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ABSTRACT

Brain signals are derived from underlying dynamic processes and interactions
between populations of neurons in the brain. These signals are typically measured
from distinct regions, in the forms of multivariate time series signals and exhibit
non-stationarity. To analyze these multi-dimensional data with the latent dynamics,
efficient statistical methods are needed. Conventional analyses of brain signals use
stationary techniques and focus on analyzing a single dimensional signal, without
taking into consideration the coherence between signals. Other conventional model
is the discrete-state hidden Markov model (HMM) where the evolution of hidden
states is characterized by a discrete Markov chain. These limitations can be overcome
by modeling the signals using state-space model (SSM), that model the signals
continuously and further estimate the interdependence between the brain signals. This
thesis developed SSM based formulations for autoregressive models to estimate the
underlying dynamics of brain activity based on measured signals from different regions.
The hidden state and model estimations were performed by Kalman filter and maximum
likelihood estimation based on the expectation maximization (EM) algorithm. Adaptive
dynamic model time-varying autoregressive (TV-AR) was formulated into SSM, for
the application of multi-channel electroencephalography (EEG) classification, where
accuracy obtained was better than the conventional HMM. This research generalized
the TV-AR to multivariate model to capture the dynamic integration of brain signals.
Dynamic multivariate time-varying vector autoregressive (TV-VAR) model was used to
investigate the dynamics of causal effects of one region has on another, which is known
as effective connectivity. This model was applied to motor-imagery EEG and motor-
task functional magnetic resonance imaging (fMRI) data, where the results showed that
the effective connectivity changes over time. These changing connectivity structures
were found to reflect the behavior of underlying brain states. To detect the state-related
change of brain activities based on effective connectivity, this thesis further developed a
novel unified framework based on the switching vector autoregressive (SVAR) model.
The framework was applied to simulation signals, epileptic EEG and motor-task fMRI.
The results showed that the novel framework is able to simultaneously capture both
slow and abrupt changes of effective connectivity according to the brain states. In
conclusion, the developed SSM based approaches were effective for modeling the non-
stationarity and connectivity in brain signals.
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ABSTRAK

Isyarat otak berasal dari proses dinamik asas dan interaksi antara populasi neuron
dalam otak. Isyarat ini biasanya diukur dari kawasan yang berbeza, dalam bentuk isyarat
multivariat siri masa dan mempamerkan sifat tidak statik. Untuk menganalisis multi-
dimensi data dengan dinamik terpendam, kaedah statistik yang cekap diperlukan. Anali-
sis isyaratotak lazimnyamenggunakanteknik tidakdinamikdanfokuspadasatudimensi,
tanpa mengambil kira hubungan di antara isyarat tersebut. Model konvensional lain
ialah diskret hidden Markov model (HMM), di mana evolusi bagi keadaan tersembunyi
dicirikan dengan rantaian diskret Markov. Kelemahan ini boleh diatasi dengan memod-
elkan isyarat menggunakan state-space model (SSM), yang memodelkan isyarat secara
berterusan dan juga menganggarkan saling-kebergantungan antara isyarat otak. Tesis
ini membangunkan formulasi berasaskan SSM bagi model-model autoregresif untuk
menganggardinamikasasaktivitiotakberdasarkanisyaratyangdiukurdarikawasanotak
yangberlainan. Anggaranbagimodeldankeadaanyangtersembunyi telahmenggunakan
penapisKalmandankebarangkalianmaksimumdianggarkanberdasarkanalgoritmapen-
goptimuman jangkaan (EM). Model adaptif dinamik time-varying autoregressive (TV-
AR) telah diformulasikan ke dalam SSM, untuk aplikasi pengklasifikasian multi-saluran
electroencephalogram (EEG), dimana ketepatan klasifikasi yang diperolehi lebih baik
daripada konvensional HMM. Kajian ini menggeneralisasikan model TV-AR kepada
multivariat untuk tujuan merakam integrasi dinamik bagi isyarat otak. Model multivariat
dinamik time-varying vector autoregressive (TV-VAR) digunakan bagi mengkaji kesan
suatu kawasan otak terhadap kawasan lain yang dikenali sebagai sambungan efektif.
Model ini digunakan untuk menganalisis data motor-imaginasi EEG dan motor-kerja
functional magnetic resonance imaging (fMRI), di mana keputusan mendapati bahawa
sambunganefektifberubahdarimasakesemasa. Struktursambunganyangberubah-ubah
adalahmencerminkankeadaansebenarotak. Untukmengesanperubahanyangberkaitan
dengan keadaan otak berdasarkan sambungan efektif, kajian ini seterusnya telah mem-
bina satu penyatuan rangka-kerja baru berdasarkan model switching vector autoregres-

