it has become part of our day

to day. Several massive and popular applications have taken its use to another level.

Most of the existing systems use machine learning techniques such as artificial neural

networks or fuzzy logic, whereas others may just be based in a comparative analysis

of the sound signals with a large lookup tables that contain possible realizations of

voice commands. These models base their speech recognition algorithms on the

analysis or comparison of the analog acoustic signal itself. The sound has particular

characteristics that can not be seen through the representation of its propagation wave

in time. This project proposes speech recognition through an innovative model that

analyzes the graphic representation of the acustic signal, its spectrogram. Therefore

the model does not classify the speech through its acoustic signal but its graphical

representation. This leads the research to an approximation of the problem through

the use of image classification techniques. Image clasification was considered a task

only the humans can do, with the devoloping of machine learning techniques this

perception has drastically changed. This project covers several techniques and shows

the potential of Deep Learning for objects classification and within this field presents

the convolutional neural networks as the most suitable algorithim for the classifcation

of spectrograms. As a method to clearly illustrate the efficacy of the proposed model,

the used alorithim was trained with two self-obtained datasets. Several experiments

were conducted to make a detailed comparison of the system throughput and its levels

of accuracy.
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ABSTRAK

Pengecaman pertuturan digunakan secara meluas dan telah menjadi sebahagian

daripada hari- hari kita. Beberapa aplikasi yang masif dan popular telah mengambil

kegunaannya ke tahap yang lain. Kebanyakan sistem yang sedia ada menggunakan

teknik pembelajaran mesin seperti rangkaian saraf buatan atau logik kabur, sementara

yang lain hanya berdasarkan analisis perbandingan isyarat bunyi dengan jadual carian

yang besar yang mengandungi pernyataan perintah suara yang mungkin. Model-

model ini berdasarkan algoritma pengenalan pertuturan mereka terhadap analisis

atau perbandingan isyarat akustik analog itu sendiri. Suara ini mempunyai ciri-

ciri tertentu yang tidak boleh dilihat melalui perwakilan gelombang rambatan dalam

masa. Projek ini mencadangkan pengecaman pertuturan melalui model inovatif yang

menganalisis perwakilan grafik isyarat akustik, iaitu spektrumnya. Oleh itu, model

ini tidak mengklasifikasikan pertuturan melalui isyarat akustiknya tetapi perwakilan

grafiknya. Ini membawa penyelidikan kepada penghampiran masalah melalui

penggunaan teknik klasifikasi imej. Klasifikasi imej dianggap sebagai tugas yang

hanya dapat dilakukan oleh manusia, walau bagaimanapun, dengan pembangunan

teknik pembelajaran mesin, persepsi ini berubah secara drastik. Projek ini merangkumi

beberapa teknik dan menunjukkan potensi “pembelajaran dalam” untuk klasifikasi

objek dan dalam lingkungan disiplin ini membentangkan rangkaian neural konvulusi

sebagai algoritma yang paling sesuai untuk klasifikasi spektrogram. Sebagai kaedah

untuk menggambarkan kecekapan model yang dicadangkan dengan jelas, algoritma

yang digunakan telah dilatih dengan dua set data yang diperoleh sendiri. Beberapa

eksperimen telah dijalankan untuk membuat perbandingan terperinci mengenai kadar

celus sistem dan tahap-tahap ketepatannya.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

Doctors can classify between a good blood sample, and a bad one.

Photographers can classify if their latest shot was beautiful, or not. Musicians can

classify what sounds good and what does not in a piece of music.

The ability to classify well takes many hours of training. Persons get it wrong

over and over again, until eventually they get it right, that is the normal and appropriate

method of learning. With the development of artificial intelligence techniques it

is possible to replicate these learning processes for training machines to recognize

objects without interfering or programming the decision parameters to be used in the

classification.

There were different attempts to improve the image classification models. In

the 80s and early 90s, researchears tried a similar approach. Think about the features

that makes up an image, and hand code detectors for each of them, but there is so much

variety out there, no two apples look the same, thus the results for classifying images

ended up with models with very low accuracy. This was considered a task only the

humans could do until new artificial intelligence-based models were introduced. They

are capable of classifying several objects with an accuracy of over 95%, better than

humans.

An AI-based model mainly needs a set of data for “teaching” the system the

features of the objects and build a model able to recognize and classify those objects.
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With a quality data set, machine learning algorithms can classify just as well, if not

better than humans can. This technology has been tested and it is currently being

applied in many instances in daily life (industrial process, home, offices, airports, etc).

