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ABSTRACT

Ductility is the main consideration in designing reinforced concrete (RC)
structures. The application of high-strength concrete (HSC) in columns is able to
reduce the column sizes and optimize the floor area of a building. Besides, reduction
in building self-weight can minimise the seismic load acting on the building.
Established Steel Strapping Tensioning Technique (SSTT) by previous researchers
was chosen in this study due to its low material cost and ability to enhance the
ductility of HSC. This research is conducted to study the effectiveness of SSTT in
improving the ductility and deformability of HSC columns subjected to constant
axial load and reversed cyclic horizontal loading which represents simulated seismic
excitation since SSTT is yet to be tested under cyclic loading. A series of
experimental work consisted of ten specimens with concrete compressive strength of
35 MPa, 55 MPa and 85 MPa were carried out. The first series of five specimens
with 55 MPa were tested with different spacing of steel strapping confinement.
Second group of specimens with 85 MPa were confined with different steel strapping
layers and longitudinal reinforcement ratio of 1.78%, 3.56% and 5.12%. The
behaviours of concrete columns were presented in hysteresis load-ductility graphs to
determine the performance of confined HSC columns. The ductility and
deformability of each columns were compared with the pre-analysed estimations.
Results showed that with the increase of steel strapping as confinement, the ductility
and shear resistance of HSC column improves significantly according to certain
configurations. Ultimate displacement of the 85 MPa specimen was improved from
37.82 mm to 71.52 mm due to SSTT confinement. HSC column is able to achieve
the same level of ductility as normal strength concrete column by reducing the
spacing of SSTT confinement. The structure behaviours of SSTT-confined HSC
columns under simulated seismic load have been examined and SSTT will benefit

the construction industry as an alternative solution in confining HSC.
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ABSTRAK

Kemuluran struktur konkrit bertetulang (RC) merupakan perkara utama yang
dipertimbangkan dalam merekabentuk struktur RC. Aplikasi konkrit berkekuatan
tinggi (HSC) pada tiang boleh mengurangkan saiz tiang dan meningkatkan
penggunaan luas lantai dalam banggunan. Dengan itu, kesan daripada daya gempa
bumi dapat dikurangkan pada bangunan tersebut. Teknik pra-tegangan jalur besi
(SSTT) yang telah diperkenalkan oleh penyelidik terdahulu dipilih untuk kajian ini
kerana kos bahan yang rendah dan keupayaannya meningkatkan kemuluran HSC.
Penyelidikan ini dijalankan untuk menilai keberkesanan SSTT dalam meningkatkan
kemuluran dan kebolehcanggaan HSC yang tertakluk kepada beban paksi berterusan
dan kitaran beban mendatar yang mewakili simulasi gempa bumi kerana SSTT
belum pernah diuji dengan beban kitaran. Beberapa siri percubaan yang melibatkan
sepuluh spesimen merangkumi konkrit dengan kekuatan mampatan 35 MPa, 55 MPa
dan 85 MPa telah dilakukan. Siri pertama yang terdiri daripada lima spesimen
55 MPa telah diuji dengan jarak kurungan jalur besi yang berbeza. Kumpulan kedua
dengan kekuatan 85 MPa telah dikurungi dengan lapisan jalur besi yang berbeza dan
nisbah tetulang pada 1.78%, 3.56% dan 5.12%. Sifat-sifat tiang konkrit
dipersembahkan dalam graf beban-kemuluran untuk menentukan prestasi tiang HSC
yang telah dikurung. Kemuluran dan kebolehcanggaan yang diuji pada setiap tiang
dibandingkan dengan anggaran pra-dianalisis. Keputusan menunjukkan penambahan
jalur besi sebagai kurungan meningkatkan kemuluran dan rintangan ricih tiang HSC
Juga meningkat secara ketara dengan konfigurasi yang tertentu. Anjakan muktamad
spesimen 85 MPa telah ditingkatkan daripada 37.82 mm kepada 71.52 mm kesan
daripada kurungan SSTT. Tiang HSC juga dapat mencapai tahap kemuluran yang
setaraf dengan tiang konkrit berkekuatan biasa dengan mengurangkan jarak tutupan
SSTT. Sifat - sifat struktur HSC yang terkurung dengan SSTT telah diperiksa
dengan simulasi beban gempa dan SSTT akan memberi manfaat kepada industri

pembinaan sebagai penyelesaian alternatif untuk mengurung HSC.
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CHAPTER 1

INTRODUCTION

1.1  Background

The earthquake happened at Ranau, Sabah at 07:15 a.m. on 5" June 2015
created a shock to our nation. The seismic event lasted for 30 seconds and was
measured a magnitude of 6.0 on Richter’s Scale. It was the strongest earthquake in
Malaysia since 1976 (MetMalaysia, 2015). The aftershocks were continuous until 27"
July 2015 ranging in the magnitude from 1.6 to 6.0. The aftershocks have mainly
taken place at Tuaran, Kota Belud, Penampang, Papar and Tambunan (MetMalaysia,
2015).

Sabah lies within the Sunda Plate and is experiencing uplift of about 0.5 mm
each year towards the north-west. The movement was believed to initiate the
earthquakes in the onshore area. The impact of the last earthquake resulted in loss of
lives where eighteen people with five different nationalities died. Besides, the affected
buildings and infrastructures had been severely damaged and were closed for
rehabilitation and repairs (The Star, 2015). Consequently, millions of ringgits have

been spent for the rectification works.