sive. Rangka-kerja ini diaplikasi ke atas simulasi data, epilepsi EEG dan motor-kerja
fMRI. Dapatan kajian menunjukkan bahawa rangka-kerja baru ini dapat merekodkan
perubahan yang perlahan dan mendadak pada sambungan efektif berdasarkan keadaan
otak. Kesimpulannya, pendekatan berasaskan SSM yang dibangunkan adalah efektif
bagi memodelkan sifat tidak statik dan sambungan bagi isyarat otak.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The human brain is a part of the central nervous system that functions
to control the whole human body activities. Electrical activities generated in the
brain are originated from neuronal activation in the cerebral cortex during the
synaptic process which is typically measured by electroencephalogram (EEG) or
magnetoencephalography (MEG). Another modality such as functional magnetic
resonance imaging (fMRI) is used to measure and record the hemodynamic activity
of the brain. The data of these modalities are often in the form of time series
that contains information on the dynamic brain activities which is very useful for
monitoring and diagnosing various brain diseases. The data are also present in multi-
dimensional recording such as multichannel EEG signals from scalp electrodes of
different locations or multiple fMRI time series from different voxels or region of
interests (ROIs). The dimension of the data is determined by the number of channels
or brain regions.

The locations of the electrode placement for EEG typically follow international
10-20 systems. Instead of channel, fMRI analysis used region of interest (ROI)
to define an interest region with specific functionality which consists of a number
of 3D voxels stack together. However, some of the important information of the
dynamic brain activities is latent and could not be directly observed from the recording.
Moreover, the EEG signals for instances, have low amplitudes and are typically
obscured by various background noises and artifacts where it can be physiological
and technical origin. In addition, causality effects that one region has on another needs
to be analyzed from the observed signals in order to learn the underlying physiological
process of the brain during specific conditions. Thus, the challenge is to develop
reliable and computationally efficient multivariate modeling approach with dynamic
properties for better modeling and analyzing the multidimensional dynamical brain
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signals in presence of noise.

This thesis proposes a novel approach based on the state-space modeling to
model the dynamics of multivariate neuronal signal in time series with application to
EEG and fMRI data. The state-space models is a statistical modeling method which
is widely applied in various studies especially in time series analysis, such as speech
signals, biomedical signals, deoxyribonucleic acid (DNA) sequences, and financial
time series. The models are capable to track, predict and forecast complex underlying
dynamic phenomena. Thus, this could be well-suited for analyzing and learning the
hidden dynamic of the brain. This thesis proposes a family of state-space models
based on autoregressive (AR) process, to address some important signal processing
problem in neurosciences for example multi-channel classification of EEG signal, non-
stationary multivariate modeling for effective connectivity and state-related changes
estimation in EEG and fMRI data.

1.2 Background of Problems

Biomedical signal processing has played an important role in advance medical
and clinical diagnostic. Brain signal is a type of biomedical signal that originates
from the physiological activity of the brain. According to World Health Organization
(WHO), neurological disorders such as epilepsy, dementia, cerebrovascular disease
and others constitute 12% of 100,000 total deaths globally until 2030 which are
classified as one of the greatest threats to public health [1]. These diseases can be
detected early and accurately by diagnostic modalities such as EEG, computerized
tomography (CT), positron emission transmission (PET) and fMRI. This may helps
to reduce mortality and disability, enhance rehabilitation and prevent relapses and
recurrence of the illness [1].

EEG has very good temporal resolution (milisecond) which is efficient in
detecting temporal changes because of the capablity of measuring the instantaneous
response of the neuroral signal. However, it has a low spatial resolution with
maximum number of 10-10 system electrode is 128 channels [2]. In contrary, other
functional neuroimaging data such as fMRI has the best spatial resolution with optimal
voxel size (1.5 × 1.5 × 1.5)mm3 [3] but low in temporal resolution (appoximately
two frames/second [4]). This data do not directly measure the neural activity, but
only capture local changes in metabolism and blood oxygenation flow in the brain
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[5]. The challenge is to develop an advanced analysis of these brain signals for
better understanding of the underlying neurological processes as well as diagnosing
neurological diseases.