One of the strengths of machine learning is image classification.

Because of the high accuracy the AI models provide for image classification,

they could be used not only for classifying captured image, video or pictures. Based on

image classification it could be built models to predict the weather, to read the external

parameters from optical sensors, to read the temperature, etc. Their applicability goes

beyond and could be also applied for sound recognition.

Sound could be classified through images by using a graphical representation

of the acoustic wave, transforming the wave into an image, unlike it was previously

done, by analysing the wave itself and its physical behaviour.

Speech recognition has gotten so much better in the past few decades. In the

50s the general consensus amongst computer scientists was that speech signals needed

to first be split into little phonetic units, then those units could be grouped into words

but even thought this seemed like it would work well, this approach did not give us

good results.

The first ever speech recognizer was called Audrey by Bell labs in 1952. It

could only recognize spoken numbers between 1 and 9 and it was built with analog

electronic circuits. The renowned scientist at Bell Labs, John Pierce banned speech

recognition research because the results were not promising enough.

A small group of visionaries at a newly formed team called were against

popular opinion and created a system called Harpy. Harpy used fifteen thousand

interconnected nodes and each represents all the possible utterances within the domain.

They used a brute-force search algorithm to match the speech to the right nodes, and

thus to get the text. This approach was slightly better but then IBM invented something

called the Hidden Markov Model (HMMs) [1].
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HMM represented utterances as states and probabilistic. it was predicted what

a word was by given the phonemes it was made up of. When words like “You”

were pronounced, they could have different durations like “you” or “yoouu”. HMM

captured the plasticity of words by using a probabilistic approach.

The HMM pretty much maintained its position as king of the speech

recognition throughout the 80s and 90s as researches improved them more and more.

Some researches kept trying the artificial neural network models but they did not get

good results. Geoffrey Hinton kept on trying out neural networks until all of a sudden;

started outperforming everything [2]. The key was to give it more data and computer

power, and this is Deep Learning. Nowadays, these Deep Neural Nets are how services

like Siri, Echo, Alexa, Google now hear people speak.

Applications which use speech recognition are becoming part of people’s

routines and are helping to interconnect in better way humans with systems. Because

of its flexibility, software based nature, voice recognition technology is quite versatile

in terms of the possibility of the applications it could be used. Identifying and

authenticating users through the qualities of the voice is contactless, fast and simple

to deploy in different situations where a audio sensor is available. Several examples

could easily illustrate the strength of the speech recognition systems.

• Protect your data and bank account with your voice – Voice biometrics may be

paired with facial recognition to bolster a multi factor system. Combined with

face biometrics, voice recognition could add a higher security level as well as

a built-in liveness detection test. Every person has a different voice frequency

and pattern, it is a unique personal identification, as the finger prints are.

• Purchasing goods and services with the sound of your voice - One of the most

popular and mainstream applications of biometrics is mobile payments, voice

recognition has brought is way into a highly efficient and competitive area.

Several companies are leading the voice authentication to mobile commerce,

aiming to bring suitable security for monetary transactions without using the

physical card and dispensing with a password but the voice of the user.

• Solving crimes with speech recognition – When it comes to a crime scene, the



4

cliché is to find any fingerprints or swab for DNA samples, but those are not

the only traces left behind by criminals. In many cases there not any evidence

but audio samples, in this forensics situations acoustic signals are the only

accessible data available, voice biometrics could be deployed to great effect.

• An AI-based hands free assistant that recognizes who you are – Nowadays, this

is probably the most popular application being introduced by the electronic

devices and gadgets providers. The AI assistants like Siri, Alexa, Echo,

Google, etc. capable to discriminate your voice from the others. In those

voice-activated devices only authorized users could activate them. The user

is able to ask the devices to perform tasks, answer questions or even tell jokes.

The inclusion of speech recognition on electronic devices has also opened

the possibility of voice-based unlock systems allowing users who prefer to go

hands free to use a biometric security feature of their own.

• Controlling devices or procedures by voice commands - There are many

applications where voice recognition can drastically enhance the performance

of the systems by letting the operators uses their voice to take actions or control

any procedure instead of using their hands which in turn may simultaneously

be controlling other processes. This gives the operators an extra actuator, their

voice.