In response to the incident, National Security Council was ordered to introduce
an early warning system for earthquakes for important building such as school
buildings. Besides, seismic centre was also introduced in Sabah (The Star, 2015).
Unfortunately, earthquake is unpredictable by the current technology, unlike other

natural events such as eclipse which could be predicted accurately (Chakrabarti et al.,



2008). Therefore, having buildings that can sustain seismic is the safer bet. However,
the existing buildings in the region are not adequate for seismic resistance. Hence,
upgrading of current buildings are urgently needed to protect the structure from failure

as well as giving an ample of time for residents to evacuate safely.

1.2 Problem Statement

Buildings in seismic region demand large inelastic displacements. Numerous
research works have been conducted to determine the behaviour of concrete columns
under seismic loading in the past decades. Existing external confinement method such
as concrete jacketing, steel jacketing and fibre reinforced polymer (FRP) was found
effective in improving the ductility of columns. However, these methods are costly
and labour intensive (Chakrabarti et al., 2008). This makes confining all buildings in

earthquake-prone regions extremely costly.

The usage of high strength concrete (HSC) can reduce the self-weight and
optimise floor area. Reduction of self-weight could minimize the impact of seismic
loading on the buildings. However, the brittle behaviour of HSC has been a major
concern. Thus, improving the material’s ductility is a balancing deed. Regulating
brittleness of HSC is critical to provide safe and sound structure prior to vacant
possession and operation of the building.

A recently established low-cost external confinement method that is steel strap
tensioning technique (SSTT) was found to be effective in improving the ductility of
column. Besides, SSTT material is light-weight. However, information on the
effectiveness of active confining method using steel strap tensioning technique (SSTT)
under seismic loading is still very limited. Hence, a more focused experimental work
is needed for the development of comprehensive database towards safe and sound

design of confined HSC column.



1.3 Aims and Objectives

The aim of this study is to investigate the structural behaviour of SSTT-
confined HSC columns under simulated seismic loading. The detail objectives of the

study are decided as follows:

To determine the deformability of reinforced concrete (RC) columns under
cyclic loads using SSTT as a confining method;

To evaluate the effectiveness of SSTT in improving the ductility of RC

columns;

To investigate the applicability of current design methods on estimating the
ductility of SSTT-confined HSC columns;

Generally, this research presents the experimental work to determine the
behaviour of SSTT-confined HSC columns subjected to the combination of constant
axial load and cyclic lateral load. The performance of confined columns in terms of
ductility, failure mode, and deformation are investigated.

1.4 Significant of study

This study clarifies the effects of different variables, such as concrete
compressive strength, longitudinal reinforcement ratio and transverse confining
configurations on HSC columns subjected to cyclic loading. Besides, this research
gives better understanding on the behaviour of HSC columns confined by SSTT which
has yet to be explored in seismic condition. Additionally, the outcomes of data
analysis will enrich the existing database. Proven and physically tested results are

significant for future research in establishing design guidelines.



1.5

Scope of study

The aim and objectives of this research can be achieved within the following

scope of work:

1.6

Review of related previous experimental works to determine suitable test setup.

Design and construction of specimens with concrete compression strength of
35 MPa, 55 MPa and 85 MPa which represent normal strength concrete and

high strength concrete respectively.

Design and construction of specimens with main reinforcement content of 1.7
%, 3.5 % and 5 %. The contents are decided based on minimum number of
longitudinal at 1.7 % which are four numbers of 10 mm diameter high tensile
steel. Meanwhile, 3.5 % and 5 % were used to represent medium and high

longitudinal bar ratio, p..

SSTT confinement at different spacing from 25 mm, 50 mm, and 75 mm were
adopted. The spacing was selected based on suitable workability. Unconfined

specimen also was prepared as control specimen.

The effects of confining layers were investigated. The number of confining

layers tested were one, two and three layers to represent for low confining level

to high confining levels respectively.

Outline of Thesis

The following chapters are described in this thesis to present the findings and

outcome of this research.

Chapter 1 explains the significant of this research with background of the study.

The cost involves in achieving higher level of ductility is believe to be solve by the



application of SSTT which are light-weight and low-cost. The objectives and the
scope of study are stated clearly to ensure the success of this study.

Chapter 2 presents the literature review of confined HSC and methods of
confinement. Active and passive type of confinement were briefly discuss to have
better understanding on confinement technology. In addition, the well-established
SSTT technique was introduced in this chapter. Related seismic test on RC columns
were studied to define suitable testing variables and their respective range. Theoretical
consideration on shear, flexure and deformation capacity were also deliberated.

Failure modes of RC columns were also reviewed.

Chapter 3 explains the method on construction of the specimen, test setup and
the test procedure. Specimens detail and parameters selection were also described.
Preliminary testing of materials for specimen were reported prior to the construction
of specimen. The yield displacement were established under force-controlled loading
before the loading continues under displacement-controlled.

Chapter 4 reports the result of the experimental test with visual observation of
the column behaviour throughout the testing up to failure. Results were analysed to
determine the response to the columns under quasi — static reversed cyclic loading.
Ductility of the specimens was analysed and compared with the predicted ductility

using graphical and residual limit method.

Chapter 5 concludes the findings of this research. The objectives and the
overall aims of the research were discussed. Lastly, few recommendations are propose

for future work to obtain more input into design and theoretical consideration.
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