Neuroimaging modalities produced multi-dimensional recording data. This
thesis refer multi-dimensional recording as the number of channel or signal measured.
Let’s denote the measured time series as Yt = [Y1t, . . . ,YNt] where time, t =

1, . . . , T and N dimension signals. EEG for instance, has a number of channel up
to 256 commercially [6], furthermore [2] has proposed 5% system electrode that can
produce a number of channel locations up to 345. Some may be interested in studying
certain area of the brain for specific task and response for example motor task (channel
C3, C4 and CZ) [7], mental task or decision making (channel F3, F4, P3 and P4) [4],
visual response (O1, O2 and Oz) [8] and others. Most of these studies addressed a
specific response that includes a multi-channel EEG recording. fMRI time series also
a multi-dimensional data with a good spatial resolution. fMRI recorded in 3-D image
elements named voxels with size 1.5mm×1.5mm×1.5mm [3], where the whole-brain
imaging could achieved thousands number of voxels. It poses a challenge to analyzed
such multi-dimensional data. Usually, fMRI analysis is focused on combined region
of interest (ROI) with specialized functionality for example default-mode, cognitive-
control, visual and somatomotor [9].

The importance of multi-dimensional analysis is that one could tell how the
brain regions are inter-connected and inter-dependent to one another. It is called brain
connectivity analysis. There are two types of connectivity; 1) functional connectivity:
defined as statistical dependencies among spatially different brain regions [10], 2)
effective connectivity: defined as causal effect of one region has on another or
it always refered as directed connectivity [11]. The study has important role in
understanding brain process and diseases. Connectivity analysis showed inter-regional
connectivity disrupted in patients with schizophrenia [12], low causality connection
between seizure foci and across other brain regions during ictal [13], and different
connectivity pattern for healthy and stroke patients in motor area [14]. Based on stated
studies, brain connectivity analysis could give advantages in solving neurosciences
problems. Complex multivariate approach is required to model dependency between
signals.

Common signal analysis studies use univariate method for example
autoregressive modeling [15–17] to infer the dynamic of physiological system.
This method has superior performance in estimating single-trial signal compared
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to conventional fast Fourier transform, short-time Fourier transform and wavelet
transform [18–22] by offered better time-frequency resolutions. The limitation of
univariate autoregressive is the process includes only correlation in time precedence
of a signal, while the correlation between regions is ignored [23, 24]. The inter-
regional could not be assessed directly from univariate models. The alternative to this
problem is the generalization of univariate model to multivriate modeling [25]. Using
mutivariate model, the inter-regionals correlation could give additional information to
discriminate between brain conditions where the models or methods can measure the
synchronization between coupling regions and the coherency among them [26–31].
The state-of-the-art of multivariate analysis method independent component analysis
(ICA) is frequently used to analyze multivariate EEG and fMRI time series [32–34].
This method is an advantage for task-free of neuronal data set (i.e. resting-state
fMRI) [34]. However, the main drawback of this multivariate method is that it only
assesses the spatial correlation, while the temporal correlations were ignored which
leads to results misinterpretation. Thus, it is obviously not suitable for task-related or
highly non-stationary time series signals.

Human brain signals are generally derived from physiological process of
underlying biological systems interaction [35]. These physiological signals generally
exhibit in non-stationary form by changing over time in term of amplitude, spectrum
and connectivity [4,16,18,33,36,37]. Non-stationarity of the signal in EEG for instance
could be frequently induced by task and stimulus, transition of ictal conditions,
event-related potential (ERP) and evoked potential (EP) [4, 38–40]. Many studies
have proven the non-stationarity in single-trial EEG through synchronization and de-
synchronization of spectrum assessment [19, 41–43] and also in multivariate signals
analysis where the frequency content changing over the time recording [44, 45].