1.2 Problem Statement

Although there are many applications for speech recognition, many of them

are focuses on a major language, there is not a robust one able to process simple voice

commands and which is reliable enough to control electronic devices efficiently in

other languages except English.

Besides the above mentioned, there is not deep previous research of speech

recognition based on the graphic analysis of the acoustic wave.

This research will find a model for speech recognition through the spectrogram

analysis by using machine-learning techniques.
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Usually the representation of an acoustic signal is related to a diagram of the

wave amplitude versus the time of its propagation, the well-known oscillating plots

in the music equalizers displays. For interpretation purposes, a better approach is to

use the relation between the wave amplitude, frequency and its time of propagation:

the spectrograms. They provide detailed information of the acoustic signals that is the

reason why it is important to determine the best representation of them, thus the model

can define stronger features and can extract detailed information of the generated

images.

The goal pursued by this research is to classify spectrograms, thus it will be

used image classification techniques. It is necessary to find the best model to process

this sort of pictograms and set up an optimal parameterized system which results in a

system with an adequate accuracy.

A fundamental part of the research is to find a quality dataset; good results will

depend mostly on that. Because there are not many datasets available, the samples

to be used will be self-collected. An efficient and automated method to collect the

maximum amount of data has to be designed.

The execution of this research will be carried out by using informatics

tools. There is specialized software with built-in libraries, which facilitate the

implementation of neural networks. Several programs are to be used to determine

the one which is more suitable and provides better accuracy for the spectrogram

classification.

1.3 Objectives

Throughout this project, there are four objectives to be achieved.

1. To determine the most appropriate Deep Learning algorithm for speech

recognition based on the analysis of the spectrograms of the acoustic signals.



6

2. To design a system for speech recognition based on spectrograms by using

Deep Learning.

3. To evaluate and analyze the effectiveness and accuracy of the model compared

to similar and traditional speech recognition techniques.

4. To obtain a quality dataset for training and validating the neural network model.

1.4 Scope of Work

The scope of this project is the fundamental task that needs to be carried out in

order to achieve the project objectives. The Scope of this project covers:

1. The different machine learning techniques will be investigated.

2. An algorithm within Deep Learning will be chosen and an optimal

configuration of it will be set.

3. The research will be delimited for a set of 12 words.

4. A quality dataset will be obtained, processed and converted into spectrogram

files for training and testing the model, the process of collecting data will be

automated.

5. It will use 2 different dataset to enrich the results and perform a better

comparison of the effectiveness of the model, Spanish and English.

6. The automation of the data collections and the application of machine learning

algorithms will be developed in Python 3.62 and Matlab.

7. The results are obtained by using machine learning techniques and because

there is not a suitable benchmark for this project, other models will be applied

which will allow doing an effective comparisons.
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1.5 Organization

This report consists of five chapters, which includes introduction, literature

review, methodology, results and conclusions.

Chapter one introduces the overall information regarding to this project. A

general background of the data classification, speech recognition and machine learning

techniques. It also presents the motivation for this research to be conducted by showing

interesting examples where this model could be used. This chapter also identifies the

problem statement, objectives and scope of the work to be carried out.

Chapter two presents an overview of basic concepts to be used within this

project: it includes Speech processing, spectrogram analysis, morphological image

processing, artificial intelligence techniques, deep learning, and convolutional neural

networks. Besides, it is being analyzed previous studies conducted in this field,

consequently, an appropriate model could be develop based on the study and analysis

on those previous works.

Chapter three introduces the proposed solution, an optimal algorithm within

Deep Learning for classifying spectrograms, and thus perform the speech recognition.

In this chapter it is also analyzed the data set acquisition and the automation of

this process. The universe of data is delimited and also the words to be used in

both languages which the model will be applied in. Subsequently, the methodology

implemented throughout this project is presented in this chapter.

Chapter four presents the results of the project and the comparisons among

the different models applied. This chapter includes imperative discussion on the

validity, reliability and efficiency of the proposed model alongside with the depiction of

graphics and data diagrams associated to the experiments done. Chapter five presents

the conclusions obtained after the model and its parameterization has been carried out.

In addition, it is given recommendations for future analysis in this field besides the

future projections for this research and the works, which could be conducted, based on

this project.
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Chapter five presents the conclusions obtained after the model and its

parameterization has been carried out. In addition, it is given recommendations for

future analysis in this field besides the future projections for this research and the

works, which could be conducted, based on this project.
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