Current studies of non-stationary EEG signals use short-time windowing
analysis for example short-time fourier transform and wavelet transform by assuming
piece-wise stationary of the signals [24, 44, 46–48]. Selection to the size of window
frame is a limitation to the methods. To achieved good temporal resolution small-
window frame need to be applied. However, it would be a destructive to the frequency
content of the signals [19, 20]. The result will be reversed when large-window frame
is applied. This effect is known as spectral leakage problem [20, 22]. An alternative
to this piece-wise stationary analysis is time-varying autoregressive (TV-AR) model
as proposed in [15, 16, 19]. These studies successfully addressed non-stationary
of underlying brain signal which capable to capture or estimate abrupt changes of
the time series data. However, this solution is only limited to a single trial-brain
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signal which is unreliable for multi-dimensional time series. Another advanced non-
stationary signal analysis is time-frequency distribution (TFD) technique [49,50]. The
TFD is a frequency component based method that has been proposed to improve the
time-frequency resolution estimation in various biomedical signals analysis [51–53].
However, this method estimates trial-by-trial or channel-by-channel time-frequency
component of the signals where the spatial correlation of brain regions are not
measured.

Non-stationarity of brain signals was further demonstared in recent studies
on brain connectivity analysis which has discovered the functional connectivity
patterns changing over time, especially for task-related time series data [54–56].
Even in resting-state or task-free fMRI, researchers have found the evolving of
functional connectivity [57, 58]. The evolving of effective connectivity is actually
found earlier across task-related in [59–61]. These studies as a result motivate to
analyze and quantify the temporal dynamic in connectivity pattern over time. To
date, the commonly used approach to infer dynamic causality network is multivariate
autoregressive (MVAR) model [62, 63]. MVAR is the most reliable modeling method
to model a dynamic system however, in most effective connectivity analysis assumed
the inter-regional integration is stationary with manually determined time frame
[45, 64]. This condition would be easy for known simulation framework, but it is
rather difficult to segregate the brain-conditions in resting-state data. Implementation
of complex multivariate autoregressive model with non-stationary assumption is
necessary to solve this important problem.

The importance of effective connectivity analysis is the ability of the integration
to explain the observed dependencies which is functional dependency [10]. For
example, direction and degree of influence among brain regions. In addition, important
study of non-stationary or dynamic effective connectivity is enabled the understanding
of underlying neurophysiological process especially functional integration changes for
example, as given in paragraph 4. The dynamic changes in effective connectivity can
be use detect state-related transition as previusly studied in functional connectivity
analysis [9, 65–68] which is still limited in term of the number of studies for effective
connectivity.

In clinical application, EEG is one of the neuroimaging modalities that can
provide low cost screening yet valuable information. The problem is, recorded
EEG signals are contaminated by artifacts from various sources for example line
interference, environment, cardiac activity and muscle artifacts [69]. These noises
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have to be removed to avoid misinterpretation of the neurophysiolocigal processes. An
alternative to this problem is using ICA which based on rejection and reconstruction
methods [70–72]. However, the limitation of this methods is the requirement of a
sufficient amount of data to get a reliable result, otherwise the result will not be
meaningful [73]. Furthermore, the stationarity assumption of the artifacts and brain
activity through time would violate the dynamic nature of brain signals.

Another problem to EEG recording is volume conduction where electrophys-
iological signals that are captured by scalp EEG is not direct from source the neuron
firing [42,74,75]. In other words, distance between scalp electrode and neuron activity
could cause this confound effect. As an alternative, a method, that can incorporate with
these noise and artifacts and the confound effect is needed. Multivariate estimation
based methods can be solution to this problem by allowing multiple brain regions
to be analyzed at a time which minimized signal normalization and avoid multiple
comparison [76, 77]. This is important to quantify the actual characteristic of the
signals which can help to achieve a good result and proceed to the next clinical decision
procedures.

1.3 Statement of Problems

The problems that will be addressed in this research are summarized into three
main issues as follows:

a) Brain signals such as multi-channel EEG and ROI-wise fMRI time
series are often measured from distinct brain areas and presented in
a multi-dimensional time series data form. Identifying the effective
connectivity of brain network requires analyzing the dependence
between these multi-dimensional brain signals. The challenge in
analyzing brain networks is to develop multivariate approach for
modeling, estimation and inference of the dependence of these signals.

b) Multivariate neuronal signals are non-stationary, where the dependence
structure between signals evolves over time. This is illuminated by
recent neuroscience studies which showed the dynamic changes in
brain connectivity networks. Current non-stationary analysis tools
focus on the non-stationary of single signal, and neglect the time-
evolving dependence between signals. There are two main challenges
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in analyzing the non-stationary in multivariate brain signals

(i) Brain signals exhibit depends on brain states or activity regimes,
with smooth changes within a regime but abrupt change in
transition between regimes. Current windowing-based analysis is
unable to capture both smooth and abrupt changes simultaneously.

(ii) The dynamics of the brain connectivity are hidden by the signals
measurement and obscured by noise.

The motivation is to develop advanced non-stationary analysis methods
for modeling and estimating these complex changes in the connectivity
between multi-dimensional brain signals.

c) Brain signals are typically obscured by various types of noise and
artifacts of physiological and instrumental origin. For example,
multi-channel EEG are affected by the confounding effect of volume
conduction, where the measured signals are not directly measurement
of neuronal activity but superposition of neuronal sources. The
challenge is to recover the underlying structure of the noising signals.

1.4 Objectives of the Research

The objectives of this research study are as follows:

a) To propose a class of vector autoregressive (VAR) models and asso-
ciated estimation procedures for analyzing inter-dependence between
multi-dimensional brain signals with application to identify reliable
brain connectivity networks with direction (effective connectivity).

b) To propose extension of the stationary case to non-stationary VAR
models for analyzing changes in dependence between brain signals with
applications to time-varying brain connectivity.

(i) To apply time-varying VAR models to capture instantaneous
changes in effective connectivity.

(ii) To propose a new estimation framework to capture state-related
changes in effective connectivity.

c) To formulate the above non-stationary VAR models into state-
space formulation with expectation-maximization estimation, to allows
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sequential and online estimation of latent dynamics brain connectivity
between brain signals and to alleviate the confounding noise effects for
multi-dimensional signals.

d) To apply the above proposed methods to multi-channel EEG and ROIs-
wise fMRI time series to solve variety of problems in neuroscience
studies.

1.5 Scope of the Research

The scope of this study are as follows:

a) Time series modeling based on state-space methods and its estimations
for brain signals will includes these general steps;

(i) The underlying (hidden state) parameter estimation are solved
analytically using closed form Kalman filter (KF)

(ii) The model parameter estimated using maximum likelihood
(ML) approach which a proposed expectation-maximization (EM)
algorithms

b) Linear dynamic models for multi-channel EEG with application to
classification of motor imagery EEG signals.

c) This study also embarks on dynamic multivariate modeling of VAR
variants

(i) Application of stationary VAR model with least square estimation
(LSE).

(ii) Application of TV-VAR model TV-VAR(p),

(iii) Formulation of SVAR model SVAR(p),

for effective connectivity estimation of brain signals.

d) Effective connectivity estimation and analysis includes

(i) Identifying causal connectivity pattern during motor imagery
movement of EEG data for healthy subjects.

(ii) Differentiate the connectivity patterns of fMRI for stroke and
healthy subjects during motor task functions.
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(iii) Detection of epileptic seizure event of EEG data based on dynamic
effective connectivity.

e) Formulating data-driven simulation of VAR time series to validate the
proposed novel framework.

f) Databases

(i) Motor imagery data are obtained from online database of Brain
Computer Interface Competition 2003 (dataset IIIa)

(ii) The motor-task fMRI data were collected by Dr. Steven C. Cramer
from University of California, Irvine, that consist of two groups of
subjects which are healthy subjects and stroke patients.

(iii) EEG data set were recorded from a patient of Dr. Malow
(neurologist at the University of Michigan) during epileptic
seizure monitoring.

1.6 Contribution of the Study

This study proposes novel methods based on state-space modeling for
analyzing dynamic changes in multivariate brain signals, with potential applications to
solve important neuroscience problems such as identifying the directed connectivity of
the brain networks. To the best of our knowledge, this study is among the few to apply
the state-space methods for modeling and estimating dynamic effective connectivity
from brain signals. Specifically, the research contributions are given follows:

a) This thesis introducing linear dynamic state-space models based
classifier for multi-channel EEG. Two types of dynamic classifiers
which are LLM and TV-AR is introduced in this thesis. The estimation
problem of the models solved by EM algorithms. The proposed
methods were applied to BCI data classification.

b) Developing novel framework for analyzing non-stationary multivariate
brain signals, with potential applications to solve important
neuroscience problems;

(i) Identifying time-evolving connectivity with the direction (effec-
tive connectivity) of brain signals by using TV-VAR model. The
estimation of dynamic effective connectivity was solved based on
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state-space formulation with Kalman algorithms as the hidden
states estimator and expectation maximization as the iterative
model parameters estimator. The proposed method is applied for
identifying time-frequency evolving brain connectivity of motor-
imagery EEG data (healthy) and motor-task fMRI data (healthy
and stroke subjects).

(ii) Detecting state-related changes associated with underlying
physiological brain conditions. To detect the state-related
changes, this thesis proposed a unified framework based on
SVAR modeling and estimation. The framework contains
initialization connectivity estimation by TV-VAR process and
K-mean clustering, and then refined the state-related changes
by switching Kalman filter (SKF) and EM algorithms. This
framework was applied to detect the epileptic seizure on-set and
off-set of EEG data and motor-task of fMRI data.

c) This study also embarks on dynamic multivariate modeling of VAR
variants. Application of time-invariant vector autoregressive (VAR)
model, time-varying VAR model and formulation of Switching-VAR
model for effective connectivity estimation of brain signals.

d) Formulating multivariate AR models to state-space modeling with its
parameters estimations based on Kalman algorithms and expectation-
maximization algorithm. The contribution of this thesis is summarized
in Table 1.1.
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Table 1.1: Summary of Contributions of this thesis.

This Thesis, 2017

Method
Parameter Estimation

Application
State Model

LLM & TV-AR KF and KS EM algorithm Dynamic classifier for BCI
dataset. Motor imagery EEG

TV-VAR Rapid changes estimation in
effective connectivity of mo-
tor imagery EEG, motor task
stroke and healthy fMRI and
epileptic seizure EEG data

SVAR SKF and SKS State-related changes detec-
tion (slow & abrupt) for
motor-task stroke and healthy
fMRI and epileptic seizure
EEG data

VAR Least square estimator (LSE) Effective connectivity in lo-
calized stable brain state

1.7 Thesis Organization

The thesis organization includes the introduction chapter that is contains of the
background, statement of problems, objectives, scopes and contribution of the study.
The second chapter provides a comprehensive literature study of the brain signals
analysis, state-space modeling and multivariate analysis. The third chapter proposes
of multi-channel EEG classification using state-space models. In the fourth chapter,
this thesis proposes the time-varying vector autoregressive modeling for dynamic
effective connectivity analysis. In the fifth chapter, this thesis proposes the estimation
framework for state-related changes in effective brain connectivity. The final chapter
of this thesis contain the conclusions and the possible future directions.



REFERENCES

1. World Health Organization. Neurological Disorders: Public Health

Challenges. Technical Report 1. 2006.

2. Oostenveld, R. and Praamstra, P. The five percent electrode system for high-
resoluti EEEG and ERP measurements. Clinical Neurophysiology, 2001.
112(4): 713–719.

3. Hyde, J., Biswal, B. and Jesmanowicz, A. Optimum Voxel Size in fMRI.
Proc. Intl. Soc. Mag. Reson. Med. 8. 2000, vol. 8. 240.

4. Saeid Sanei. Adaptive Processing of Brain Signals. West Sussex, United
Kingdom: JohnWiley & Sons Ltd. 2013.

5. David, O. and Friston, K. J. A Neural Mass Model for MEG/EEG: Coupling
and Neuronal Dynamics. NeuroImage, 2003. 20(3): 1743–1755.

6. Suarez, E., Viegas, M. D., Adjouadi, M. and Barreto, A. Relating induced
changes in EEG signals to orientation of visual stimuli using the ESI-256
machine. Biomedical sciences instrumentation, 2000. 36: 33–38.

7. Pfurtscheller, G. and Neuper, C. Motor Imagery and Direct Brain- Computer
Communication. Proceedings of the IEEE, 2001. 89(7): 1123–1134.

8. Lutzenberger, W., Pulvermüller, F., Elbert, T. and Birbaumer, N. Visual
stimulation alters local 40-Hz responses in humans: an EEG-study.
Neuroscience Letters, 1995. 183(1-2): 39–42.

9. Allen, E. a., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T. and
Calhoun, V. D. Tracking whole-brain connectivity dynamics in the resting
state. Cerebral Cortex, 2012: 663–676.

10. Friston, K. J. Functional and Effective Connectivity: A Review. Brain

connectivity, 2011. 1(1): 13–36.

11. Friston, K., Harrison, L. and Penny, W. Dynamic Causal Modelling.
NeuroImage, 2003. 19(4): 1273–1302.

12. Honey, G. D., Pomarol-Clotet, E., Corlett, P. R., Honey, R. A. E., Mckenna,
P. J., Bullmore, E. T. and Fletcher, P. C. Functional dysconnectivity in



128

schizophrenia associated with attentional modulation of motor function.
Brain, 2005. 128(11): 2597–2611.

13. Coben, R. and Mohammad-Rezazadeh, I. Neural Connectivity in Epilepsy
as Measured by Granger Causality. Frontiers in Human Neuroscience, 2015.
9(194): 1–11.

14. Gorrostieta, C., Fiecas, M., Ombao, H., Burke, E. and Cramer,
S. Hierarchical Vector Auto-Regressive Models and Their Applications
to Multi-Subject Effective Connectivity. Frontiers in computational

neuroscience, 2013. 7(159): 1–11.

15. Khan, M. E. and Dutt, D. N. An Expectation-Maximization Algorithm Based
Kalman Smoother Approach for Event-Related Desynchronization (ERD)
Estimation from EEG. IEEE Transactions on Biomedical Engineering, 2007.
54(7): 1191–1198.

16. Ting, C. M., Salleh, S. H., Zainuddin, Z. M. and Bahar, A. Spectral
Estimation of Nonstationary EEG Using Particle Filtering with Application
to Event-Related Desynchronization (ERD). IEEE Transactions on

Biomedical Engineering, 2011. 58(2): 321–331.

17. Allison, B. Z., McFarland, D. J., Schalk, G., Zheng, S. D., Jackson, M. M.
and Wolpaw, J. R. Towards an independent brain-computer interface using
steady state visual evoked potentials. Clinical Neurophysiology, 2008.
119(2): 399–408.

18. Aboy, M., Márquez, O. W., McNames, J., Hornero, R., Trong, T. and
Goldstein, B. Adaptive Modeling and Spectral Estimation of Nonstationary
Biomedical Signals Based on Kalman Filtering. IEEE Transactions on

Biomedical Engineering, 2005. 52(8): 1485–1489.

19. Tarvainen, M. P., Hiltunen, J. K., Ranta-Aho, P. O. and Karjalainen, P. A.
Estimation of Nonstationary EEG with Kalman Smoother Approach: An
Application to Event-Related Synchronization (ERS). IEEE Transactions

on Biomedical Engineering, 2004. 51(3): 516–524.

20. Faust, O., Acharya, R., Allen, A. and Lin, C. Analysis of EEG signals during
epileptic and alcoholic states using AR modeling techniques. IRBM, 2008.
29(1): 44–52.

21. Georgiadis, S. D., Ranta-Aho, P. O., Tarvainen, M. P. and Karjalainen, P. A.
Single-Trial Dynamical Estimation of Event-Related Potentials: A Kalman
Filter-Based Approach. IEEE Transactions on Biomedical Engineering,
2005. 52(8): 1397–1406.



129

22. Muthuswamy, J. and Thakor, N. V. Spectral analysis methods for
neurological signals. Journal of Neuroscience Methods, 1998. 83(1): 1–14.

23. Schlögl, A. and Supp, G. Analyzing event-related EEG data with multivariate
autoregressive parameters. Progress in Brain Research, 2006. 159: 135–147.

24. Anderson, C. W., Stolz, E. A. and Shamsunder, S. Multivariate
Autoregressive Models for Classification of Spontaneous Electroencephalo-
graphic Signals During Mental Tasks. IEEE Transactions on Biomedical

Engineering, 1998. 45(3): 277–286.

25. Ozaki, T. Time series Modeling of Neuroscience Data. Boca Raton, FL:
Taylor & Francis. 2012.

26. Jalili, M. Multivariate Synchronization Analysis of Brain Electroencephalog-
raphy Signals: A Review of Two Methods. Cognitive Computation, 2013.
7(1): 3–10.

27. Astolfi, L., Cincotti, F., Mattia, D., De Vico Fallani, F., Tocci, A., Colosimo,
A., Salinari, S., Marciani, M. G., Hesse, W., Witte, H., Ursino, M., Zavaglia,
M. and Babiloni, F. Tracking the Time-Varying Cortical Connectivity
Patterns by Adaptive Multivariate Estimators. IEEE Transactions on

Biomedical Engineering, 2008. 55(3): 902–913.

28. Habeck, C. and Stern, Y. Multivariate Data Analysis for Neuroimaging Data:
Overview and Application to Alzheimer’s Disease. Cell Biochemistry and

Biophysics, 2010. 58(2): 53–67.

29. Zhang, Z. and Chan, S. A New Kalman Filter-Based Algorithm for Adaptive
Coherence Analysis of Non-Stationary Multichannel Time Series. IEEE

International Symposium on Circuits and Systems. IEEE. 2006. 125–128.

30. Deshpande, G., LaConte, S., James, G. A., Peltier, S. and Hu, X. Multivariate
Granger Causality Analysis of fMRI Data. Human Brain Mapping, 2009.
30(4): 1361–1373.

31. Rissman, J., Gazzaley, A. and D’Esposito, M. Measuring Functional
Connectivity During Distinct Stages of a Cognitive Task. NeuroImage, 2004.
23(2): 752–763.

32. Liao, W., Mantini, D., Zhang, Z., Pan, Z., Ding, J., Gong, Q., Yang, Y. and
Chen, H. Evaluating the effective connectivity of resting state networks using
conditional Granger causality. Biological Cybernetics, 2010. 102(1): 57–69.

33. Havlicek, M., Jan, J., Brazdil, M. and Calhoun, V. D. Dynamic Granger
Causality based on Kalman Filter for Evaluation of Functional Network



130

Connectivity in fMRI Data. NeuroImage, 2010. 53(1): 65–77.

34. Arbabshirani, M. R., Havlicek, M., Kiehl, K. a., Pearlson, G. D. and Calhoun,
V. D. Functional Network Connectivity During Rest and Task Conditions: A
Comparative Study. Human brain mapping, 2013. 34(11): 2959–71.

35. Cerutti, S. Methods of Biomedical Signal Processing. In: Cerutti, S.
and Marchesi, C., eds. Advanced Methods of Biomedical Signal Processing.
Hoboken, New Jersey: John Wiley & Sons, Inc. 3–31. 2011.

36. Arnold, M., Miltner, W. H. R., Witte, H., Bauer, R. and Braun, C. Adaptive
AR Modeling of Nonstationary Time Series by Means of Kalman Filtering.
IEEE Transactions on Biomedical Engineering, 1998. 45(5): 545–552.

37. Omidvarnia, A., Azemi, G., Boashash, B., Otoole, J. M., Colditz, P. B. and
Vanhatalo, S. Measuring Time-Varying Information Flow in Scalp EEG
Signals: Orthogonalized Partial Directed Coherence. IEEE Transactions on

Biomedical Engineering, 2014. 61(3): 680–693.

38. Wendling, F., Ansari-Asl, K., Bartolomei, F. and Senhadji, L. From EEG
signals to brain connectivity: A model-based evaluation of interdependence
measures. Journal of Neuroscience Methods, 2009. 183(1): 9–18.

39. Mohseni, H. R., Nazarpour, K., Wilding, E. L. and Sanei, S. The Application
of Particle Filters in Single Trial Event-Related Potential Estimation.
Physiological measurement, 2009. 30(10): 1101–1116.

40. Milde, T., Leistritz, L., Astolfi, L., Miltner, W. H. R., Weiss, T., Babiloni, F.
and Witte, H. A New Kalman Filter Approach for the Estimation of High-
Dimensional Time-Variant Multivariate AR Models and Its Application in
Analysis of Laser-Evoked Brain Potentials. NeuroImage, 2010. 50(3): 960–
969.

41. Pfurtscheller, G., Neuper, C., Schlogl, A. and Lugger, K. Separability
of EEG Signals Recorded During Right and Left Motor Imagery Using
Adaptive Autoregressive Parameters. IEEE Transactions on Rehabilitation

Engineering, 1998. 6(3): 316–325.

42. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M. and Müller, K. R.
Optimizing Spatial Filters for Robust EEG Single-Trial Analysis. IEEE

Signal Processing Magazine, 2008. 25(1): 41–56.

43. Pfurtscheller, G. Functional brain imaging based on ERD/ERS. Vision

Research, 2001. 41(10): 1257–1260.

44. Cassidy, M. J. and Penny, W. D. Bayesian Nonstationary Autoregressive



131

Models for Biomedical Signal Analysis. IEEE Transactions on Biomedical

Engineering, 2002. 49(10): 1142–1152.

45. Ding, M., Bressler, S. L., Yang, W. and Liang, H. Short-window
spectral analysis of cortical event-related potentials by adaptive multivariate
autoregressive modeling: data preprocessing, model validation, and
variability assessment. Biological cybernetics, 2000. 83(1): 35–45.
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